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Background: An increased posterior tibial slope (PTS) corresponds with an increased risk of graft failure after anterior cruciate
ligament (ACL) reconstruction (ACLR). Validated methods of manual PTS measurements are subject to potential interobserver
variability and can be inefficient on large datasets.

Purpose/Hypothesis: To develop a deep learning artificial intelligence technique for automated PTS measurement from
standard lateral knee radiographs. It was hypothesized that this deep learning tool would be able to measure the PTS on
a high volume of radiographs expeditiously and that these measurements would be similar to previously validated manual
measurements.

Study Design: Cohort study (diagnosis); Level of evidence, 2.

Methods: A deep learning U-Net model was developed on a cohort of 300 postoperative short-leg lateral radiographs from
patients who underwent ACLR to segment the tibial shaft, tibial joint surface, and tibial tuberosity. The model was trained via a ran-
dom split after an 80 to 20 train-validation scheme. Masks for training images were manually segmented, and the model was
trained for 400 epochs. An image processing pipeline was then deployed to annotate and measure the PTS using the predicted
segmentation masks. Finally, the performance of this combined pipeline was compared with human measurements performed by
2 study personnel using a previously validated manual technique for measuring the PTS on short-leg lateral radiographs on an
independent test set consisting of both pre- and postoperative images.

Results: The U-Net semantic segmentation model achieved a mean Dice similarity coefficient of 0.885 on the validation cohort.
The mean difference between the human-made and computer-vision measurements was 1.92� (s = 2.81� [P = .24]). Extreme dis-
agreements between the human and machine measurements, as defined by �5� differences, occurred \5% of the time. The
model was incorporated into a web-based digital application front-end for demonstration purposes, which can measure a single
uploaded image in Portable Network Graphics format in a mean time of 5 seconds.

Conclusion: We developed an efficient and reliable deep learning computer vision algorithm to automate the PTS measurement
on short-leg lateral knee radiographs. This tool, which demonstrated good agreement with human annotations, represents an
effective clinical adjunct for measuring the PTS as part of the preoperative assessment of patients with ACL injuries.

Keywords: anterior cruciate ligament; artificial intelligence; automated; machine learning; posterior tibial slope; preoperative
assessment; radiograph

Anterior cruciate ligament (ACL) reconstruction (ACLR)
generally leads to favorable overall outcomes; however,
recurrent ACL injury (ipsilateral or contralateral) may
occur in up to 20% to 30% of cases.1,14 These studies typi-
cally cite younger age, female sex, higher activity level,
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allograft use, coronal malalignment, and unrecognized
concomitant pathology (among others) as factors that can
increase the risk of failure after ACLR.5,16,25 Recently,
hyperlaxity, high-grade pivot shift, and tibial slope have
also come to be recognized as important variables in pre-
dicting outcomes after ACLR.7,8,22

The posterior tibial slope (PTS)—a measure of sagittal
alignment—is an important risk factor when considering
patients for primary or revision ACLR.26 The PTS influen-
ces knee biomechanics by affecting anterior tibial transla-
tion.4,22 An increase in the PTS has resulted in increased
anterior tibial translation and increased strain on the
ACL, with every 10� increase in the PTS resulting in
6 mm of increased anterior translation.22 Two studies
have demonstrated an association between increased PTS
and increased risk of graft rupture after ACLR.6,22

The PTS is characterized by the angle between the line
perpendicular to the tibia and the line tangent to the
medial or lateral tibial plateau for the medial or lateral
PTS, respectively. Overall, several measurement tech-
niques involving various types of radiographs—
weightbearing, short-leg vs full-length, proximal tibial
axis vs middiaphyseal axis, and midpoint vs circle
method—have been described.10,12,15,23,32 Likewise,
although morphological disparities exist in anatomy, such
as the PTS, recent studies have demonstrated the mean
medial PTS to be near 6.9� and the mean lateral PTS to
be near 4.7�—with a range of 7� to 10� for the medial and
4� to 7� for the lateral PTS.22 While there is no current con-
sensus on (1) the method of measurement and (2) the impor-
tance of the medial versus the lateral tibial slope in
assessments for ACLR, a recent study has demonstrated
that medial PTS measurements comparing short-leg lateral
knee and full-length lateral tibial radiographs with regard
to the anatomic axis provide similar measurements when
using the middiaphyseal axis method for measurement.10

