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Vector polymorphic beam
José A. Rodrigo    & Tatiana Alieva

A scalar polymorphic beam is designed with independent control of its intensity and phase along 
a strongly focused laser curve of arbitrary shape. This kind of beam has been found crucial in the 
creation of freestyle laser traps able to confine and drive the motion of micro/nano-particles along 
reconfigurable 3D trajectories in real time. Here, we present and experimentally prove the concept 
of vector polymorphic beam adding the benefit of independent design of the light polarization along 
arbitrary curves. In particular, we consider polarization shaped tangential and orthogonal to the curve 
that are of high interest in optical manipulation and laser micromachining. The vector polymorphic 
beam is described by a surprisingly simple closed-form expression and can be easily generated by using 
a computer generated hologram.

Shaping a coherent laser beam with independent control of its intensity, phase and polarization is a long posted 
problem of high interest in science and technology. This is particularly important in areas such as optical 
manipulation of micro/nano-particles and light material processing, where laser beams strongly focused in the 
form of diffraction-limited patterns such as points and curves are required. For example, it is known that the 
three-dimensional (3D) high intensity gradients of a focused laser beam yield optical forces responsible for stable 
3D trapping of particles1. The phase gradients of the beam can be also exploited to exert optical forces able to drive 
the motion of the particles along different trajectories2–5. The combined use of high intensity and phase gradients 
allows for improving laser micromachining tools6,7. It has been also reported that vector Gaussian beams with 
radial and/or tangential (azimuthal) polarization have advantages for laser material processing (micromachining 
such as drilling and cutting), e.g.: tangential polarization provides increased laser micro-drilling velocities and 
generation of thin capillaries with high aspect ratios in thick sheets8,9. Moreover, it has been demonstrated that 
femtosecond vortex pulses tightly focused onto the surface of dielectric media allows creating subwavelength 
ripples whose orientation depends on the polarization direction10,11. The ability to change the polarization state in 
the focal plane by tuning the vortex topological charge11 adds new income in the development of such micro- and 
nano-scale surface structuring.

In general, a vector beam E(x, y) = A(x, y)e with arbitrary complex field amplitude A(x, y) and polarization 
distribution e = (a1(x, y), a2(x, y)), at a given transverse xy-plane, can be generated by using computer generated 
holograms (CGHs) addressed into programmable spatial light modulators (SLMs) as reported elsewhere12–16. 
Here e is a Jones vector where a1,2(x, y) are complex functions such that |a1(x, y)|2 + |a2(x, y)|2 = 1. Indeed, a com-
bination of two collinear beams E1(x, y) = A(x, y)a1(x, y)e1 and E2(x, y) = A(x, y)a2(x, y)e2 with orthogonal linear 
polarization states e1 = (1, 0) and e2 = (0, 1) forms a vector beam. Circular polarized beams = ± ie (1, )c

1,2  can be 
also used for this task. The superposition of the beams E1 and E2 created by using two SLMs is often achieved 
applying a Mach-Zehnder interferometer16 or a common-path interferometer with a Ronchi grating17 as the one 
sketched in Fig. 1(a). Numerous vector beams have been created by using this approach12–16, however, the chal-
lenging problem of the design and generation vector beams strongly focused in form of a diffraction-limited light 
curve of arbitrary shape with independent control of its intensity, phase and polarization distributions along it has 
not been completely solved. While in18, an inverse design based on a numerical calculation procedure has been 
proposed for complete 2D shaping of the optical focal field with the prescribed distribution of intensity, phase and 
polarization, however, an analytical expression for the required beam simplifying the light curve generating pro-
cess has not been found. On the other hand in19, using the expression for scalar curved beams proposed by us in20, 
a particular case of polarization shaping of curved vector beams in three dimensions has been demonstrated. 
Note that the approach reported in19 does not allow shaping an arbitrary phase along the curve.

