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Physical activity (PA) is associated with preserved age-related body and brain
health. However, PA quantification can vary. Commercial-grade wearable
monitors are objective, low burden tools to capture PA but are less well
validated in older adults. Self-report PA questionnaires are widely accepted
and more frequently used but carry inherent limitations. We aimed to
compare these commonly used PA measures against one another and
examine their convergent validity with a host of relevant outcomes. We also
examined the factors that drive differences in PA self-reporting styles in older
adults. 179 older adults completed 30-day Fitbit Flex2™ monitoring and
reported PA levels via two widely used PA questionnaires: PASE and
CHAMPS-METs (metabolic expenditure calories burned). Participants also
completed measures of cardiometabolic (hypertension diagnosis, resting
heart rate, A1C levels), cognitive (memory, processing speed, executive
functioning), and brain MRI (medial temporal lobe volume) outcomes. The
discrepancy between objective Fitbit monitoring and self-reported PA was
evaluated using a sample-based z difference score. There were only modest
relationships across all PA metrics. Fitbit step count demonstrated a stronger
association with the PASE, whereas Fitbit calories burned was more strongly
associated with CHAMPS-MET. Fitbit outcomes had more consistent
convergence with relevant outcomes of interest (e.g., cardiometabolic and
brain health indices) when compared to subjective measures; however,
considerable heterogeneity within these associations was observed. A higher
degree of overreporting was associated with worse memory and executive
performances, as well as hypertension diagnoses. We build on prior findings
that wearable, digital health indicators of PA demonstrate greater construct
validity than self-report in older adults. We further show important clinical
features (e.g., poorer cognitive status) of older adults that could contribute to
a higher level of overreporting on self-report measures. Characterization of
what PA measures truly operationalize will help elucidate relationships
between most relevant facets of PA and outcomes of interest.
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1. Introduction

Physical activity (PA) is associated with preserved vascular

health, brain structure, and cognition with age (1–3). In the

context of neurodegenerative diseases, active lifestyles are also

linked with less functional decline and reduced risk of

dementia (2, 4, 5). However, physical activity is a broad

construct, and its operationalization can vary widely

depending on the measures employed, possibly leading to

imprecision and/or inconsistencies in the literature linking

physical activity to brain health.

The most commonly utilized measures of PA may capture

several aspects of activity. Actigraphy monitors are useful for

objective assessment of free-living movement levels, ranging

from everyday chores to structured exercise. Given their

relative low cost and user friendly interfaces, commercially

available wearables (like Fitbit actigraphy monitors) have

garnered increasing attention and validation of metrics for

reliable measurement of PA (6, 7). For instance, Fitbit

monitors have demonstrated inter-device reliability with other

actigraphy monitors (i.e., Actigraph GT3X+ accelerometer)

and positive correlations with observed step count and gait

speed on a treadmill (8–10). Within the Fitbit suite of

outcomes, average steps has demonstrated the most robust

validity though there is less validity for energy expenditure as

a measurement of PA (11). However, few studies have been

conducted in older adults who may have varying experience

using wearable devices. As digital health tools expand,

understanding their utility in populations that may be most

vulnerable (e.g., older adults) is needed. Moreover,

considering the importance of engaging in PA for healthy

aging, it important to understand the convergence across

measures, how measures of PA may differ, and what are

predictors of discrepancies between measures.

In the absence of actigraphy metrics, standard self-report

measures of PA are used in older adults to capture more

structured activities and exercise routines (e.g., duration, type

of exercise). The Community Healthy Activities Model

Program for Seniors (CHAMPS) and Physical Activity Scale

for the Elderly (PASE) are two such widely used self-report

questionnaires of PA in older adults. However, these

subjective measures may carry inherent limitations and

capture only segments of PA. For instance, the PASE

evaluates the level of activity (e.g., frequency and duration),

whereas the primary outcome for CHAMPS is metabolic

expenditure. When considering utility, each is relatively quick,

well-validated, and inexpensive to use. PASE has previously

been associated with portable accelerometer readings, walking

steps, and energy expenditure (12, 13). Higher PASE scores

(indicating a greater degree of PA) have also been correlated

with reduced likelihood of cardiometabolic, neurological, and

psychological health conditions (14, 15). PASE has also

demonstrated meaningful associations with health status and
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physiologic measures, such as heart rate and static balance

(13, 16). Similarly, the CHAMPS has been shown to relate to

a host of relevant outcomes, such as physical functioning and

psychological health (17). Similar to the PASE, the CHAMPS

has demonstrated positive associations with total minutes of

movement measured by an accelerometer and corresponding

intensity, as well as measures of fitness capacity (i.e., the

6-min walk test) and lower body physical functioning (i.e.,

Short Physical Performance Battery) (17–19). However, such

self-report tools may be limited by scope and subjectivity. For

instance, self-report measures typically underestimate

sedentary time compared to real-time digital health measures,

such as an accelerometer or inclinometer (20). This is

particularly important when using subjective measurements to

assess older adults with cognitive difficulties, as there is

greater risk of recall bias (21). Furthermore, individuals who

have been encouraged to engage in exercise (e.g., many older

adults by their physicians) have demonstrated the tendency to

engage in more overreporting, perhaps related to well-known

effects of social desirability bias (22).

To date, there is a gap in the literature directly comparing

and evaluating PA as assessed across multiple standardly

employed measures. Studies have not pragmatically

demonstrated how metrics within the Fitbit suite compare

against widely used self-report measures of PA in older adults.

Similarly, research has yet to compare commonly used self-

report measures (i.e., CHAMPS and PASE) alongside a

comprehensive panel of relevant neurologically relevant aging

outcomes (e.g., cognition, MRI outcomes) to characterize their

convergent validity for use in brain aging studies.