Artificial intelligence (AI) has been increasing in ortho-
paedic surgery.20 By providing a method to analyze high-
dimensional data, machine learning allows us to create
accurate predictions when intervariable relationships are
too complex for traditional statistics.21 Deep learning—a
subset of machine learning—provides digitization of
images and videos for analysis by computer software in
an automated fashion.19 One application of deep
learning—computer vision—allows automated processes
such as face recognition, optical character recognition,
and automated identification of lesions or regions of

interest in medical imaging.33 Recent studies have demon-
strated deep learning to be faster, as accurate, and more
efficient compared with experts with automated measure-
ments in orthopaedic imaging.28-31 One of the issues in
measuring the PTS is that the process is relatively labor-
intensive and time-consuming for busy clinicians. This
also makes it more difficult to perform research on large
numbers of patients that all require manual calculation
of the PTS. AI has the potential to overcome the challenges
of manual measurement. Still, no studies have explored
applications of deep learning in PTS measurements.

This study aimed to develop a deep learning tool that (1)
can automatically measure the PTS on a given lateral radio-
graph and (2) has good agreement, defined by a mean differ-
ence of 62� compared with expert human measurements. We
hypothesized that this deep learning tool would be able to
measure the PTS on a high volume of radiographs expedi-
tiously and that these measurements would be similar to pre-
viously validated manual measurements.

METHODS

The study protocol received institutional review board
approval. Informed consent was provided for patient par-
ticipation in the Rochester Epidemiology Project (REP),
which included the use of patient data for research purpo-
ses. The planned deep learning tool is a pipeline that consists
of a semantic segmentation model followed by an image pro-
cessing algorithm. First, we generated a semantic segmenta-
tion model to automatically recognize and segment the
anatomic landmarks on a radiograph required for measuring
the tibial shaft, tibial tuberosity, and the tibial joint surface.
Segmentation is a subdomain of computer vision whereby
algorithms are trained to accurately group pixels within
a region of interest into the correct class labels, or in other
words, to provide maps outlining the objects in each image.19

After this, we deployed an image processing algorithm that
transforms and processes digital signals, such as pixel
data, into numerical values to perform the desired measure-
ments. A general workflow for developing this tool is outlined
in the flowchart provided in Figure 1.

Data Source

A total of 300 postoperative short-leg lateral radiographs
were retrospectively collected from patients who were
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diagnosed with an ACL injury and underwent subsequent
ACLR. Patients were identified utilizing the Rochester
Epidemiology Project, an established longitudinal geo-
graphic database of .500,000 medical records for residents
of Olmstead County, Minnesota, as well as neighboring
counties in southeast Minnesota and western Wisconsin.24

This sample size was chosen based on previous work that
demonstrated the training of effective 2-dimensional (2D)
segmentation models with a similar cohort size.29 Patients
were identified utilizing a geographical longitudinal data-
base. For our specific task, training images were balanced
to maintain a 1 to 1 ratio of patient sex and a 1 to 1 to 1
ratio of the graft type utilized—allograft, bone–patellar
tendon–bone autograft, and hamstring autograft. To
reflect real-work clinical and research practices, images
were not discriminated based on fixation method (screws,
suspensory, buttons, etc), fixation materials (metal, bio-
composite, etc), or tunnel configuration (sockets, full tun-
nels, etc). Notably, we did not exclude radiographs with
concomitant ligamentous reconstructions to assess the
fidelity of model performance. These images were ran-
domly divided into training and validation sets utilizing
an 80 to 20 train-validation split.

Semantic Segmentation

After data curation, these images were segmented by 2
authors (Y.L., A.P.) with both clinical orthopaedic knowl-
edge at the resident level and programming expertise uti-
lizing 3D Slicer (Version 4.13.0; Slicer Community).

