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Abstract

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degeneration in adults, and several
mechanisms underlying the disease pathology have been proposed. It has been shown that glia communicate with
other cells by releasing extracellular vesicles containing proteins and nucleic acids, including microRNAs (miRNAs),
which play a role in the post-transcriptional regulation of gene expression. Dysregulation of miRNAs is commonly
observed in ALS patients, together with inflammation and an altered microglial phenotype. However, the role of
miRNA-containing vesicles in microglia-to-neuron communication in the context of ALS has not been explored in
depth. This review summarises the evidence for the presence of inflammation, pro-inflammatory microglia and
dysregulated miRNAs in ALS, then explores how microglia may potentially be responsible for this miRNA
dysregulation. The possibility of pro-inflammatory ALS microglia releasing miRNAs which may then enter neuronal
cells to contribute to degeneration is also explored. Based on the literature reviewed here, microglia are a likely
source of dysregulated miRNAs and potential mediators of neurodegenerative processes. Therefore, dysregulated
miRNAs may be promising candidates for the development of therapeutic strategies.
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Introduction
Amyotrophic lateral sclerosis (ALS) is the most severe
and most common form of motor neuron degeneration
in adults, with an estimated worldwide prevalence of 5
cases per 100,000 population and an incidence of
approximately 2 per 100,000 individuals per year [1]. It
targets the motor cortex, brainstem and spinal cord and
involves the death of upper and lower motor neurons
that control voluntary muscles. This results in symptoms
such as muscle stiffness and twitching, limb weakness
due to a gradual decrease in muscle size, and difficulty
swallowing or speaking. Additionally, up to half of the

patients develop frontotemporal dementia (FTD) [2]
which is characterised by progressive degeneration in
the frontal and temporal lobes, behavioural and person-
ality changes and language and executive function de-
cline [3, 4]. In most cases, during the late stages of the
disease, the weakening of the diaphragm and intercostal
muscles results in death by respiratory failure [5]. ALS is
a heterogeneous disease in age of onset and progression
rate, with a median survival time of 3 to 5 years from
diagnosis [6].
Around 10% of ALS cases are due to inherited genetic

mutations (familial ALS; fALS). These cases are associ-
ated with over 25 genes, of which the most common are
chromosome 9 open reading frame 72 (C9orf72) [7],
superoxide dismutase 1 (SOD1) [8], fused in sarcoma
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(FUS) [9] and transactive response DNA-binding protein
43 (TARDBP; TDP-43) [10]. The remaining 90% of cases
are sporadic (sALS) and arise without any family history,
but around 10% of patients with sALS have genetic mu-
tations like those in fALS [11].
Motor neurons and surrounding oligodendrocytes in

ALS spinal cord, cerebellum, hippocampus, and frontal
and temporal cortices have characteristic protein-rich
cytoplasmic inclusions and aggregates [12, 13]. The most
common are ubiquitinated-protein aggregates known as
Lewy body-like or skein-like inclusions, characterised by
randomly orientated filaments covered by fine granules.
TDP-43, which is predominantly found in the nucleus, is
hyper-phosphorylated, cleaved and mislocalised into
these cytoplasmic inclusions in most sALS cases and
most SOD1-negative fALS patients [14–19]. FUS-positive
inclusions are similarly mislocalised to the cytoplasm and
are also observed in the spinal cord of sALS and SOD1-
negative fALS patients [20–22]. In FUS mutation carriers,
there is a normal TDP-43 distribution, but FUS-positive
cytoplasmic inclusions are observed in lower motor neurons
[20], whereas in SOD1 mutation carriers, SOD1 protein ag-
gregates are observed [23, 24]. The exact pathological effects
of these inclusions remain largely unknown, and whether
mislocalisation leads to impaired cellular function due to the
proteins being sequestered and unable to function properly
is unclear.
Several mechanisms underlying the disease-mediated

toxicity seen in fALS have been proposed such as glutam-
ate excitotoxicity [25], endoplasmic reticulum (ER) stress
[26–28], inhibition of the proteasome [29, 30], mitochon-
drial damage [31–33], extracellular toxicity of misfolded
proteins [34, 35], aberrant superoxide production [36],
microhaemorrhages of spinal capillaries [37] and axonal
disorganisation and disrupted axonal transport [38–41].
Furthermore, the identification of mutations in the FUS
and TARDBP genes, which are involved in the production
of proteins that take part in RNA splicing, translation,
transport and microRNA (miRNA) biogenesis, suggests a
potential role of altered RNA expression and metabolism
in the disease [42]. Indeed, post-mortem pathological ana-
lysis of both fALS and sALS cases has shown the presence
of abnormal levels of RNA and RNA-binding proteins in
both motor neurons and glial cells [12].
Although neurodegenerative diseases were traditionally

considered as having cell autonomous mechanisms (i.e.
damage within a population of neurons being enough to
cause disease), the death of motor neurons in ALS is influ-
enced by non-neuronal cells such as astrocytes and micro-
glia [43–45], and non-cell-autonomous mechanisms appear
to play significant roles in the disease onset and/or progres-
sion. In fact, motor neuron degeneration appears to be
dependent on neighbouring glia expressing mutant proteins
[46, 47]. For example, studies have shown that high