Furthermore, it is uncertain whether there are discrepancies in

reporting styles across self-report measures, and if particular

participant characteristics systematically predict older adults

who over or under report. The current study will begin to

elucidate some of these relationships to contribute to our

understanding PA measurement tools in older adults.

In the current study, we aimed to (1) determine the

comparability across commonly used self-reported measures

of physical activity (PA) and Fitbit-based actigraphy metrics,

(2) examine the convergent validity of Fitbit, PASE, and

CHAMPS using a comprehensive panel of demographic,

cardiometabolic, cognitive, and brain structural outcomes, and

(3) examine the person-specific factors that characterize

overreporting on self-report measures We hypothesized that

objective measures of PA via Fitbit would demonstrate the

best construct validity and that the degree of overreporting

would relate to poorer neurobehavioral status.
2. Materials and methods

One hundred seventy-nine older adults enrolled in the

UCSF Memory and Aging Center’s Longitudinal Aging Study
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TABLE 1 Descriptive statistics.

n % or M (SD)

Sex, % female 105 58.66%

Race

White 153 85.47%

Black 2 1.12%

Asian 19 10.61%

Other 5 2.79%

Age (years) 179 73.50 (8.23)

Education (years) 179 17.57 (1.85)

Fitbit steps (daily average) 179 7840.77 (3365.11)

Fitbit calories (daily average) 179 1862.27 (426.51)

PASE (possible range 0 to >500) 105 126.10 (60.66)

CHAMPS-MET (max calories burned in a week) 85 4062.76 (2275.75)

Hypertension, % yes 116 37.93%

Resting heart rate (bpm) 165 66.62 (9.51)

Hemoglobin A1C (%, normal range 4.3–5.6) 97 5.47 (0.33)

Technology Familiarity Questionnaire (Q8)d 128 4.50 (0.68)

Technology Familiarity Questionnaire (Q9)e 128 4.86 (0.41)

Memory (z-score)a 124 −0.07 (0.87)

Executive functioning (z-score)c 132 0.77 (0.58)

Processing speed (z-score)b 126 −2.60 (1.58)

Medial temporal lobe volume (voxels, 1 cm3) 72 9.80 (1.05)

Note. N= 175.
az-scores on these tests represent performances compared to the larger

Hillblom Aging cohort of older adults.
bz-score represents performance compared to young adults (20–30 years old).
cz-score derived from EXAMINER normative study group (adults aged 18–80+).
dQuestion 8: “Howmuch difficulty do you have using computers?” (Range 1–5,

1 = extreme difficulty, 5 = no difficulty).
eQuestion 9: “How anxious (or nervous) do you typically feel when using a

computer, tablet, or smartphone?” (Range 1–5, 1 = extremely anxious, 5 = not

anxious).

VandeBunte et al. 10.3389/fdgth.2022.869790
who choose to participate in 30-day Fitbit monitoring (average

daily steps and calories burned), and who completed at least one

measure of self-reported physical activity levels (PASE, n = 105;

CHAMPS-MET, n = 85) were included in the study (see

Table 1). Participants completed comprehensive neurological

and neuropsychological evaluations, as well as structural

neuroimaging, cardiometabolic measures, and a study partner

interview. Following evaluations, participants were reviewed at

a case conference with board certified neurologists and

neuropsychologists. Inclusion criteria for enrollment consisted

of: (1) no current evidence of a memory or neurological

condition (e.g., stroke, epilepsy), (2) no functional decline as

operationalized as a Clinical Dementia Rating (CDR) scale of

0–0.5 via study partner interviews, (3) no history or evidence

of DSM-5 major psychiatric disorders, active substance abuse,

hepatitis C, blindness, deafness, HIV, and syphilis.

Participants had very minimal cardiovascular medical histories

(Myocardial Infarction, n = 4, Cerebrovascular Accident, n = 2,

Transient Ischemic Attack, n = 2; note, all cardiovascular
Frontiers in Digital Health 03
events occurred >5 years prior to study participation). The

study was approved by the institutional review board of the

University of California, San Francisco and is conducted in

accordance with the latest Declaration of Helsinki, including

written informed consent from all participants.
2.1. Procedure

At the in-person visit, participants neuropsychological

evaluations, brain MRI, self-reported measured, and Fitbit set-

up. Participants then completed 30 days of subsequent Fitbit

monitoring before mailing their device back to study

personnel. All data from Fitbit devices were synced to the

Fitabase platform and data were downloaded for quality

control, cleaning, and analysis.
2.2. Actigraphy monitoring

The FitBit Flex2™ (Fitbit Inc., San Francisco, CA, USA;

https://www.fitbit.com) recorded average daily steps and

calories burned. The FitBit Flex2™ is a thin, flexible, Bluetooth

fitness tracker with no visible record of physical activity

measurements, with a three-axis acceleration sensor, and with

the capability to store 7 days of detailed motion data.

Participants were blinded to all notifications and indication of

the duration of exercise for the 30-day time period. They were

instructed to wear the Fitbit during all waking hours, and to

synchronize nightly with their smartphone via Bluetooth 4.0

before charging at night. In cases where the participant did

not have a Fitbit-compatible smartphone, the Fitbit was

synchronized to an iPad and aggregate daily physical activity

data was collected at the completion of the 30-day period.

Fitbit accounts for each participant were connected to

Fitabase, a platform specifically tailored for wearable research

data management.

Average daily steps and average daily calories burned were

selected as the primary objective outcomes of interest. Fitbit

averages were calculated by taking the average daily steps and

calories burned for the first 20 days of available monitoring

data. Individual days with fewer than 100 steps were removed

from the analyses to control for nonadherence. Participants

were only included if they had at least 14 days of available

monitoring data, and the first 20 days of the 30-day

monitoring data were used in the analyses.
2.3. Physical activity questionnaires

2.3.1. Physical activity scale for the elderly
Self-reported physical activity was measured using the

Physical Activity Scale for the Elderly (PASE), a widely
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validated measure of self-reported activity levels for older adults.