Specifically, the first 20 images were segmented in concert
with the senior author (C.L.C.), a sports medicine
fellowship–trained orthopaedic surgeon with .5 years of
practice experience, who also randomly selected and vali-
dated a batch of 20 images from the final segmentation
images. The senior author manually segmented the tibial
shaft, the tibial tuberosity, and the tibial joint surface into
pixel masks. For the first 2 landmarks, a simple brush tool
was used to outline each area on the radiograph, where one
dot was used to mark the anterosuperior margin of the tibial
plateau for the joint surface and another dot was used to
mark the posterosuperior margin of the tibial plateau.

We then supplied the human-made masks—otherwise
termed the ‘‘ground-truth’’ segmentations—and the origi-
nal radiographs to a U-Net Convolutional Neural Network
(CNN) model to train it for automated segmentation. The
model attempts to iteratively reproduce the ground-truth
segmentations on the original radiographs until it has fully
learned the features that help it accurately recognize each
anatomic landmark. We used an EfficientNet-B7 as the
encoder of the U-Net model, with initialization weights
pooled from a pretrained model on the ImageNet database
using noisy-student distillation. ImageNet is a free, pub-
licly available collection of 14,197,122 object images for
training computer vision algorithms (Stanford Vision
Lab).13 The U-Net model was trained for 400 epochs using
the Adam optimizer,18 with a batch size of 8 and a learning
rate of 0.001. The best-performing candidate model was
selected based on the maximization of the Dice similarity
coefficient (DSC), which is a measure of the overlap of
the pixels from the manually contoured ground truth

Figure 1. Representative workflow for developing the deep learning computer vision tool for automated posterior tibial slope
measurement. First, the training and validation set was curated and manually segmented. Second, data were fed into the model,
which learned to recognize and segment the appropriate areas on new radiographs. Finally, the model-generated masks were fed
into an image-processing pipeline for angle calculations.
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segmentations from the primary author and the predicted
segmentations by the model, with a DSC of .0.820 consid-
ered the lower range of acceptable based on previous
work.11,35 The U-Net model was trained on an NVIDIA
GeForce graphics processing unit (GPU) (NVIDIA Corpora-
tion) with 24 gigabytes of random-access memory using the
Medical Open Network for AI (MONAI; Version 0.8.0) run-
ning on Python (Version 3.9; Python Software Foundation).

Image Processing Workflow

An imaging processing pipeline was developed to measure
the tibial slope on the automatically generated masks sub-
sequently. Four masks were generated, representing the
outline of the tibia up to the level of the joint surface, the
tibial joint surface, the approximate location of the tibial
tuberosity, and the background of the image, respectively.
To highlight the pixels of each mask as a region of interest
for image processing, each mask was finally converted to
a single-channel image via the application of an argmax
function. Each pixel value in this final image represented
a unique region of interest: for example, pixels within the
tibial mask region were assigned a value of 1, those in
the joint surface region a value of 2, those in the tuberosity
region a value of 3, and the rest of the image assigned
a value of 0. This approach helps to delineate the exact
location of the anatomic landmarks on the original
radiograph.

After image segmentation, the regionprops module from
the Scikit-Image Python library (Version 0.19.2) was used
to estimate the PTS based on the relative spatial positions
of the pixels in the 2D plane. First, independent nonzero
regions\150 pixels were removed from each image to filter
only the regions of interest from the argmax output and
ignore the noise in segmentation maps. Second, the center
of the 2 points highlighting the tibial joint surface was
identified using the centroid function, and a line (hereto-
fore designated as the joint surface line) fitted through
them. Third, the distance of all nonzero pixels in the tibia
mask to the joint surface line was calculated, and the pix-
els coplanar with the tuberosity masks were removed to
prevent offset by the curvature of the proximal posterior
cortex of the tibia. Fourth, a straight line was fitted
through the remaining pixels of the tibia mask (heretofore
designated as the tibial axis line). Finally, the angle
between the joint surface line and the tibial axis line was
measured, and the PTS was calculated in degrees by sub-
tracting this measurement from 90.