expression of mutant SOD1 in either most or all motor
neurons of mice is insufficient for disease onset [46, 47],
whereas mutant SOD1 expressed within microglia is re-
quired for disease to occur [48, 49]. Additionally, extracellu-
lar mutant SOD1 from the SOD1G93A mouse model of ALS
does not cause detectable direct killing of motoneurons in
culture, but it activates microglia which then release toxic
factors that lead to motor neuron death [35]. In line with
this, reducing the expression of mutant SOD1 within
microglia slows disease progression [43]. Similarly, deletion
of mutant SOD1 within astrocytes, oligodendrocytes and
NG2 glial cells delays disease progression and improves
survival [44, 50, 51]. Therefore, although ALS was once
considered a motor neuron disease, it is now known as a
multi-cellular and multi-systemic disease [52, 53], with
motor neuron death being primarily driven by glial cell
pathology as well as a convergence of other damaging
mechanisms such as inflammatory conditions [54, 55].
Recently, it has been documented that glia also commu-

nicate with other cells by releasing extracellular vesicles
containing proteins and nucleic acids, including miRNAs.
However, the involvement of miRNA-containing vesicles
in microglia-to-neuron communication in the context of
ALS has not been explored in depth. Hence, this review
will first summarise the evidence for the presence of in-
flammation, pro-inflammatory microglia and dysregulated
miRNAs in the disease, then explore how microglia may
potentially be responsible for this miRNA dysregulation by
presenting evidence for a coexistence of an altered miRNA
expression and a neurodegeneration-related microglial
state in ALS. Finally, the possibility of pro-inflammatory
ALS microglia releasing dysregulated miRNAs, which may
then enter neuronal cells to cause degeneration, will be ex-
plored by reviewing studies that show how glia-to-neuron
transfer of nucleic acids leads to functional changes within
recipient neurons.

Inflammation is present in ALS
The levels of several pro-inflammatory cytokines are al-
tered in ALS, suggesting the presence of inflammation.
For example, an increase in the protein expression levels
of tumour necrosis factor (TNF), interleukin (IL)-8, IL-
12, IL-17(A), interferon (IFN)-γ and monocyte chemo-
attractant protein (MCP)-1 in the blood serum and/or
cerebrospinal fluid (CSF) of ALS patients has been ob-
served by at least two independent studies [56–62].
Moreover, increased expression of several chemokines
was found in the CSF of ALS patients [62]. Although the
expression of IL-1β, IL-2, IL-6 and IL-15 has been found
upregulated in the serum or CSF of ALS patients in
some studies, it remained unchanged in other studies
[56, 57, 59–65], likely due to the different detection
methods employed. Furthermore, increased production
of TNF and IL-1β, as well as reactive oxygen species
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(ROS) and prostanoids, was observed in spinal cord tis-
sue from ALS patients [66]. It has also been shown that
chronic administration of IL-1β results in neurodegenera-
tion [67], whereas IL-1β depletion or IL-1 receptor antag-
onism attenuates inflammation and prolongs the lifespan
of ALS mouse models [68], providing further evidence of
the importance of inflammation in the pathology of ALS.
Moreover, increased levels of lymphocyte function-
associated molecule 1 (LFA-1) and leukocyte common
antigen (LCA), which are found on lymphocytes, suggest
an infiltration of peripheral immune cells into the central
nervous system (CNS). Increased levels of complement re-
ceptors CR3 and CR4 [69, 70], which are mostly expressed
on monocytes and macrophages, as well as increased
mRNA and protein levels of the complement components
C1q, C3, C4 and C5b-9, have also been reported in the
spinal cord and motor cortex of ALS patients [71], suggest-
ing increased inflammation and phagocytosis in these areas.
Additionally, upregulation of cyclooxygenase 2 (COX2), a
common target of anti-inflammatory drugs that normally
contributes to memory consolidation, synaptic activity and
functional hyperaemia, is observed in ALS tissues, again
suggesting an increase in neuroinflammation [72].
Changes in glial cells also play a role in ALS inflamma-

tion. For example, increased expression of Toll-like re-
ceptor 4 (TLR4) mRNA and protein is detected in
astrocytes in both the grey and white matter of the
spinal cord in ALS, whereas increased expression of
TLR2 mRNA and protein is observed in microglia [73].
Significant upregulation of TLR7 (the murine orthologue
of human TLR8) mRNA was observed in the anterior
lumbar spinal cord of ALS patients, together with an in-
crease in the number of astrocytes and activated microglia
[65]. These receptors constitute some of the “sensors” of
the immune system and mediate the continued glial re-
activity seen in pathological conditions [74]. Furthermore,
increased IFN-γ immunoreactivity, a cytokine important
for macrophage activation and induction of major histo-
compatibility complex (MHC) class II molecule expres-
sion on immune cells, is observed in glia and neurons in
the ventral horn of the spinal cord in ALS, compared to
controls [75], suggesting a sustained activation of the in-
nate immune response. Therefore, a plethora of studies
confirm the presence of inflammation in ALS, even
though ALS is not considered an inflammatory disease.