Participants were asked to rate the frequency, duration, and

intensity of activity in three domains (leisure, household, and

work-related activity) over the past seven days with the 11-

item questionnaire. Utilizing the scoring manual, activity

scores were computed by multiplying activity frequencies by

the task-specific weights (16). Activity scores were then

summed to obtain a total score representing overall physical

activity level, with higher values indicating greater activity.

2.3.2. CHAMPS-MET
The Community Healthy Activities Model Program for

Seniors physical activity questionnaire (CHAMPS) was

administered to assess the variety of physical activities that

older adult participants may engage in, from less intensive

forms such as walking or stretching to more vigorous exercise

routines (17). The questionnaire includes 41 items to evaluate

the frequency and duration of light, moderate, and vigorous

activities that were performed weekly over the last four weeks.

Participants reported whether they participated in an activity

during the four-week period and then selected the hours per

week spent participating in the activity, rating the duration on

a six-point scale from less than 1 to 9 or more hours. Each

activity corresponds to a metabolic weight or MET value.

Estimated caloric expenditure was calculated by multiplying

the estimated duration of each activity by the corresponding

MET value, in alignment with published guidelines (17).
2.4. Cognitive outcomes

Participants completed a neuropsychological battery

assessing cognitive outcomes hypothesized to be associated

with physical activity (23, 24). This brief standardized battery

has been previously described and validated to be

neuroanatomically sensitive to age-related neurodegeneration

(25, 26).

2.4.1. Episodic memory
Verbal episodic memory was measured by the California

Verbal Learning Test (CVLT-II) and a modified version of the

Benson Figure Memory test. The CVLT-II includes a 16-item

list presented over five learning trials, followed by free and

cued recall of the list after an interference trial, and then

again after a 20-min delay. Following the long delay,

participants were given a list of 44 words and asked to

discriminate between the target word and a distractor item

(recognition trial). Outcome metrics included words correctly

recalled after delays and recognition discrimination

performance.

To assess visual memory, participants were asked to draw

the modified Benson figure from memory after a 10-min

delay. Recall of the figure was scored on a 17-point scale (25).
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Sample-based z-scores were created for outcomes on both

measures and averaged together to create an episodic memory

composite.
2.4.2. Processing speed
Processing speed was assessed through five computerized

tests of reaction time to different visual stimuli (dots, lines,

search, shapes, abstract matching 1, abstract matching 2) (27).

All tasks included a practice trial period where the participant

had to perform at greater than 70% accuracy in order to

continue to the test trials. Sample-based z-scores were created

for each of the five tasks to calculate a processing speed

composite score.
2.4.3. Executive functioning
Executive functions were measured by the NIH EXAMINER

(28). NIH EXAMINER includes a composite score of five

computer-based tests of working memory (dot counting, 1-

back, 2-back), response inhibition (enclosed flanker), and set

shifting (set shifting), and two verbally mediated tests of

generativity (D-word and animal fluency). All computerized

tasks included at least three practice trials.
2.5. Cardiometabolic outcomes

2.5.1. Hemoglobin A1C
Whole blood and serum samples were collected and stored

in 0.5 ml aliquots at −80 °C following baseline 12 h fasting

blood draws, until used for biochemical processing. All

laboratory analyses were performed by UCSF Clinical

Laboratories, a CLIA-certified, CAP-accredited laboratory at

UCSF Mission Bay Hospital. Hemoglobin A1C (HbA1C)

levels were determined from whole blood by means of an

Abbott Architect c8000 enzymatic immunoassay.
2.5.2. Resting heart rate
Participant resting heart rates were measured by a clinician

or study staff. A normal resting heart rate for adults ranges from

60 to 100 beats per minute (29). Elevated heart rate is a risk

factor for cardiovascular morbidity and mortality (30).
2.5.3. Hypertension
Personal medical history, including presence of

hypertension, was collected via self-report during the clinical

history gathering with a neurologist. If the participant did not

report a history of hypertension, but indicated taking an

antihypertensive drug, she/he was asked by the clinician or

study staff if they were prescribed the medication for their

blood pressure. If answered yes, the participant was marked as

having a history of hypertension.
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2.6. Brain MRI

2.6.1. Structural neuroimaging
Magnetic Resonance Imaging (MRI) scans were performed

at the UCSF Neuroscience Imaging Center using a Siemens

Prisma fit 3 T scanner. Magnetization prepared rapid

gradient-echo (MPRAGE) sequences were used to obtain

whole brain T1-weighted images (TR/TE/TI = 2300/2.9/

900 ms, α = 9°). The field of view was 240 mm × 256 mm,

with 1 mm × 1 mm in-plane resolution and 1 mm slice

thickness with a sagittal orientation.

Before processing, all T1-weighted images were visually

inspected for quality control and those with excessive motion or

image artifact were excluded. Magnetic field bias was corrected

using the N3 algorithm (31). Tissue segmentation was

performed using unified segmentation in SPM12 (32). Each

participant’s gray matter segmentation was warped to create a

study-specific template using Diffeomorphic Anatomical

Registration using Exponentiated Lie algebra (DARTEL) (33).

Participants’ native space gray and white matter segmentations

were then normalized and modulated to study-specific template

space using nonlinear and rigid-body transformations. Images

were smoothed using a Gaussian kernel of 4-mm full width half

maximum. Each participant’s segmentation was carefully

inspected to ensure the robustness of the process.

For statistical purposes, linear and nonlinear transformations

between DARTEL’s space and ICBM space were applied (34).