Output and Evaluations

The final pipeline of segmentation and image processing
algorithms was deployed on a random cohort of 90 short-
leg lateral knee radiographs, identified using the Roches-
ter Epidemiology Project, for performance evaluation. To
evaluate the generalizability of our algorithm to preopera-
tive radiographs, we included a 50 to 50 split of pre- and
postoperative images in the test set. There was no data
leakage between the original images used for training

and validation of the semantic segmentation model and
the images within the test set.

For comparisons with human measurements, the
images were manually annotated by the senior author
and a sports fellowship–matched postgraduate year 5
orthopaedic surgery resident (A.P.) utilizing 3D Slicer
(Version 4.13.0), based on the methods first described by
Utzschneider et al.32 Briefly, 2 transverse lines connecting
the anteroposterior cortices of the tibia were drawn at
approximately 5 and 15 cm from the tibial joint surface,
a line was drawn connecting the midpoints of these 2 lines,
and the angle subtended by this line and a line parallel to
the tibial joint surface was measured and subtracted from
90 to give the PTS (Figure 2). Given that obliquity can
affect PTS measurements, images that were deemed insuf-
ficient in quality were eliminated from the annotation pool
based on 2 parameters: (1) complete overlap of the femoral
condyles and (2) images distally extending to include the
entirety of the tibial tubercle and at least the proximal
third of the tibial shaft.

The human measurements were then compared with
machine-level measurements utilizing a 2-tailed 2-sample
t test assuming equal variance. Moreover, visual compari-
sons of the extent of agreement between the measurement
methods were demonstrated using a Bland-Altman plot.
Finally, a scatterplot was generated between the PTS
and measurement differences to assess whether there
was a correlation in the magnitude of human-machine dif-
ferences in measurement with increasing PTS. Of note, the
2 human annotators (A.P., C.L.C.) measured 45 overlap-
ping images to provide a benchmark assessment of human
level interrater reliability, as measured by the Cohen
kappa coefficient,27 and a tolerable margin of error for
measurements made by the computer vision tool.

Figure 2. Sample human annotation of the tibial slope on
a lateral knee radiograph using the technique by Utzsch-
neider et al.32 Distances were standardized and calibrated
using the magnification marker. A, angle; L, length.
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The final model was incorporated into a web-based dig-
ital application using a combination of FastAPI Version
0.75.1 (Sebastián Ramı́rez) for server-side computations
and the Streamlit Version 1.8.0 (Streamlit Inc) application
framework for designing the user interface. The applica-
tion is compatible with both Portable Network Graphics
and Digital Imaging and Communications in Medicine for-
mats and is tailored for work with medical imaging. The
software runs through a web browser and can be easily
deployed on computing specifications common to most clin-
ical workspaces without the need for a GPU. The time for
segmentation and measurement from a single raw image
was then measured in triplicates on a Windows machine
with an Intel Core-i7-9750H central processing unit and
16 gigabytes of random-access memory.

RESULTS

A total of 390 patients, with a mean (6SD) age of 28.6
(610.9) years, with 390 radiographs were included in the
study cohort, of whom 50% were women. A comparison of
patient demographic and intraoperative information for
the training and testing cohorts is provided in Table 1. Fol-
lowing convergence of the semantic segmentation U-Net
model, evaluation was performed on the validation set for
every 2 epochs of training; the final model demonstrated
a mean DSC of 0.872 in segmentation of the short-leg lat-
eral radiographs (Table 2).

When specific DSCs for individual mask layers were
evaluated, the highest value was present within the tibial
segmentations, with a DSC of 0.912, followed by the tibial
tuberosity segmentations, with a DSC of 0.908. Figure 3
demonstrates changes in the loss values and the DSC
scores for the validation set converging during training.
The model had the greatest difficulty characterizing the
2 points that denoted the tibial plateau joint surface, yield-
ing a DSC of 0.835. However, this performance remained
acceptable, as demonstrated by the results of the image

processing algorithm for PTS measurement (Figures 4
and 5).