Inflammation in ALS involves the activation of
microglia
Microglia are distributed throughout the brain and
spinal cord parenchyma and account for 10–20% of the
total glial population [76, 77]. They are the main defence
cells in the CNS against invading bacteria, viruses and
prions [78, 79], and they are responsible for maintaining
brain homeostasis [80]. They are phagocytic cells that

secrete several pro-inflammatory cytokines [80] and
other neurotoxic substances such as nitric oxide (NO)
[81] and reactive oxygen intermediates [82]. Under
homeostatic conditions, microglia display surveillance
behaviour, evidenced by their low mobility, small cell
bodies and extensive, highly motile processes constantly
scanning the CNS environment [83, 84]. This “resting”
state is commonly referred to as the neutral or “M0”
state [85] and is characterised by a low expression of
macrophage-related surface markers, such as CD45 and
MHC II [77].
Microglia are extremely sensitive to physiological

changes in their environment and become “activated”
following exposure to specific cytokines and growth fac-
tors that indicate infection, trauma, neuronal insult or
inflammation [77]. Exposure to pro-inflammatory cyto-
kines induces “classical” activation of microglia and
switching to a pro-inflammatory phenotype or “M1”
state, which is neurotoxic [86]. On the other hand,
exposure to anti-inflammatory cytokines such as IL-4
induces “alternative” activation and switching to an anti-
inflammatory phenotype or “M2” state which promotes
tissue repair [85]. Interestingly, M1- and M2-associated
genes can be co-expressed [87], suggesting that the two
states are not mutually exclusive and that this binary
classification is insufficient.
Increased numbers of activated microglia have been ob-

served in the CNS of ALS mouse models and human ALS
patients [88, 89]. Moreover, studies on post-mortem tis-
sues from human patients and ALS mouse models have
shown increased levels of activated microglia in areas of
the brain with neuronal loss [43, 90]. For example, extra-
cellular ATP binding to the P2X7 receptor on microglia is
known to induce a pro-inflammatory response [91], and
the P2X7 receptor was found elevated in the microglia of
ALS patients [92]. Activation of this receptor by the agon-
ist BzATP (2′3′-O-(benzoyl-benzoyl) ATP) in primary
microglia from SOD1G93A mice enhances production of
several pro-inflammatory mediators which may lead to
neuronal degeneration [93–95]. It was also shown that the
level of microglial activation parallels motor neuron de-
generation in ALS patients [96, 97], and that microglia
expressing mutant SOD1G93A in mice are more activated
than wild-type microglia [98]. Furthermore, mice overex-
pressing SOD1 show an increase in M1-like microglia
[99], and SOD1G93A mutations in rat microglia result in
accelerated disease progression, compared to wild-type
microglia [100].
The transcription factor NF-κB (nuclear factor kappa-

light-chain-enhancer of activated B cells) is induced by
certain pro-inflammatory cytokines and regulates genes
responsible for the innate and adaptive immune re-
sponse. Several studies have shown that this transcrip-
tion factor is upregulated in glial cells of both sALS and
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fALS patients [101–103]. Interestingly, the ALS-associated
gene optineurin negatively regulates pro-inflammatory-
mediated NF-κB activation [104], and loss-of-function
mutations in this gene are seen in some ALS patients
[102]. Consistent with this, SOD1G93A mice exhibit NF-κB
hyperactivation in microglia, while NF-κB inhibition ex-
tends the survival of these mice by slowing disease pro-
gression [101].
In addition to the altered state of microglia observed in

ALS, evidence also suggests microglial degeneration in the
disease. For example, mononuclear phagocytes (which in-
clude both CNS-resident microglia and infiltrating mono-
cytes from the periphery) were shown to degenerate in
transgenic mutant SOD1 rats [105] and mice [106, 107]. A
similar degeneration of microglia has also been observed
in the brains of Alzheimer’s disease (AD) patients [108].
However, peripheral monocyte infiltration in ALS remains
a controversial topic; several lines of evidence suggest that
peripheral monocytes invade the CNS in ALS [107, 109,
110], whereas others have shown no contribution of per-
ipheral monocytes to the disease [87, 111]. Therefore,
whether degenerating immune cells in ALS include CNS-
resident microglia, infiltrating monocytes or both requires
further investigation.
A unique population of immune cells has recently been

identified and was termed “disease-associated microglia”
(DAM). DAM not only express microglial markers such
as Hexb, Iba1 and Cst3, but also downregulate genes com-
monly associated with homeostatic microglia, such as
Cx3cr1, P2ry12/13 and Tmem119. DAM also upregulate
the expression of neurodegeneration-specific genes, such
as Trem2, Apoe, Tyrobp, Lpl and Ctsd [112]. This tran-
scriptionally distinct microglial population has primarily
been associated with AD mouse models [112–116], but a
DAM-like phenotype has also been observed in ageing
[112, 116–118], tauopathy models [119] and ALS [87, 112,
113, 116, 120]. It has therefore been proposed that DAM
are not part of a specific disease aetiology, but are rather a
common occurrence following CNS pathology [121]. The
transition of homeostatic microglia to DAM, their role in
health and disease and the potential impact of their dis-
covery in the development of therapies have previously
been discussed [121, 122] and are beyond the focus of this
review. Interestingly, at least in AD, the role of DAM may
be protective, since gain-of-function mutations in genes
downregulated in DAM and loss-of-function mutations in
genes upregulated in DAM are associated with an in-
creased risk of developing AD [121]. Nonetheless, whether
DAM have a similarly protective role in ALS is unclear
and warrants further investigation. In conclusion, there is
overwhelming evidence that the inflammation seen in
ALS involves the pro-inflammatory activation of micro-
glia, and an abundance of research suggests the presence
of transcriptionally distinct microglia in ALS.