In this work we present a kind of vector beam, referred to as vector polymorphic beam, that solves this chal-
lenging problem of beam shaping. It is based on its scalar analogous beam21, which can be strongly focused in 
form of diffraction-limited light curve of arbitrary shape with the following key properties: high 3D intensity 
gradients, independent design of the intensity and phase distributions (both of them can be arbitrary) along the 
curve according to the considered application. The scalar polymorphic beam has been used to create freestyle 
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laser traps providing both optical confinement and transport of micro/nano-particles along reconfigurable 
trajectories5,20,22. Apart from optical manipulation, scalar polymorphic beams have been also applied for laser 
printing of plasmonic nanoparticles23 illustrating their possible application for single-shot laser lithography, 
micro-machining (drilling and marking)7–9, etc. Its design has an inherent versatility that can be exploited to 
create other types of coherent beams such as electron beams shaped along curves, as it has been shown in24. 
Another advantage is that this kind of beam shaping technique does not require the use of iterative algorithms, 
thus enabling direct and fast generation of such laser curves. Moreover, it can be easily implemented by using a 
CGH addressed into a conventional programmable SLM.

In next section we propose a simple technique for the generation of vector polymorphic beams with tailored 
polarization distribution along the light curve, thus enlarging the practical applications of their scalar counter-
parts. In section 3 the technique is experimentally verified. The article ends with conclusion remarks.

Principle of the Technique
The vector polymorphic beam is defined by:
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with e1,2 corresponding to orthogonal polarization components, for example, linear e1 = (1, 0) and e2 = (0, 1) or 
circular ec

1,2 = (1, ±i) ones. Specifically, g1,2(t) = g(t)a1,2(t) are weight functions defining the intensity and phase 
distributions along the curve, while a1,2(t) controls the polarization along it assuming |a1(t)|2 + |a2(t)|2 = 1. Here, 
R(t) is the radius of an arbitrary 2D curve given in polar coordinates that can be either closed (T = 2π) or open, f 
is a normalization constant, T stands for the maximum value of the azimuthal angle t, while k = 2π/λ with λ being 
the light wavelength.

Let us first briefly recall the main characteristics of the scalar polymorphic beam21
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used in the design of the vector polymorphic beam Eq. (1). To create the light curve, the polymorphic beam is 
Fourier transformed21:

Figure 1.  (a) Sketch of the system used for the generation and analysis of vector beams. (b) Intensity and phase 
distributions of a scalar polymorphic beam shaped in form of triangular-like curve given by Eq. (9) with 
parameters q = (1, 1.8, 1, 2, 1.4, 6) and ρ(t) = constant. The second and third rows show the uniform and non-
uniform phase distributions (charge l = 8) prescribed along the curve. (c) Intensity and phase shaped along a spiral 
curve with q = (1, 1, 250, 100, 100, 6) and ρ(t) ∝ t. (d,e) Experimental results: vector polymorphic beam with 
uniform and non-uniform polarization variation, = πσ πσ−t e ee( ) ( , )/ 2p t p ti2 ( ) i2 ( ) , prescribed along the curve. In 
the experiments the focal length is f = 150 mm and the input collimated laser beam (linear polarized) has a 
wavelength of λ = 532 nm. (f) Changes of the polarization state along the curved vector beams considered in this 
example. The repetitive changes of the polarization, associated with the movements on the green-marked 
meridians of the Poincaré sphere, along the curves are illustrated in the corresponding zoom inserts of (d).
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by using a convergent lens of focal length f. Thus, the shape of the beam E u v( , ) in the focal plane is described by 
the 2D curve written in parametric form as c(t) = (u(t), v(t)), with u(t) = −R(t) cos t and v(t) = −R(t) sin t. While, 
the complex weight function
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controls the amplitude and phase distributions along the curve. Specifically, the field amplitude distribution along 
the curve is given by κ| | = ′E u t v t g t tc( ( ), ( )) ( ) / ( ) , where: ′ = ′ +t R t R tc ( ) ( ) ( )2 2  with c′(t) = dc(t)/dt, and 
κ = L/λf with ∫ τ τ= ′L c ( ) dT