Computer vision workflow resulting in the measure-
ment of posterior slopes on 2 representative short-leg lat-
eral knee radiographs is provided in Figure 4. The top
row is an immediate postoperative radiograph with single
direct compression graft fixation, while the bottom row is
a postoperative radiograph of a multiply revised knee
with several fixation methods and retained hardware.

Manual measurement of the PTS by the 2 orthopaedic
surgeon annotators demonstrated a mean absolute differ-
ence of 1.30� (s = 2.16�) across 45 overlapping images,
reaching an interrater reliability of 0.84. When compari-
sons were made with human ground-truth measurements,
the machine predictions made by our computer vision tool
demonstrated a mean absolute difference of 1.92� (s =
2.81�; P = .21). Figure 5 demonstrates neither significant
asymmetric deviations from human measurements by the
computer vision annotator nor an increase in the measure-
ment difference as the slope increased. An assessment of
outliers—defined as instances of absolute differences �5�
between human and machine measurements—identified
4 images (4.44%). Upon closer inspection of the specific
images, the tibial joint surface of 1 image was significantly
obscured on all 4 images. These images are included in
Appendix Figure A1 to illustrate the specific deviations
between human and machine measurements.

The final model was incorporated into a digital applica-
tion that provided real-time measurements (Figure 6). For
the testing set of 90 images, this tool completed semantic
segmentation and image processing to obtain angle mea-
surements in \1 minute—significantly shorter than the
manual annotation time estimated to be 180 minutes by
the 2 annotators (P \ .001). Raw images were processed uti-
lizing the browser-based digital application with a mean time
of 5 seconds. Pending external validation using noninstitu-
tional images, the application can be easily deployed to the
web using operating system virtualization tools such as
Docker (Docker Inc).

DISCUSSION

We developed a deep learning computer vision tool to mea-
sure the PTS using short-leg knee lateral radiographs,
with good agreement to human measurements. When

TABLE 1
Demographic and Intraoperative Characteristics

of the Training and Testing Cohortsa

Variable
Training
(n = 300)

Testing
(N = 90) P

Age, y 28.6 6 10.9 28.9 6 10.8 .8
Female sex 150 (50) 45 (50) .99
Race .78

White 258 (86.7) 77 (85.6)
Non-White 42 (23.3) 13 (24.4)

Graft type .99
BTB autograft 100 (33.3) 30 (33.3)
Hamstring autograft 100 (33.3) 30 (33.3)
Allograft 100 (33.3) 30 (33.3)

Tertiary academic
care setting

300 (100) 90 (100) .99

aData are reported as mean 6 SD or n (%). BTB, bone-tendon-
bone.

TABLE 2
Performance of the U-Net Semantic

Segmentation Model on Validation Seta

Performance Indicator DSCb

Tibia segmentation 0.912
Joint surface 0.835
Tibial tuberosity 0.908

aDSC, Dice score coefficient.
bPerfect overlap between human-made and predicted segmenta-

tions has a DSC of 1; generally, acceptable semantic segmentation
models35 have DSCs of �0.8.
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supplied with a raw radiograph, the tool provided
a PTS measurement in a mean time of 5 seconds.
The DSC—as well as an assessment of the final PTS

measurements—demonstrates a consistent performance of
the segmentation models on patients after primary and revi-
sion ACLR as well as multiligamentous reconstructions.

Figure 3. Training and validation performance of the semantic segmentation U-Net models. (A) Validation loss curve illustrating the
Dice coefficient loss as a function of training epochs; (B) Validation Dice coefficient as a function of number of training epochs.