Causes of microglial activation in ALS
Several hypotheses as to how microglial activation oc-
curs in ALS have been proposed. Studies suggest that
exposure to low levels of systemic signalling molecules
associated with ageing and chronic inflammation (i.e.
microglial “priming”) can exacerbate the microglial re-
sponse to a second local stimulus, such as the presence
of protein aggregates characteristic of neurodegenerative
diseases, potentiating tissue damage [123]. Additionally,
it was recently shown that IL-1β-mediated activation of
astrocytes overexpressing wild-type FUS alter their
cross-talk with microglia so that microglia acquire a
pro-inflammatory profile resembling the phenotype seen
in ALS [124]. It was further suggested that the mechan-
ism of this activation involved an increase in the level of
prostanoids released by these astrocytes; however, no
evidence was found to support this. Instead, other pro-
inflammatory cytokines such as IL-5, IL-6, IL-7, IL-15
and other molecules under astrocytic NF-κB transcrip-
tional control have been suggested as likely candidates
driving microglial activation [124]. It was also proposed
that T-cells interacting with microglia may cause their
activation, since spinal cord infiltration of Th and Tc

cells increases over time in ALS mice, compared to con-
trols. Furthermore, expression of humoral immune re-
sponse, oxidative phosphorylation and ROS genes in
microglia was found to correlate with Th cell numbers,
whereas expression of genes involved in phagocytosis
and coenzyme metabolism in microglia was correlated
with Tc cell numbers [87].
Another hypothesis is that sub-clinical infections that

activate the immune system could activate microglia and
lead to the inflammation seen in ALS. However, a recent
study using RNA sequencing to locate common parasitic
and bacterial genomes in areas of activated microglia in
CNS tissues from ALS patients found no supporting
evidence [125]. Nevertheless, only a limited list of infec-
tious agents was examined, and there are several limita-
tions with the study, such as the possibility of loss of
infectious agent transcripts as the disease progresses
(since the tissues were from end-stage cases only), as
well as RNA decay during frozen sectioning and variable
post-mortem intervals that could have interfered with
the RNA sequencing. Therefore, the possibility of sub-
clinical infections causing chronic microglial activation
and neurodegeneration requires further investigation.
Another possible activation route is via changes in gut

microbiota, since these can reportedly control the mat-
uration and function of microglia [126]. However, stud-
ies linking ALS with alterations in gut microbiota in
patients and mouse models (reviewed in [127, 128]) are
limited, and even though they suggest some instances of
gut dysbiosis, whether microglia are activated in those
cases has not been examined.
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The most convincing evidence of how microglia may
become activated in ALS comes from studies showing
that extracellular misfolded proteins such as oxidised or
mutant SOD1 secreted from astrocytes or neurons
through neuroendocrine pathways can activate microglia
and subsequently cause motor neuron death [34, 129,
130]. Additionally, mutant SOD1 proteins are not dir-
ectly neurotoxic in the absence of microglia [35]. Simi-
larly, five forms of extracellular TDP-43 (TDP-43-WT,
TDP-43-M337V, TDP-25-WT, TDP-25-M337V, TDP-
43-A315T) can activate microglia, with lower doses of
the mutant proteins having a greater activating effect
than the wild-type proteins [131]. This activation is the
result of TDP-43 proteins interacting with microglial
CD14, a pattern recognition receptor that also interacts
with mutant SOD1 [35]. Again, in the absence of micro-
glia, extracellular mutant TDP-43 proteins are not
neurotoxic. Furthermore, incubation of microglia with
both wild-type and mutant TDP-43 causes an increase
in phosphorylated p65 (one of the subunits of NF-κB
and an index of NF-κB activation) and phosphorylated
p38 mitogen-activated protein kinase (MAPK; a medi-
ator of the MAPK pathway that controls responses to
stress and cytokines). Additionally, IκB—an inhibitor of
NF-κB activation and pro-inflammatory cytokine pro-
duction—decreases in microglia incubated with wild-
type or mutant TDP-43 [131].
Interestingly, upregulation of TDP-43 within microglia

can also enhance the microglial response via activation
of the NF-κB pathway that results in the release of in-
creased TNF, NOX2, IL-1β, IL-6 and associated ROS
and reactive nitrogen species (RNS) that are toxic to
neighbouring neurons [103]. TDP-43 may also promote
microglial activation through interactions with activator
protein 1 (AP-1), a transcription factor regulating gene
expression in response to cytokines, stress, growth fac-
tors and other stimuli. Indeed, SR11302, an AP-1 inhibi-
tor, was able to block IL-1β protein expression in
microglia treated with wild-type TDP-43 [131]. There-
fore, it is likely that the microglial activation in ALS is
primarily driven by misfolded proteins expressed within
the cells or by extracellular mutant proteins targeting
microglia. Other mechanisms of microglial activation
could exist; however, more studies are needed to exam-
ine this.