0
 being the curve length21. While, the phase of g(t) is controlled by the real function 

S(t) describing the phase variation along the curve. Note that the parameter l defines the phase accumulation 
along the entire curve21. For closed curves the phase accumulation is 2πl and l corresponds to the vortex topolog-
ical charge25. For instance, a light curve with uniform intensity is obtained by using |g(t)| = E0κ|c′(t)| (with 
dimension of electric field) while

∫ τ τ= ′S t c( ) ( ) d , (5)
t

0

sets a uniform phase distribution along the curve c(t). A non uniform phase shaped along the curve can be easily 
obtained by using, for example, the following constraint

∫ τ τ= αS t R( ) ( )d , (6)
t

0

with α being a real number21. For instance, in Fig. 1(b) it is shown a scalar polymorphic beam focused in form of 
triangular-like curve with a topological charge l = 8, for the case of uniform [Eq. (5)] and non-uniform [Eq. (6) 
with α = 2] phase distribution. Note that the change of either the phase distribution and/or value of l does not 
alter the shape and size of the beam curve, independently whether the curve is closed or open as the spiral one 
demonstrated in Fig. 1(c).

Such a versatile control of amplitude and phase along the curve results crucial for creating vector polymorphic 
beams. For example, to adapt the polarization e(t) = (a1(t), a2(t)) to the curve shape, the phase of a1,2(t) can be 
expressed similar to Eq. (4) as it follows: exp[i2πp1,2σ1,2(t)] with σ1,2(t) = S1,2(t)/S1,2(T) and p1,2 being real numbers. 
Note that σ1,2(t) ∈ [0, 1] and the variation of the Jones vector along the curve can be also uniform if S1,2(t) is 
described by Eq. (5), or non-uniform when it is described for example by Eq. (6). Thus, when 

= =a t a t( ) ( ) 1/ 21 2 , σ1,2(t) = σ(t) and p2 = −p1 = p the polarization defined by the Jones vector 
= π σ π σ−t e ee( ) ( , )/ 2p t p ti2 ( ) i2 ( )  performs a 2p rotation along two meridians of the polarization Poincaré sphere 

with an azimuthal angle distant 180° between each other. In this case the global phase of the vector beam is given 
by the phase of g(t), Eq. (4). Other combinations of a1,2(t), allows for more complex movements along the polari-
zation sphere.

A polarization tangential to the curve results more relevant in practical applications such as laser material pro-
cessing and micro-machining. Indeed, as pointed out in8,9 tangential polarization yields improved laser drilling 
on materials. Phase gradients of scalar vortex beams have been also proved successful for clearer and smoother 
processed surfaces6. Therefore, a vector polymorphic beam with both polarization and phase gradient tangential 
to the curve opens up promising perspectives. In this case the vector polymorphic beam has to be created with
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when using orthogonal linear polarization components. Indeed, the Jones vector e(t) = (a1(t), a2(t)) is tangential 
to the curve c(t). We recall that the weight functions are g1,2(t) = g(t)a1,2(t) and therefore it is possible obtain the 
tangential polarization independently of the intensity and phase prescribed by g(t) along the curve. To set the 
polarization orthogonal to the curve, a1(t) and a2(t) given by Eq. (7) have to be exchanged.

As we have previously mentioned, orthogonal left- and right-hand circular polarization components ec
1,2 = (1, 