Quantification of volumes in specific brain regions was

accomplished by transforming a standard parcellation atlas into

International Consortium for Brain Mapping (ICBM) space

and summing all modulated gray matter within each

parcellated region of interest (ROI) (35). Total intracranial

volume was calculated for each participant as the sum of the

gray matter, white matter, and cerebrospinal fluid

segmentations. Medial temporal lobe volume was selected as

our brain MRI outcome, as exercise engagement in older adults

has previously been associated with greater volume in this

particular region (36). For the purpose of this study, medial

temporal lobe volumes included the following bilateral regions:

hippocampus, entorhinal cortex, and the parahippocampal gyrus.
2.7. Statistical analyses

First, we examined associations among the four PA measures

(Fitbit steps, Fitbit calories burned, PASE, CHAMPS-MET) with

Spearman’s rank correlations to evaluate comparability. Next, we

evaluated relationships between PA measures with demographic

variables of interest via independent samples t-tests, Spearman’s

rank correlations, and ANOVA. We tested construct validity by

evaluating the relationship between each PA measure and the

cardiometabolic and cognitive outcomes of interest via
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(e.g., HTN diagnosis), as appropriate. Lastly, we examined

relationships between each PA measure and medial temporal

volume outcomes via linear regression modeling adjusting for

total intracranial volume. We reported effect sizes as Spearman’s

correlations, Cohen’s d, or standardized betas, as necessary.

In order to identify the characteristics of older adult

participants who were over or under reporting, we performed

a discrepancy score analysis. Given our data indicated that

Fitbit total steps demonstrated the best construct validity out

of all PA measures examined, we utilized Fitbit total steps as

our “gold standard” metric in these analyses. First, within

participants that completed all three PA metrics (n = 75), we

computed sample-based z-scores for each PA measure (Fitbit

steps, PASE, and CHAMPS-MET). We computed individual

discrepancy scores separately by subtracting Fitbit total steps

z-scores from each self-report PA measure z-score (e.g., PASE

or CHAMPS-MET). Distribution of discrepancy scores

approximated normality (Figure 1). In this manner, higher

discrepancy scores indicated greater overreporting compared

to Fitbit. Next, we evaluated relationships between each

discrepancy score with demographic (i.e., gender, age,

education), cardiometabolic, cognitive, and brain volume

outcomes. We tested relationships and group differences via

independent samples t-tests, linear regression, and Spearman’s

rank correlations. Interpretation of effect sizes was in

alignment with Cohen’s Statistical Power Analysis for the

Behavioral Sciences: coefficients of 0.10 “small,”.30 “medium,”

and those of 0.50 “large” in terms of the magnitude (37).
3. Results

On average, participants were 74 years old, 58% female, and

took 7,841 average daily steps during the monitoring period.

Older age was associated with less physical activity across

metrics, but only reached significance for Fitbit outcomes

(Table 2). Females had lower levels of quantified physical

activity for Fitbit daily steps [t(177) = 2.43, p = 0.02], Fitbit daily

calories [t(177) = 15.77, p < 0.001], and lower reported physical

activity for CHAMPS-MET [t(83) = 2.98, p < 0.001], but not

PASE [t(103) = 0.72, p = 0.47]. Education did not meaningfully

associate with the physical activity metrics (Table 2).
3.1. Associations among physical activity
measures

All of the PA metrics were positively correlated, though

demonstrated only small-to-medium effect sizes (Table 2).

Greater Fitbit step count was more strongly associated with

PASE compared to CHAMPS-MET, whereas Fitbit calories

burned was more strongly associated with CHAMPS-MET
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compared to PASE scores. Self-reported CHAMPS-MET and

PASE scores demonstrated a medium effect size correlation

with one another.
3.2. Cognitive outcomes

Higher Fitbit step count [ρ(132) = 0.28, p < 0.001] and

calories burned [ρ(132) = 0.23, p = 0.01], but not PASE

[ρ(78) = −0.10, p = 0.39] were associated with better
FIGURE 1

Distribution of PASE and CHAMPS discrepancy scores.

TABLE 2 Correlations between physical activity measures, age, and educatio

1. Age 2. Education

1. Age

2. Education

3. Fitbit steps −0.36* 0.02

4. Fitbit calories −0.38* 0.13

5. PASE −0.13 −0.11

6. CHAMPS-MET −0.03 0.04

Note. *Statistically significant at p < 0.05.
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performances on measures of executive functioning.

Unexpectedly, CHAMPS-MET demonstrated an inverse

relationship with executive functioning [ρ(63) = −0.41, p <
0.01]. Only Fitbit measures demonstrated expected positive

associations with processing speed, though effect sizes were

small (ρ range = 0.05–0.07, ps < 0.43). Fitbit step count

[ρ(124) = 0.20, p = 0.03], but not Fitbit calories burned

[ρ(124) = −0.08, p = 0.38], PASE [ρ(76) = −0.26, p = 0.02], or

CHAMPS-MET [ρ(62) = −0.31, p = 0.02] was associated

with better scores on tests assessing memory.
3.3. Cardiometabolic outcomes

Lower resting heart rate was significantly associated with

greater daily calories burned (ρ =−0.29, p < 0.001), but less

strongly with daily steps (ρ =−0.14, p = 0.08) and showed

minimal associations with reported PA as measured by the

PASE (ρ = 0.02, p = 0.85) or CHAMPS-MET (ρ =−0.03, p =

0.80) (Figure 2). Greater Fitbit step count (t = 3.058, p < 0.001),

but not Fitbit calories burned (t =−0.37, p = 0.71), PASE (t =

1.43, p = 0.16) or CHAMPS-MET (t =−1.75, p = 0.09) was

associated with a lower likelihood of hypertension. Each PA

measure demonstrated expected negative associations with

hemoglobin A1C that did not reach statistical significance (ρ

range =−0.01 to −0.17, ps > 0.05).
3.4. Brain MRI outcomes

Lastly, greater Fitbit step count (β = 0.35, p < 0.001) and

calories burned (β = 0.43, p < 0.001), but not PASE (β = 0.15,

p = 0.17) or CHAMPS-MET (β = 0.07, p = 0.56), were

associated with larger medial temporal lobe volumes (see

Figure 3).