Possible mechanisms of microglia-mediated
neurodegeneration in ALS
Despite the evidence for the presence of inflammation in
ALS, exactly how glia-mediated neuroinflammation con-
tributes to disease progression is still unclear. A possible
mechanism of microglia-mediated neurotoxicity is via the
production of ROS, RNS and pro-inflammatory cytokines,
which may result in tissue injury and neurodegeneration

[132–135]. Importantly, increased ROS and NO release
from activated microglia is seen in some fALS patients
with SOD1 mutations and correlates with neuronal cell
death [136, 137]. Furthermore, some of the soluble factors
released by microglia, which alter neuron excitability and
affect synaptic function, are also involved in neuroinflam-
matory disorders. These factors regulate the expression of
important molecules for synaptic plasticity such as cofilin
or CREB (cAMP response element-binding protein) [138]
or modulate the properties and expression of synaptic
channels [139–143]. Studies have also shown that micro-
glia regulate neuronal synapses via contact-dependent
mechanisms such as synaptic element engulfment, leading
to synapse loss during CNS inflammation [144–146].
However, it is likely that microglia-mediated synapse elim-
ination is an appropriate response to remove a “diseased”
synapse that is abnormally inactive due to causes unre-
lated to microglia (for example, because of degenerating
neurons).
Glutamate excitotoxicity has also been suggested to

play a role in microglia-mediated neurodegeneration in
ALS. For example, increased levels of glutamate are de-
tectable in the CSF of some ALS patients [147]. A reduc-
tion of extracellular glutamate uptake by astrocytic
glutamate transporters has been observed in ALS, and this
contributes to motor neuron death [138, 148]. Activated
microglia increase the susceptibility of motor neurons to
glutamate toxicity, through reducing glutamate uptake by
astrocytes [149]. Furthermore, TNF-dependent glutamate
release by activated microglia induces cortical neuron
death [150], whereas blockade of excessive glutamate re-
lease by activated microglia suppresses neuronal loss in
the spinal cord of ALS mouse models [151]. Evidence also
suggests that microglia expressing mutant SOD1 mediate
neuronal death via an overproduction of D-serine, a co-
agonist at N-methyl-D-aspartate (NMDA) receptors [152].
Furthermore, it has been proposed that activated micro-
glia release increased amounts of quinolinic acid, which
may bind to NMDA receptors on motor neurons to cause
excitotoxicity [153]. Nevertheless, glutamate excitotoxicity
may play only a minor role in ALS pathogenesis since sev-
eral tested drugs targeting glutamatergic transmission ei-
ther did not work, or had only a modest effect on life span
(reviewed in [154]).

The levels of certain miRNAs are altered in ALS
MiRNAs are small, approximately 22 nucleotides-long,
non-coding RNAs (ncRNAs) transcribed from intergenic
regions or from introns of protein-coding genes by RNA
polymerases [155] and are involved in the regulation of
translation [156]. They bind to complementary mRNA
sequences, resulting in gene silencing via degradation of
the mRNA or translational repression [157]. The process
of mRNA degradation following interaction with a
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miRNA involves deadenylation and decapping, followed
by 5′ to 3′ exonucleolytic digestion [158–160]. In the
case of translational repression, the function of the ribo-
somes during the elongation step can be hindered, and
the recognition of the eukaryotic translation initiation
factor 4F (eIF4F) cap can be inhibited [161–163]. A single
miRNA usually targets many different genes, and often a
set of miRNAs synergistically target a single gene [164].
The brain has the highest expression of tissue-specific
miRNAs [165–167], with a specific set of them localised
to dendrites, where they play a role in adult neuronal plas-
ticity [168, 169] and dendritic spine morphology [170].
The ALS genes FUS and TARDBP are directly involved

in miRNA processing, by enhancing production through
Drosha recruitment—a ribonuclease enzyme involved in
miRNA biogenesis [171]—and by promoting the inter-
action between Drosha and Dicer—an RNase endonuclease
involved in pre-miRNA processing [172]. Furthermore,
TDP-43 protein is normally involved in the post-
transcriptional maturation of certain miRNAs in the cyto-
plasm and nucleus. Consequently, its mislocalisation in
cytoplasmic aggregates in ALS has been associated with a
decrease in Dicer and Drosha processing of TDP-43-
regulated miRNAs [172].
The role of miRNAs in ALS pathology was evidenced

when a differential miRNA expression profile was ob-
served between ALS patients and healthy controls in the
CSF and blood serum and plasma [107, 173–189], giving
rise to the opportunity of using them as potential bio-
markers [190, 191]. However, the source of these miRNAs
is unknown, and further studies are required to identify if
these are released by degenerating motor neurons, atro-
phied muscles, activated astrocytes and microglia, or other
cell types. Researchers have so far investigated astrocytes
and neurons as a potential source. Using human patient-
induced astrocytes, it was shown that a dysregulated re-
lease of 137 miRNAs occurs in culture [192]. However, of
the 85 upregulated miRNAs released by these cells, only
two have also been found upregulated in the CSF of ALS
patients [176, 188] and none correspond to those upregu-
lated in the blood of patients. Similarly, of the 52 down-
regulated miRNAs released by induced patient astrocytes,
only three were also identified as downregulated in the
CSF or blood of patients [188, 193]. Therefore, the contri-
bution of astrocytes to extracellular miRNAs in ALS re-
quires further investigation. In terms of neurons as a
source of extracellular miRNAs, a recent study identified
30 differentially expressed miRNAs in neuron-derived
extracellular vesicles in the plasma of ALS patients [179].
Surprisingly, none of these correspond to previously iden-
tified dysregulated miRNAs in plasma [174, 183, 184].
Therefore, the current limited evidence suggests that as-
trocytes and neurons are an unlikely source of the circu-
lating dysregulated miRNAs in ALS.