±i) can be also used to generate a vector polymorphic beam. In this case, in order to create a polarization tangen-
tial to the curve, the required functions for two orthogonal components of the beam are defined by
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Experimental Results
The experimental setup sketched in Fig. 1(a) has been used to generate the vector beams Eq. (1) considered here. 
It consists of a programmable SLM (Holoeye PLUTO, pixel size of 8 μm) in which a phase-only CGH encoding 
the beam components as E1(x, y) exp (i2πx/Λ) + E2(x, y) exp (−i2πx/Λ) has been addressed by using the approach 
reported in26. We recall that the weight functions are g1,2(t) = g(t)a1,2(t) and therefore the polarization information 
of a1,2(t) has been also included into the CGH encoding E1,2(x, y). This CGH allows for generating the beams 
E u v( , )1,2  spatially separated at the focal plane of the convergent lens L1, where they are respectively modulated 
by two half-wave plates (HWP1 and HWP2) in order to obtain the required orthogonal linear polarization com-
ponents, see Fig. 1(a). If orthogonal left- and right-hand circular polarization components are used to generate a 
vector polymorphic beam then the HWPs of the setup have to be replaced by quarter-wave plates. The beam 
components E u v( , )1,2  are combined by using another convergent lens L2 (in our case L1 and L2 are identical, 
working together as a 4f system) and a diffraction grating of period Λ (in our case a Ronchi Ruling grating of 20 
lp/mm, Edmund Optics). Thus, the focused vector polymorphic beam + E u v E u ve e( , ) ( , )1 1 2 2 (the laser curve) 
is obtained at the focal plane of the lens L3, where its intensity distribution has been recorded by a digital camera 
(color CMOS, Thorlabs, pixel size of 4.7 μm). In our case the analyzer has been set into a programmable rotation 
stage (Newport URS100BCC).

In the considered examples, the curve is described by
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known as Superformula27, that allows for straightforward generation of a large variety of shapes where the real 
numbers in q = (a, b, n1, n2, n3, m) are the design parameters of the curve and ρ(t) is a non-periodic function of 
t required for the construction of asymmetric and spiral-like curves (e.g.: ρ(t) ∝ eβt or ρ(t) ∝ tβ). For example, 

Figure 2.  Experimental results: intensity distributions of a vector polymorphic beam + E u v E u ve e( , ) ( , )1 1 2 2 
with a polarization set tangential to the curve. In this case an uniform phase distribution (l = 8), e1 = (1, 0) and 
e2 = (0, 1) have been used. The first row displays the intensity distribution of the generated vector beams while 
the second and third ones shown their intensities when an analyzer is rotated, see also Supplementary Video 1. 
The last row shows that the polarization is linear in all the points of the curve and forms an angle 
θ = (arctan(S2/S1))/2 with horizontal axis, where S1,2 are measured Stokes parameters. The polarization is 
tangential to the curve as expected. Curve parameters: (a) triangular-like curve q = (1, 1.8, 1, 2, 1.4, 6), (b) spiral 
q = (1, 1, 250, 100, 100, 6) with ρ(t) ∝ t, (c) a polygon with q = (2.7, 2.6, 6, 12, 8.3, 5.3), starfish curve q = (10, 10, 
2, 7, 7, 5), spiral with q = (1, 1, 5, 5, 5, 10) and ρ(t) ∝ t0.2.
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with q = (1, 1, 1, 1, 1, 0) and constant ρ(t) = ρ0 a circle of radius R(t) = ρ0 is obtained, while for other values of q a 
variety of closed polygons of different symmetry are easily generated21.

Let us first consider the experimental examples displayed in Fig. 1(d,e) corresponding to a triangular-like and 
spiral curves. In this case the vector polymorphic beam focuses into the curve with uniform intensity distribution 
and constant phase, while its polarization = π σ π σ−t e ee( ) ( , )/ 2p t p ti2 ( ) i2 ( )  varies along the curve following the 
meridian path on the polarization Poincaré sphere as shown in Fig. 1(f). Specifically, Fig. 1(d) shows the 
experimental results obtained for the triangular-like curve with l = 0, p2 = −p1 = p = 8 and σ(t) yielding uniform 
[Eq. (5)] and non-uniform [Eq. (6) with α = 2] variation of the polarization along it, see second and third rows 
respectively. Note that in this case the analyzer has been set at 45° and therefore the measured intensity 
distribution shows 2p = 16 fringes distributed along the curve. The same polarization configurations have been 
prescribed in the case of the spiral curve, see Fig. 1(e). We underline that in the case of uniform variation of σ(t) 
the polarization distribution periodically changes along the curve (t ∈ [0, T]): it is linearly polarized at 45° and 
−45° in the points where σ(t) = n/16 and σ(t) = 1/32 + n/16, correspondingly (with n = 0, 1, 2, ..., 15). While 
right(left)-hand circular polarization is obtained in the points where σ(t) = 1/64 + n/16 (and σ(t) = 3/64 + n/16), 
see also Fig. 1(f). In the case of non-uniform variation of σ(t) [described by Eq. (6)] this transformation in the 
polarization is accelerated along the curve.