Figure 4. Overview of the pipeline for automatic PTS measurement on short-leg lateral radiographs in 2 patients after ACLR. (A)
Original radiographic images, (B) overlay of semantic segmentation masks from the U-Net models on the original radiographs,
and (C) best-fit lines through the joint surface and tibial anatomic axis through which the PTS can be measured. ACLR, anterior
cruciate ligament reconstruction; PTS, posterior tibial slope.
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The PTS has long been established as a crucial mea-
surement with significant implications for knee biome-
chanics, and the increased slope has specifically been

correlated to an increased risk of graft failure after
ACLR.22 Therefore, reliable PTS measurements are inte-
gral for risk stratification of patients during preoperative

Figure 5. (A) The Bland-Altman plot of differences between human and machine measurements as a function of the mean PTS
between the 2 demonstrating a nonclinically significant undermeasurement of 0.5� by the machine annotator compared with
human measurements. (B) The scatterplot of the magnitude of differences between AI and machine as a function of the
human-measured PTS demonstrating a slight but nonsignificant trend toward increasing differences at greater PTS (P = .27).
AI, artificial intelligence; PTS, posterior tibial slope.

Figure 6. Screenshot from the Computer Vision Posterior Tibial Slope Annotator, a web-based application developed to demon-
strate deployment of the semantic segmentation U-Net model and subsequent image processing workflow for annotating the PTS
on short-leg lateral radiographs, with minimal user input. Currently supports both PNG and DICOM images. DICOM, Digital Imag-
ing and Communications in Medicine; PNG, Portable Network Graphics; PTS, posterior tibial slope.
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counseling for ACL surgery and postoperative follow-ups.
At present, the gold-standard measurement of PTS
requires human annotation of long-leg lateral radiographs.
However, these require dedicated views that are not rou-
tinely obtained and lack generalizability. While several
methods exist for manual annotation on short-leg lateral
radiographs of the knee,10,12,22 we developed a fully auto-
mated deep learning AI that can rapidly process and anno-
tate the PTS accurately and reproducibly.

Not unexpectedly, we observed the most challenging
task for the semantic segmentation model to be outlining
the tibial joint surface, as reflected by the lowest DSC score
of 0.835. This is intuitive as the pixel number is the small-
est in this mask layer relative to the tibial shaft and tuber-
osity. Therefore, the model optimization strategy is least
affected by losses in this layer. However, a DSC .0.8 is
still considered ‘‘good’’ to ‘‘excellent,’’34 and as empirically
demonstrated, the image processing algorithm was still
able to successfully measure the PTS angle within a tolera-
ble margin of error. Currently, there remains no group con-
sensus on a minimal clinically significant difference of the
measured PTS, with numbers cited anywhere from �2 to
�5.10,15 These error margins grow even larger when com-
paring measurements made with advanced imaging to
those on plain radiographs.15 When taking into account
the literature threshold for error, the difference of 1.92�
(s = 2.81�) between the human and computer
measurements—while acceptable—is more appealing
when considering the speed and reproducibility by which
the computer vision annotator can produce measurements.
The current literature demonstrates variable intrarater
reliability for PTS measurements with several techniques
on radiography, computed tomography, or magnetic reso-
nance imaging, ranging from 0.82 to 0.99; similarly, inter-
rater reliability has been reported to range from 0.63 to
0.95.9,12,15,32 As previously demonstrated, the computer
vision algorithm will exhibit perfect intrarater reliability
and substantial interrater reliability with human annota-
tors regardless of the washout period.17 Furthermore, the
computer vision annotator developed herein has an advan-
tage in efficiency once incorporated into routine practice.
With exponential increase in digitization of imaging data
given more sophisticated warehousing and management
technologies, this tool can be leveraged for imaging annota-
tions that are not practical for clinicians. Finally, the tech-
nique using a calculated distance from the tibial joint
surface to mark the trajectory of the angle requires the
presence of a marker for scale. This need is removed by
the computer vision tool, which improves its efficiency.