In theory, miRNA upregulation within cells may result
in their concurrent upregulated release. Therefore, in-
vestigating the miRNA expression of specific cell types
in ALS tissues may provide a starting point of identifying
the source of dysregulated circulating miRNAs. In fact,
over 100 miRNAs involved in cell death pathways, in-
flammation, immune responses and defence responses
have been found dysregulated in the spinal cord of ALS
patients [194, 195] (summarised in Additional file 1). It
was suggested that these changes are primarily due to al-
tered miRNA expression within motor neurons. How-
ever, a recent study observed a downregulation of only
four miRNAs in motor neurons [196], of which only one
was previously found to be downregulated in spinal cord
tissue. Similarly, miRNAs downregulated in patient-
induced motor neuron progenitors in culture [197] do
not correspond to any of those downregulated in bio-
logical fluids. Circulating miRNAs may also be released
by atrophied muscles during the progression of ALS. In-
deed, studies have shown differential miRNA expression
in muscle tissue from ALS patients and mouse models,
compared to healthy controls ([198–203] and reviewed
in [204]). However, only a small percentage of the miR-
NAs dysregulated in muscles are also differentially
expressed in biological fluids (Additional file 1). These
findings suggest that cell types other than motor neu-
rons and muscle cells may be responsible for the release
of miRNAs in the disease. Furthermore, the cell types re-
sponsible for the differential miRNA expression in the
spinal cords of patients remain unknown.

Microglial activation is associated with miRNA
dysregulation in ALS
Recent evidence suggests that dysregulation of certain
miRNAs is linked specifically to the microglial activation
seen in ALS. For example, miR-22-3p, miR-125b-5p,
miR-146b-5p, miR-155-5p, miR-214-3p and miR-365-3p
are overexpressed in microglia from SOD1G93A mice,
and these modulate inflammatory genes linked to ALS,
such as the IL-6 pathway which determines the tran-
scription of TNF [205]. Moreover, in vitro activation of
wild-type microglia results in the upregulation of several
miRNAs, including miR-22-3p, miR-125b-5p, miR-146b-
5p and miR-155-5p, which are similarly upregulated in
SOD1G93A-overexpressing microglia.
MiR-155-5p overexpression is also seen prior to dis-

ease onset and throughout disease progression in spinal
cord tissue from both sALS and fALS patients [206], as
well as in end-stage SOD1G93A rat and mouse spinal
cords. This overexpression is accompanied by an eleva-
tion of all inflammatory miRNAs, as well as several
genes associated with neuroinflammation, astrogliosis
and microglial activation [207]. Furthermore, genetic ab-
lation of miR-155-5p in SOD1G93A mice decreases the
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number of resident microglia in the mouse spinal cord
and also prolongs survival, enhances performance on
motor tasks and delays disease onset [208]. Interestingly,
even though microglia have normal phagocytic ability in
miR-155-5p−/− mice, SOD1G93A/miR-155-5p+/− mice
produce microglia impaired in their phagocytic ability
and thus are unable to clear dead neurons. In parallel,
most of the direct gene targets of miR-155-5p are no
longer repressed in miR-155-5p−/− mice. Similarly, cen-
tral administration of anti-miR-155-5p in SOD1 mouse
models de-represses miR-155-5p gene targets within
neurons, astrocytes and microglia, paralleled by in-
creased survival and improved motor function. These
findings are consistent with reports that miR-155-5p is
found upregulated in ALS patients and that anti-miR-
155-5p extends survival in mice with SOD1 mutations
[207]. Therefore, miR-155-5p appears to play a role in
the pathology of ALS through modulating microglial
function.
Given the evidence that microglial activation and

miRNA dysregulation in ALS co-occur, it is possible that
microglia are a possible source of circulating miRNAs
found dysregulated in the blood and CSF of ALS pa-
tients (Table 1). Nonetheless, no studies have investi-
gated this possibility so far. Furthermore, apart from two
studies showing upregulation of certain miRNAs within
microglia in ALS mouse models [107, 205], no studies
have confirmed whether this is also the case in human
patients. Of the 29 miRNAs upregulated in microglia
from ALS mouse models, six are also upregulated in the
CSF and/or serum of human patients (Table 1). These
six miRNAs collectively target over 10,000 experimentally
validated genes. Gene ontology analysis of these genes
showed enrichment in several biological processes, includ-
ing processes that are disrupted in ALS, such as cytoskeletal
dynamics, oxidative stress, inflammation, RNA regulation
and organelle transport (Additional file 2).

Released miRNAs as a potential mechanism of
microglia-mediated neurodegeneration
Another microglia-mediated mechanism of neurotoxicity
is likely to be via the release of miRNAs into the extra-
cellular environment. In biological fluids such as blood
and CSF, miRNAs can be found in vesicles (exosomes,
ectosomes/microvesicles and apoptotic bodies) [209,
210], or they can be bound to proteins that increase
their stability in the extracellular space, such as AGO2
[209, 211]. Furthermore, it is known that microglia com-
municate with neighbouring neurons via the secretion of
extracellular vesicles [212, 213] carrying a defined cargo
of lipids, RNAs and proteins [214]. Reports also indicate
a direct miRNA transfer between co-cultured macro-
phages and hepato-carcinoma cells via gap junctions
[215]. Since gap junctions also exist between microglia

and neurons [216], it would be interesting to investigate
whether miRNAs can be transferred between these cells
in a similar way. In addition, extracellular miRNAs can
be endocytosed by target cells and bind to intracellular
TLR7 to activate downstream signalling pathways [217].
Moreover, it was recently shown that microglia-derived
let-7 leads to ethanol-induced neurotoxicity by activating
neuronal TLR7 in rat brain slices [218]. These findings
prompted the idea of “miRceptors” [219], and it would
be interesting to investigate whether other known recep-
tors can function as miRceptors. In summary, miRNAs
released by glia may function as endocrine, paracrine
and/or autocrine regulators and they may be endocy-
tosed by target cells to modulate cellular function. Such
an endocrine function has already been described for
miRNAs from hypothalamic neural stem cells (hNSCs).
Exosomal miRNAs from hNSCs were found circulating
in the CSF of young mice, but several of these miRNA
species were significantly reduced in the CSF of aged
mice [220]. Subsequent treatment of aged mice with
exosomal miRNAs from young mice resulted in an anti-