The examples considered in Fig. 1 have mostly fundamental character. Now we turn to practically important 
cases: Polymorphic beams with both uniform intensity and phase distribution and linear polarization tangential 
to the curve. In Fig. 2 and Supplementary Video 1, the rotation of the analyzer indicates that the polarization has 
been set tangential to the curve as it follows from the further analysis of the Stokes components. Indeed, by 
calculating the first three Stokes parameters S0 = I(0°) + I(90°), S1 = I(0°) − I(90°), and S2 = I(45°) − I(135°), −
where I(θ) stands for the measured intensity distribution when the analyzer is set at an angle θ with respect the 
horizontal axis − one derives that = +S S S0

2
1
2

2
2 and therefore the fourth parameter is S3 = 0. It means that the 

polarization is linear in all the points of the curve and forms an angle θ = (arctan(S2/S1))/2 with horizontal axis as 
it is shown in the last row of Fig. 2. Note that an uniform phase distribution, given by the function S(t) in Eq. (5) 
with l = 8, has been used in all the beams displayed in Fig. 2. For example, the uniform phase distribution pre-
scribed in Fig. 2(a,b) is the same as the one displayed in Fig. 1(b,c), respectively.

Discussions
The vector polymorphic beam can be easily created by using a hologram and provides a direct (non-iterative) way 
for confining light in the form of a diffraction-limited 2D curve of arbitrary shape and size, with independent 
control of the intensity, phase and polarization distributions. These degrees of freedom are demanded by relevant 
applications as for example laser material processing7–9,23 and optical manipulation of micro/nano-particles5,20,22. 
Here, the versatility in the design and generation of the vector polymorphic beams have been illustrated in several 
examples using a straightforward experimental setup. More sophisticated setups, as the ones reported in9, can be 
applied instead for practical implementations of the polymorphic beams. Industrial applications of the polymor-
phic beams could require a diffraction optical element instead of a liquid crystal SLM for hologram encoding.

References
	 1.	 Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries (World 

Scientific Publishing Company 2006).
	 2.	 Roichman, Y., Sun, B., Roichman, Y., Amato-Grill, J. & Grier, D. Optical Forces Arising from Phase Gradients. Phys. Rev. Lett. 100, 

8–11 (2008).
	 3.	 Lee, S.-H., Roichman, Y. & Grier, D. G. Optical solenoid beams. Opt. Express 18, 1974–1977 (2010).
	 4.	 Shanblatt, E. R. & Grier, D. G. Extended and knotted optical traps in three dimensions. Opt. Express 19, 5833–5838 (2011).
	 5.	 Rodrigo, J. A. & Alieva, T. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica 2, 812–815 

(2015).
	 6.	 Hamazaki, J. et al. Optical-vortex laser ablation. Opt. Express 18, 2144–2151 (2010).
	 7.	 Duocastella, M. & Arnold, C. Bessel and annular beams for materials processing. Laser & Phot. Rev. 6, 607–621 (2012).
	 8.	 Kraus, M. et al. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express 18, 

22305–22313 (2010).
	 9.	 Hasegawa, S. & Hayasaki, Y. Holographic femtosecond laser manipulation for advanced material processing. Adv. Opt. Tech. 5, 

39–54 (2016).
	10.	 Hnatovsky, C., Shvedov, V., Krolikowski, W. & Rode, A. Revealing local field structure of focused ultrashort pulses. Phys. Rev. Lett. 