Given there were sex and age-related differences, we ran

models adjusting for these factors and the patterns remained

the same, with the exception of the relationship between Fitbit

calories burned and memory, which showed a positive

association (β = 0.31, p = 0.07)
n.

3. Fitbit steps 4. Fitbit calories 5. PASE

0.50*

0.35* 0.20*

0.20 0.31* 0.44*
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FIGURE 2

Physical activity measures with cardiometabolic outcomes. Note. *Statistically significant at p < 0.05.

FIGURE 3

Physical activity measures with cognitive and brain MRI outcomes. Note. *Statistically significant at p < 0.05.
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3.5. Discrepancy scores

Using Fitbit step count as the standard, discrepancy score

analysis showed that females tended to overreport to a greater

degree on both self-report PA scales, though this effect reached

significance only for PASE (PASE Cohen’s d = 0.61, p = 0.02;

CHAMPS Cohen’s d = 0.22, p = 0.45), see Figure 4. Older

age and overreporting showed small associations that
Frontiers in Digital Health 07
did not reach significance (ρ range = 0.09–0.17, ps > 0.14).

Additionally, those with a diagnosis of hypertension

overreported on CHAMPS-MET (PASE Cohen’s d = 0.20, p =

0.45; CHAMPS Cohen’s d = 1.02, p < 0.01), see Figure 4.

Generally, worse cognition was associated with greater degree of

overreporting particularly for measures of memory (ρ range =

−0.23 to −0.26, ps = 0.05–0.09) and executive functioning (PASE

ρ =−0.15, p = 0.28; CHAMPS ρ =−0.32, p < 0.01), see Figure 5.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.869790
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


FIGURE 4

Demographic and cardiometabolic correlates of physical activity overreporting positive discrepancy score indicates greater overreporting). Note.
*Statistically significant at p < 0.05.

FIGURE 5

Cognitive correlates of physical activity overreporting (positive discrepancy score indicates greater overreporting). Note. *Statistically significant at p
< 0.05.
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Decreased medial temporal lobe volume showed small associations

with increased overreporting, though they did not reach statistical

significance (β range =−0.14 to −0.15 ps > 0.19), see Figure 5.
4. Discussion

We build on previous findings that wearable, objective

indicators of PA demonstrate greater overall construct validity

compared to self-report measures now extending to older

adults, and further detail the characteristics that may impact

reporting styles on PA measures. We also highlight several

novel findings on the limited interchangeability of PA metrics.

Both Fitbit steps and calories burned demonstrated more

consistent convergence with relevant outcomes of interest

when compared to subjective measures. These results are

consistent with prior studies in younger adults showing closer

approximation of measuring physical activity with objective

monitors in comparison to self-report (38, 39). Within Fitbit

metrics, step count particularly demonstrated stronger and

more consistent expected associations with each

cardiometabolic, cognitive, and brain volume outcome of

interest compared to calories burned, consistent with previous

studies (11). These findings converge with previous literature

that has demonstrated distinct associations between physical

activity and executive functioning, memory, and MTL volume

(36, 40, 41). While we again identify that objective digital

health measures show preferable construct validity over

subjective measures of physical activity, objective measures still

demonstrated substantial variability with expected outcomes of

interest (e.g., hypertension diagnosis, memory) and more work

is warranted to elucidate factors that contribute to variability

in physical activity metrics for older adults.

Notably, the associations found among the four physical

activity metrics used in this study suggest a lack of cohesion

within the field’s current standard measurement approaches.

For instance, our results demonstrated only modest

relationships across the four physical activity measures (i.e., r

= 0.2–0.30) indicating small variance explained between each

measure (i.e., R2 = 4%–9% variance explained). These data

suggest only minimal overlap among metrics that were

created to quantify the same construct. There was also

variation between Fitbit metrics and their associations with

the self-report measures. Fitbit step count demonstrated a

greater association with subjective reports of physical activity

measured by the PASE, whereas Fitbit calories was more

strongly associated with physical activity measured by

CHAMPS-MET. These findings illustrate an important

implication. While these subjective and objective measures

were intended to capture the same construct, there is clearly

variability in how each measure assesses physical activity.

However, it is worth noting that CHAMPS-MET appears to
Frontiers in Digital Health 09
be more closely related to the construct of calories burned, as

expected. It is important to continue to clarify what each

measure is assessing (with regard to physical activity) in order

to pinpoint what factors of physical activity are beneficial in

the context of brain and age-related health.

In addition to variation across the physical activity

measures, our results also indicated considerable

heterogeneity with associations between each activity

measure and outcomes of interest. For example, Fitbit step

count showed a stronger relationship to decreased likelihood

of hypertension, while Fitbit calories demonstrated a

stronger association with lower resting heart rate. Medial

temporal lobe volume, and hemoglobin A1C demonstrated

consistent, expected associations with each measure of PA;

however, effects were small and often did not reach

statistical significance (with the exception of Fitbit metrics

and brain volume). Overall, there was notable variability in

the strength and direction of examined relationships,

particularly between self-reported physical activity measures

and each outcome. This again suggests that physical activity

may be comprised of several constructs that are differentially

tapped into by self-report questionnaires and wearable

devices, and/or there is imprecision when capturing physical

activity across measurement tools. These findings are

particularly relevant in scientific research when comparing

across studies, as these objective and subjective measures do

not appear to be equivalent to one another. Our results

revealed that metrics capturing physical activity intensity via

calories burned (e.g., Fitbit calories, CHAMPS-MET) may

not be interchangeable with metrics of overall movement

(i.e., Fitbit steps, PASE). Our data highlight how challenging

measurement of physical activity can be, and that there is

still room for improvement, even within “gold-standard”

objective measures.

Fitbit steps demonstrated the greatest construct validity.