Table 1 List of miRNAs upregulated in the blood and CSF of
ALS patients

Reference miRNA Source

[173] hsa-miR-181a-5p CSF

[107] hsa-miR-146a
hsa-miR-150
hsa-miR-328
hsa-miR-532-3p
hsa-miR-99b

CSF

[107, 188] hsa-miR-27b-3p CSF

[174] hsa-miR-424 Plasma

[174, 183, 185–187] hsa-miR-206 Serum, plasma

[175] hsa-miR-338-3p CSF, serum

[176] hsa-miR-143-5p
hsa-miR-574-5p

CSF

[180] hsa-miR-142-3p Serum

[181] hsa-miR-1
hsa-miR-144-5p
hsa-miR-192-3p
hsa-miR-19a-3p

Serum

[181, 185] hsa-miR-133a-3p
hsa-miR-133b

Serum

[184] hsa-miR-4649-5p Plasma

[186] hsa-miR-106b Serum

[187] hsa-miR-143-3p Serum

[188] hsa-miR-9-5p
hsa-miR-124-3p
hsa-miR-125b-2-3p
hsa-miR-127-3p
hsa-miR-143-3p

CSF

Bold indicates miRNAs that are also upregulated inside spinal cord microglia
from SOD1G93A mice, according to [107, 205]
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ageing effect and an associated decrease in inflammatory
mRNAs, such as TNF, IL-1β and IL-6.
Uptake of released miRNAs by nearby cells was previ-

ously observed when oligodendroglial exosomes carrying
miRNAs could be endocytosed by neurons to improve
their viability under stress conditions [221]. Additionally,
exosome-mediated miRNA transfer to neurons has been
shown when haematopoietic cells enter the brain under
inflammatory conditions and release exosomes that are
taken up by Purkinje cells [222]. In the context of ALS,
transfer of miRNAs to motor neurons has so far been
shown only from astrocytes [192]. In this study, exoso-
mal miRNAs released by induced astrocytes from ALS
patients with C9orf72 mutations affected the mainten-
ance and survival of wild-type mouse motor neurons. In
a different study, it was shown that glia-to-neuron shut-
tling of bioactive miRNAs is possible via extracellular
vesicles and that this transfer is responsible for gene
expression changes within receiving neurons [223]. Pro-
inflammatory activation of microglia resulted in the up-
regulation and release of miR-146a-5p in extracellular
vesicles, which then fused with the neuronal membrane
of cultured hippocampal neurons to transfer their
miRNA cargo inside the cells. This resulted in a downreg-
ulation of Syt1 and Nlg1, which are targets of miR-146a-
5p, in the cell body and proximal dendrites, accompanied
by a reduction in dendritic spine density and miniature
synaptic currents.
Evidence for microglial miRNAs targeting neurons has

also been proposed for other neurodegenerative diseases.
For example, increased levels of let-7b have been found
in the CSF of AD patients and it was shown to cause
neurodegeneration by targeting neuronal TLR7 in AD
mouse models [224]. Given that let-7 upregulation is
also observed in activated microglia of SOD1 transgenic
mice [107], it is not unlikely that its neurodegenerative
effects are exerted in a similar way in ALS. Furthermore,
depending on the identity of the miRNA released by
microglia, its transfer into neurons can also be neuro-
protective. For example, following a traumatic brain in-
jury (TBI), there is an acute inflammatory response that
persists chronically, including a pro-inflammatory activa-
tion of microglia, ultimately leading to neurodegenera-
tion [225]. These microglia upregulate certain miRNAs,
including miR-124-3p, both inside the cells and in re-
leased exosomes [226]. Treatment of injured cultured
neurons with microglia-derived exosomes containing
miR-124-3p results in inhibition of the inflammatory re-
sponse by promoting IL-10 expression and suppressing
IL-1β, IL-6 and TNF expression as a result of reduced
mTOR (mammalian target of rapamycin) signalling. This
also restores the number of neurite branches and total
neurite length by suppressing the expression of neurode-
generative proteins such as phosphorylated Tau and

amyloid-β peptide [226]. These effects are paralleled
in vivo, with additional improvement in neurologic out-
come in mice with TBI. On the other hand, downregula-
tion of miR-124-3p in microglial exosomes has the
opposite effect [226].
The aforementioned studies provide evidence that

microglia release miRNAs that can influence neighbouring
neurons in the context of neurodegeneration, and al-
though similar findings have been observed with other
glial cell types in ALS, there is a gap in our knowledge
about the role of microglia-derived miRNAs in ALS path-
ology. It is plausible that miRNAs of microglial origin are
transferred to motor neurons and elicit functional changes
relevant to neurodegeneration and/or neuroprotection in
ALS (Fig. 1). This is particularly relevant to miRNAs that
have been dysregulated due to a pro-inflammatory activa-
tion of microglia, or even those released by the transcrip-
tionally distinct DAM population. To examine this, it
would be necessary to determine which miRNAs are re-
leased by microglia and then validate their target genes in
motor neurons. Moreover, it would be interesting to
investigate whether these miRNAs correspond to those
detected in the CSF and blood of ALS patients. This could
be done by examining whether microglial markers are
present on exosomes containing the circulating miRNAs.
Such experiments would be the first step towards under-
standing whether microglia-mediated neurodegeneration
in ALS involves the release of miRNAs.