106, 123901 (2011).
	11.	 Cheng, H. et al. Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex 

beams. Appl. Phys. Lett. 111, 141901 (2017).
	12.	 Davis, J. A., McNamara, D. E., Cottrell, D. M. & Sonehara, T. Two-dimensional polarization encoding with a phase-only liquid-

crystal spatial light modulator. Appl. Opt. 39, 1549–1554 (2000).
	13.	 Maurer, C., Jesacher, A., Fürhapter, S., Bernet, S. & Ritsch-Marte, M. Tailoring of arbitrary optical vector beams. New J. Phys. 9, 78 

(2007).
	14.	 Chen, H. et al. Generation of vector beam with space-variant distribution of both polarization and phase. Opt. Lett. 36, 3179–3181 

(2011).
	15.	 Kenny, F., Lara, D., Rodríguez-Herrera, O. G. & Dainty, C. Complete polarization and phase control for focus-shaping in high-NA 

microscopy. Opt. Express 20, 14015–14029 (2012).
	16.	 Maluenda, D., Juvells, I., Martínez-Herrero, R. & Carnicer, A. Reconfigurable beams with arbitrary polarization and shape 

distributions at a given plane. Opt. Express 21, 5432–5439 (2013).
	17.	 Wang, X.-L., Ding, J., Ni, W.-J., Guo, C.-S. & Wang, H.-T. Generation of arbitrary vector beams with a spatial light modulator and a 

common path interferometric arrangement. Opt. Lett. 32, 3549–3551 (2007).
	18.	 Chen, Z., Zeng, T. & Ding, J. Reverse engineering approach to focus shaping. Opt. Lett. 41, 1929–1932 (2016).
	19.	 Chang, C., Gao, Y., Xia, J., Nie, S. & Ding, J. Shaping of optical vector beams in three dimensions. Opt. Lett. 42, 3884–3887 (2017).
	20.	 Rodrigo, J. A., Alieva, T., Abramochkin, E. & Castro, I. Shaping of light beams along curves in three dimensions. Opt. Express 21, 

20544–20555 (2013).



www.nature.com/scientificreports/

6Scientific REPOrTs |  (2018) 8:7698  | DOI:10.1038/s41598-018-26126-9

	21.	 Rodrigo, J. A. & Alieva, T. Polymorphic beams and Nature inspired circuits for optical current. Sci. Rep. 6, 35341 (2016).
	22.	 Rodrigo, J. A. & Alieva, T. Light-driven transport of plasmonic nanoparticles on demand. Sci. Rep. 6, 33729 (2016).
	23.	 Rodrigo, J. A. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits. Sci. Rep. 7, 46506 (2017).
	24.	 Shiloh, R. & Arie, A. 3D shaping of electron beams using amplitude masks. Ultramicroscopy 177, 30–35 (2017).
	25.	 Amaral, A. M., ao Filho, E. L. F. & de Araújo, C. B. Characterization of topological charge and orbital angular momentum of shaped 

optical vortices. Opt. Express 22, 30315–30324 (2014).
	26.	 Davis, J. A., Cottrell, D. M., Campos, J., Yzuel, M. J. & Moreno, I. Encoding amplitude information onto phase-only filters. Appl. Opt. 

38, 5004–5013 (1999).
	27.	 Gielis, J. A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90, 333–338 (2003).

Acknowledgements
The Spanish Ministerio de Economía y Competitividad is acknowledged for the project TEC2014-57394-P.

Author Contributions
J.A.R. and T.A. developed the idea discussed the results and wrote the manuscript. J.A.R designed and performed 
the experiments as well as programs.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26126-9.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-26126-9
http://creativecommons.org/licenses/by/4.0/

	Vector polymorphic beam

	Principle of the Technique

	Experimental Results

	Discussions

	Acknowledgements

	Figure 1 (a) Sketch of the system used for the generation and analysis of vector beams.
	Figure 2 Experimental results: intensity distributions of a vector polymorphic beam with a polarization set tangential to the curve.