However, there are still mixed findings in current literature

with regard to its validity and reliability (42). For example,

one study found that Fitbit total steps underestimated

activity in healthy adults walking at faster treadmill speeds,

but overestimated total steps at slower speeds (43).

Similarly, another study found that Fitbit underestimated

caloric expenditure in comparison to CHAMPS (39). The

results of the current study, in conjunction with the

variability in results from previous studies examining

physical activity measures, highlight the importance of

improving the current standard measurements of physical

activity. In addition, these inconsistencies point to a need

for refinement of the operational definitions associated with

each of these physical activity measures to best understand

what they are evaluating.

Notably, more precise measurement and specification of

the broad range of physical activity constructs currently
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being utilized would allow for greater understanding of the

specific movement patterns that are most critical for brain

health. To date, there is not strong evidence for a particular

movement (e.g., walking) or intensity (calories burned, heart

rate during exercise) that is most impactful for brain health

trajectories. For example, in a meta-analysis of exercise

randomized control trials (RCTs) in older adults, type of

exercise was not a significant predictor of cognitive benefit

(44). Indeed, activities ranging from tai chi to jogging

demonstrated comparable benefit. Some of the earliest

evidence linking physical activity with cognitive aging

demonstrated beneficial effects even with low impact

activities, such as walking (45). However, several

epidemiologic and RCTs indicate that cardiorespiratory

activities aimed at increasing VO2 max may be particularly

beneficial for cognitive outcomes and future dementia risk

(2, 46, 47). Nonetheless, more work needs to be done in this

area to understand what particular aspects of physical

activity are most important for brain health.

Because of the degree of variability found within

associations between measures of physical activity and

important outcomes, we elected to more closely examine

which factors could be driving these relationships. More

specifically, we leveraged a discrepancy score analysis to

identify factors that characterize participants who may

overreport on physical activity questionnaires. The results

demonstrated a greater degree of overreporting in females,

particularly for the PASE. This finding may impact the

ability of studies to determine sex-related differences in

physical activity for brain and age-related health. In

addition, participants who were most discrepant generally

had higher levels of physical activity across all measures,

which may suggest that self-report measures are less

accurate in detecting physical activity levels for those who

are very active.

We also found that individuals who engaged in the

greatest degree of overreporting were older adults who

performed worse on cognitive assessments, suggesting

subjective measures may be systematically confounded by

cognitive ability when assessing activity level in the aging

population. This finding converges with prior studies

demonstrating that utilization of self-report measures in

older adults for measuring physical activity is less accurate

(48). In addition, cognitive functioning declines with age as

a group, which in turn may increase risk of inaccurate

responses on self-report measures (49). In addition to

decline in cognition, a greater degree of overreporting was

also associated with smaller medial temporal lobe volume.

Generally, our findings demonstrated that individuals with

poorer vascular and cognitive health tended to overreport

to a greater degree. These novel findings increase our

understanding of possible factors that could be contributing
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to reporting bias in older adults, namely their vascular and

cognitive health. Future studies should examine whether

these discrepancy scores could be used to predict

individuals at risk for adverse brain aging.

Our study is not without limitations. Simply wearing a Fitbit

may have increased participants’ motivation to move, which

could lead to possible a possible confound in our data.

However, we noted that all feedback from the Fitbit was

removed from the device so participants were otherwise

blinded to real time activity levels. Our sample was not

representative of the general population, with 85 percent of

participants identifying as White, limiting generalizability.

Furthermore, our sample was relatively small and had some

variability across measures, which may have biased the

outcomes. There are also inherent biases that can occur when

utilizing digital technology with older adults; notably, data

collection is contingent on successful device use, which may

be impacted by technology familiarity. Therefore, study

findings have limited generalizability to older adults with low

levels of technology literacy. In addition, the high educational

attainment of this cohort also impacts our generalizability and

is particularly important considering higher education has

been associated with lower risk of developing

neurodegenerative disease. It is possible that our results are

limited by a slight gap in time between obtaining self-report

data and gathering metrics from Fitbit monitors. At the visit,

participants reported physical activity from the last seven days

via PASE, and from the prior 30 days via CHAMPS. Fitbit

monitoring took place in the following 30 days post visit.

However, physical activity levels are a generally stable trait

(50), so it is unlikely this time discrepancy significantly

affected our findings.

Our study is also limited by the lack of other “gold-

standard” objective measures of physical activity and fitness,

such as the 6-min walk or a research-grade accelerometer

(e.g., Actigraph GT3X+). With these other objective measures,

we could have more comprehensively examined Fitbit as an

actigraphy metric. In addition, a longitudinal study design

would have provided the opportunity to understand the

reliability of subjective and objective PA measures over time

and meaningfully track changes in cognitive and vascular

health related to physical activity.

Without precision and specificity, it is difficult to pinpoint

which aspects of physical activity contribute to brain health.

Our results suggest that objective quantification of physical

activity demonstrates the best validity and high clinical

relevance. Moreover, issues regarding reporting bias may be

especially important in older adults with lower vascular,

cognitive and brain structural statuses. These findings also

begin to broaden our understanding of what physical

activity metrics represent to facilitate better-informed

recommendations for healthy aging.
frontiersin.org

https://doi.org/10.3389/fdgth.2022.869790
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


VandeBunte et al. 10.3389/fdgth.2022.869790
Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed

and approved by UCSF Human Research Protection Program

(HRPP). The patients/participants provided their written

informed consent to participate in this study.
Author contributions

AV and KC contributed to the conception and design of the

study and performed the statistical analysis. ND and MY

organized the database. AV wrote the manuscript. LG, EG,

and CF wrote sections of the manuscript. JK provided critical

edits and study funding. All authors contributed to the article

and approved the submitted version.
Funding

This work was supported by the NIH-NIA (K23 AG058752,

R01AG032289, and R01AG048234), and the UCSF ADRC

P30AG062422. Our work was also supported by the
Frontiers in Digital Health 11
Alzheimer’s Association (AARG-20-683875, PI: KC) and the