Microglia and associated miRNAs as therapeutic
targets
Given the evidence of microglial activation as well as an
altered miRNA expression profile in ALS patients and
mouse models, they both appear as likely candidates for
the development of therapeutic strategies. Many studies
have explored the inhibition of specific microglial pro-
inflammatory cytokines as a therapeutic strategy; however,
this has so far proven unsuccessful (for a review see
[227]). This is likely because of an absence of temporal
and spatial specificity, but also due to simultaneously tar-
geting the beneficial anti-inflammatory microglial factors.
Indeed, it was previously shown that during disease pro-
gression, in addition to neurotoxic factors, ALS microglia
concurrently show induction of neuroprotective factors
such as insulin-like growth factor 1 (IGF1), progranulin
(GRN) and triggering receptor expressed on myeloid cells
2 (TREM2) [87]. These responses are likely mediated by
extrinsic regulatory factors such as signals released by
dying motor neurons. In line with this, reducing prolifer-
ating microglia in ALS mice has no effect on survival
[228], hence reflecting the multifaceted role of microglia
in the disease. Therefore, neutralising the effect of acti-
vated microglia may not be a suitable therapeutic avenue.
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Instead, miRNA modulation may be a promising strat-
egy when used with the appropriate gene therapy tools,
since a single miRNA can target several proteins in-
volved in a signalling pathway associated with the dis-
ease. For example, miRNA knockdown may be used to
reduce the expression of an upregulated miRNA. This
can be done either by genomic editing, by targeting the

transcription or processing of the miRNA, or by the use
of antagomirs, which are chemically engineered oligonu-
cleotides complementary to miRNAs; the use of locked
nucleic acids in this last approach has technical benefits.
By hybridising to miRNA and thus preventing its binding
to the target mRNA, antagomirs allow normal translation
of the target mRNA. On the other hand, downregulated

Fig. 1 Different routes via which microglia-derived miRNAs could affect gene expression in neurons. Of these different mechanisms, transfer via
extracellular vesicles (represented by a circle; a) is the best characterised transfer route between microglia and neurons. This has been shown
through let-7b binding to TLR7 receptors (blue) within endosomes (double line circle) to cause neurodegeneration, miR-146-5p binding to target
genes in hippocampal rat neurons to alter synaptic excitability properties, and miR-124-3p inhibiting mTOR signalling and activating a neuronal
inflammation phenotype. Alternatively, miRNAs could affect gene expression in neurons through interactions with high-density lipoproteins (HDL;
hexagon; b). These miRNAs released by microglia bound to proteins in HDL particles are endocytosed into the cell when binding to HDL
receptors (orange) on neurons. These miRNAs are then released and regulate target genes. Alternatively, miRNAs could be directly transferred
between microglia and motor neurons through gap junctions (green; c) where the two cell types are directly connected through a channel
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miRNAs can be replaced with miRNA mimics that have
the same sequence as the miRNA and thus bind to the
mRNA targets to repress their translation. However, a
problem with using miRNA mimics is the possibility of
off-target effects because of the large number of mRNAs
modulated by a single miRNA. Nevertheless, miRNA-
based therapies have been tested in human clinical trials
for other diseases, such as hepatitis C viral infection [229]
and cancer [230], although, for neurodegenerative dis-
eases, the challenge is the delivery of these reagents into
the CNS and to the target cells. Finally, reprogramming
ALS microglia towards a beneficial phenotype associated
with the release of neuroprotective miRNAs may be an-
other possible therapeutic avenue. In fact, redirecting
microglia from a neurotoxic to a pro-regenerative pheno-
type has already been achieved by drugs targeting cell me-
tabolism (reviewed in [231]), and is one of the current
pharmacological approaches for the treatment of neuroin-
flammatory diseases associated with microglial activation,
such as multiple sclerosis.

Conclusion
In conclusion, given the evidence of an altered miRNA ex-
pression profile in ALS patients, as well as the presence of
inflammation and the associated microglial reactivity,
microglia are a likely source of dysregulated miRNAs,
which are potential mediators of neurodegenerative pro-
cesses. Furthermore, as miRNA dysregulation may be in-
volved in the mechanisms of neurodegeneration and since
a single miRNA can affect the expression of several genes,
their modulation could change cellular phenotypes, thus
representing a potential target for therapeutic intervention
in the hopes of attenuating some of their detrimental
functions and improving disease outcomes. Finally, al-
though minimally invasive diagnostic tools and effective
therapeutics for most CNS diseases are lacking, miRNAs
associated with immune cells are promising candidates
both for the development of biomarkers and treatments.
Full understanding of the microglia-associated miRNA
regulation/dysregulation and release is therefore crucial
towards a comprehensive understanding of their role in
ALS pathology and their therapeutic potential.
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