Several methods for digital measurements of the PTS
have been described in previous studies; however, none
are fully automated and deployable at the level of effi-
ciency of the tool presented here. Amerinatanzi et al2

developed a method of measuring the PTS from advanced
imaging using traditional image processing techniques
and performed measurements on 9 subjects. In another
study, Amirtharaj et al3 developed a similar method to per-
form tibial slope measurements using computed tomogra-
phy and image processing utilizing 3 cadaveric knees.
However, both methods require advanced imaging that is

not yet the clinical standard of care for patients with
ACL injuries and, therefore, remain limited in application
to everyday clinical practice. Moreover, neither of the
developed methods underwent a robust validation process,
which the present study improved upon with a comparison
of human annotations on a test set of 90 radiographs.
Finally, while the angle measurements in these methods
are automated, both tools remain dependent on user data
input in segmenting the relevant areas of the tibia and
the tibial joint surface, which, based on subjective feedback
from the annotators, was the most labor-intensive and
time-consuming component of the workflow. Following
the protocol previously established by Rouzrokh et al,29

our tool obviates the human segmentation process to
achieve full automation of annotation, with the user only
needing to supply the input image.

Any discussion of algorithm implementation needs to
account for failure instances. A perfect lateral view—that
is, complete overlap of the femoral condyles and distal
extension to include the entirety of the tibial tubercle as
well as the proximal third of the tibial shaft—is ideal,
although not required, as the tool was effectively deployed
on multiple skewed radiographs in the testing set. We
intentionally did not seek a training dataset of perfect lat-
eral images to increase the generalizability of the tool to
the average orthopaedic practice, where radiography pro-
tocols may not be standardized and personnel not as expe-
rienced. In the present study, the amount of obliquity was
judged based on visual inspection by the senior author, and
there was no standardized measurement. Since both
human and computer annotators are subject to nonunifor-
mity in the quality of the radiographs, we would expect
a degree of performance breakdown as the view obtained
deviates from ideal; indeed, Utzschneider et al32 identified
a PTS measurement error of nearly 50% with 640� of mal-
rotation of the tibia. While the current expectation is that
clinicians evaluate radiographs before measurement,
future endeavors at automation may aim to preselect for
acceptable lateral radiographs using another deep learning
classifier before measurement.

Limitations

Several limitations need to be taken into consideration to
appropriately interpret our findings. As noted previously,
rotational changes to the orientation of the knee or the
x-ray beam and the presence of hardware may distort or
obscure the necessary anatomy. The work by Rouzrokh
et al29 observed increased deviation in model measure-
ments of acetabular component position because of the
interference by unusual hardware in the regions of interest
such as plates for pelvic fixation. Fortunately, we did not
observe this as the case for our tool. As illustrated in Fig-
ure 4, the segmentation model successfully segmented
the masks despite the presence of significant hardware
from previous surgeries. This is likely secondary to the
ease with which the significant difference between radio-
graphic attenuation of hardware and bone on can be recog-
nized. In contrast, it is more difficult to differentiate the
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boundaries of an implant from overlapping radio-opaque
hardware. However, our tool is unlikely to work in patients
who have already undergone total knee arthroplasty ,
where the native osseous tibial joint surface will be obliter-
ated by the presence of the implant. Second, the segmenta-
tion model was developed on radiographs from a single
institution, which may limit its generalizability to data
from other centers. Third, long-leg radiographs have his-
torically been defined as the gold-standard medium for PTS
measurement. We did not validate the computer vision anno-
tator on these radiographs because of data availability; none-
theless, this and additional validation on multi-institution
data are important in future considerations. Finally, it is
important to recognize that this study does not validate the
radiographic view of short-leg lateral compared with long-
leg lateral, but rather validates the computer vision annotator
compared with manual measurements.

CONCLUSION

We developed an efficient and reliable deep learning com-
puter vision algorithm to automate the PTS measurement
on short-leg lateral knee radiographs. This tool demon-
strates good agreement with human annotations and will
be deployed for clinical use on an institution-wide basis.
This represents an effective clinical adjunct for PTS mea-
surement as part of the preoperative assessment of
patients with ACL injuries.
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Figure A1. There were extreme disagreements regarding 4 lateral radiographs (�5� between human and machine measure-
ments). All radiographs had a rotation of the x-ray beam with respect to the film, with both the medial and lateral tibial plateau
visible on all 4 images, making it difficult for both human annotators and the deep learning tool to determine the cortex on which
it should rely to denote the tibial joint surface.
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