Larry L. Hillblom Foundation Network (2014-A-004-NET).
Acknowledgments

The authors would like to thank the National Institute on
Aging, the Alzheimer’s Association, and the Larry
L. Hillblom Foundation Network for funding this study.
We would also like to thank the participants and family
members involved.
Conflict of interest

Joel H. Kramer receives royalties from Pearson’s Inc. The

authors report no other conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made

by its manufacturer, is not guaranteed or endorsed by

the publisher.
References
1. Chen F-T, Hopman RJ, Huang C-J, Chu C-H, Hillman CH, Hung T-M, et al.
The effect of exercise training on brain structure and function in older adults: a
systematic review based on evidence from randomized control trials. J Clin
Med. (2020) 9(4):914. doi: 10.3390/JCM9040914

2. Hörder H, Johansson L, Guo X, Grimby G, Kern S, Östling S, et al. Midlife
cardiovascular fitness and dementia: a 44-year longitudinal population study in
women. Neurology. (2018) 90(15):e1298–305. doi: 10.1212/WNL.000000000
0005290

3. Nystoriak M, Bhatnagar A. Cardiovascular effects and benefits of exercise.
Front Cardiovasc Med. (2018) 5:135. doi: 10.3389/FCVM.2018.00135

4. Buchman AS, Boyle PA, Yu L, Shah RC, Wilson RS, Bennett DA. Total daily
physical activity and the risk of AD and cognitive decline in older adults.
Neurology. (2012) 78(17):1323–9. doi: 10.1212/WNL.0B013E3182535D35

5. Casaletto KB, Staffaroni AM, Wolf A, Appleby B, Brushaber D, Coppola G,
et al. Active lifestyles moderate clinical outcomes in autosomal dominant
frontotemporal degeneration. Alzheimer’s Dement. (2020) 16(1):91–105. doi: 10.
1002/alz.12001

6. Noah JA, Spierer DK, Gu J, Bronner S. Comparison of steps and energy
expenditure assessment in adults of fitbit tracker and ultra to the actical and
indirect calorimetry. J Med Eng Technol. (2013) 37(7):456–62. doi: 10.3109/
03091902.2013.831135

7. Dontje ML, de Groot M, Lengton RR, van der Schans CP, Krijnen WP.
Measuring steps with the fitbit activity tracker: an inter-device reliability
study. J Med Eng Technol. (2015) 39(5):286–90. doi: 10.3109/03091902.2015.
1050125
8. Diaz KM, Krupka DJ, Chang MJ, Peacock J, Ma Y, Goldsmith J, et al. Fitbit®:
an accurate and reliable device for wireless physical activity tracking. Int J Cardiol.
(2015) 185:138–40. doi: 10.1016/J.IJCARD.2015.03.038

9. Jones D, Crossley K, Dascombe B, Hart HF, Kemp J. Validity and reliability of
the fitbit FLEX™ and actigraph gt3x+ at jogging and running speeds. Int J Sports
Phys Ther. (2018) 13(5):860. doi: 10.26603/ijspt20180860

10. Reid RER, Insogna JA, Carver TE, Comptour AM, Bewski NA, Sciortino C,
et al. Validity and reliability of Fitbit activity monitors compared to ActiGraph
GT3X+ with female adults in a free-living environment. J Sci Med Sport. (2017)
20(6):578–82. doi: 10.1016/J.JSAMS.2016.10.015

11. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and
reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act.
(2015) 12(1):1–22. doi: 10.1186/S12966-015-0314-1

12. Hagiwara A, Ito N, Sawai K, Kazuma K. Validity and reliability of the
physical activity scale for the elderly (PASE) in Japanese elderly people. Geriatr
Gerontol Int. (2008) 8(3):143–51. doi: 10.1111/J.1447-0594.2008.00463.X

13. Washburn RA, Ficker JL. Physical activity scale for the elderly (PASE): the
relationship with activity measured by a portable accelerometer. J Sports Med Phys
Fitness. (1999) 39(4):336–40. PMID: 10726435

14. Chad KE, Reeder BA, Harrison EL, Ashworth NL, Sheppard SM, Schultz SL,
et al. Profile of physical activity levels in community-dwelling older adults.Med Sci
Sports Exerc. (2005) 37(10):1774–84. doi: 10.1249/01.MSS.0000181303.51937.9C

15. Logan SL, Gottlieb BH, Maitland SB, Meegan D, Spriet LL. The physical
activity scale for the elderly (PASE) questionnaire; does it predict physical
frontiersin.org

https://doi.org/10.3390/JCM9040914
https://doi.org/10.1212/WNL.0000000000005290
https://doi.org/10.1212/WNL.0000000000005290
https://doi.org/10.3389/FCVM.2018.00135
https://doi.org/10.1212/WNL.0B013E3182535D35
https://doi.org/10.1002/alz.12001
https://doi.org/10.1002/alz.12001
https://doi.org/10.3109/03091902.2013.831135
https://doi.org/10.3109/03091902.2013.831135
https://doi.org/10.3109/03091902.2015.1050125
https://doi.org/10.3109/03091902.2015.1050125
https://doi.org/10.1016/J.IJCARD.2015.03.038
https://doi.org/10.26603/ijspt20180860
https://doi.org/10.1016/J.JSAMS.2016.10.015
https://doi.org/10.1186/S12966-015-0314-1
https://doi.org/10.1111/J.1447-0594.2008.00463.X
https://pubmed.ncbi.nlm.nih.gov/10726435
https://doi.org/10.1249/01.MSS.0000181303.51937.9C
https://doi.org/10.3389/fdgth.2022.869790
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/


VandeBunte et al. 10.3389/fdgth.2022.869790
health? Int J Environ Res Public Heal. (2013) 10(9):3967–86. doi: 10.3390/
IJERPH10093967

16. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale
for the elderly (PASE): development and evaluation. J Clin Epidemiol. (1993) 46
(2):153–62. doi: 10.1016/0895-4356(93)90053-4

17. Stewart L, Mills KM, King AC, Haskell WL, Gillis D, et al. CHAMPS
physical activity questionnaire for older adults: outcomes for interventions. Med
Sci Sports Exerc. (2001) 33(7):1126–41. doi: 10.1097/00005768-200107000-00010

18. Hekler EB, Buman MP, Haskell WL, Conway TL, Cain KL, Sallis JF, et al.
Reliability and validity of CHAMPS self-reported sedentary-to-vigorous
intensity physical activity in older adults. J Phys Act Heal. (2012) 9(2):225–36.
doi: 10.1123/JPAH.9.2.225

19. Feldman LS, Kaneva P, Demyttenaere S, Carli F, Fried GM, Mayo NE.
Validation of a physical activity questionnaire (CHAMPS) as an indicator of
postoperative recovery after laparoscopic cholecystectomy. Surgery. (2009) 146
(1):31–9. doi: 10.1016/J.SURG.2009.02.019

20. Prince SA, Cardilli L, Reed JL, Saunders TJ, Kite C, Douillette K, et al. A
comparison of self-reported and device measured sedentary behaviour in adults:
a systematic review and meta-analysis. Int J Behav Nutr Phys Act. (2020) 17
(1):1–17. doi: 10.1186/S12966-020-00938-3

21. Shephard RJ. Limits to the measurement of habitual physical activity by
questionnaires. Br J Sports Med. (2003) 37(3):197–206. doi: 10.1136/BJSM.37.3.
197

22. Sims J, Smith F, Duffy A, Hilton S. The vagaries of self-reports of physical
activity: a problem revisited and addressed in a study of exercise promotion in the
over 65s in general practice. Fam Pract. (1999) 16(2):152–7. doi: 10.1093/
FAMPRA/16.2.152

23. Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, et al.
Effects of physical exercise on cognitive functioning and wellbeing: biological and
psychological benefits. Front Psychol. (2018) 9:509. doi: 10.3389/FPSYG.2018.
00509

24. Rikli RE, Edwards DJ. Effects of a three-year exercise program on motor
function and cognitive processing speed in older women. Res Q Exerc Sport.
(2013) 62(1):61–7. doi: 10.1080/02701367.1991.10607519

25. Kramer JH, Jurik J, Sha SJ, Rankin KP, Rosen HJ, Johnson JK, et al.
Distinctive neuropsychological patterns in frontotemporal dementia, semantic
dementia, and Alzheimer disease. Cogn Behav Neurol. (2003) 16(4):211–8.
doi: 10.1097/00146965-200312000-00002

26. Possin KL, Laluz VR, Alcantar OZ, Miller BL, Kramer JH. Distinct
neuroanatomical substrates and cognitive mechanisms of figure copy
performance in Alzheimer’s disease and behavioral variant frontotemporal
dementia. Neuropsychologia. (2011) 49(1):43–8. doi: 10.1016/J.
NEUROPSYCHOLOGIA.2010.10.026

27. Kerchner GA, Racine CA, Hale S, Wilheim R, Laluz V, Miller BL, et al.
Cognitive processing speed in older adults: relationship with white matter
integrity. PLoS One. (2012) 7(11). doi: 10.1371/journal.pone.0050425

28. Kramer JH, Mungas D, Possin KL, Rankin KP, Boxer AL, Rosen HJ, et al.
NIH EXAMINER: conceptualization and development of an executive function
battery. J Int Neuropsychol Soc. (2014) 20(1):11. doi: 10.1017/S1355617713001094

29. American Heart Association. All about heart rate (pulse). Available at:
https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-
blood-pressure/all-about-heart-rate-pulse (Accessed October 25, 2021).

30. Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, et al.
Resting heart rate in cardiovascular disease. J Am Coll Cardiol. (2007) 50
(9):823–30. doi: 10.1016/J.JACC.2007.04.079

31. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic
correction of intensity nonuniformity in mri data. IEEE Trans Med Imaging.
(1998) 17(1):87–97. doi: 10.1109/42.668698

32. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. (2005) 26
(3):839–51. doi: 10.1016/J.NEUROIMAGE.2005.02.018
Frontiers in Digital Health 12
33. Ashburner J. A fast diffeomorphic image registration algorithm.
Neuroimage. (2007) 38(1):95–113. doi: 10.1016/J.NEUROIMAGE.2007.07.007

34. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic atlas of
the human brain: theory and rationale for its development: the international
consortium for brain mapping (ICBM). Neuroimage. (1995) 2(2):89–101.
doi: 10.1006/NIMG.1995.1012

35. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al.
An automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest. Neuroimage. (2006) 31(3):968–80.
doi: 10.1016/J.NEUROIMAGE.2006.01.021

36. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al.
Exercise training increases size of hippocampus and improves memory. Proc
Natl Acad Sci U S A. (2011) 108(7):3017–22. doi: 10.1073/PNAS.1015950108

37. Cohen J. Statistical power analysis for the behavioral sciences. New York City:
Routledge (1988).

38. Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA.
Comparative validity of physical activity measures in older adults. Med Sci
Sports Exerc. (2011) 43(5):867–76. doi: 10.1249/MSS.0B013E3181FC7162

39. Stahl ST, Insana SP. Caloric expenditure assessment among older adults:
criterion validity of a novel accelerometry device. J Health Psychol. (2014) 19
(11):1382–7. doi: 10.1177/1359105313490771

40. Snowden M, Steinman L, Mochan K, Grodstein F, Prohaska TR, Thurman
DJ, et al. Effect of exercise on cognitive performance in community-dwelling older
adults: review of intervention trials and recommendations for public health
practice and research. J Am Geriatr Soc. (2011) 59(4):704–16. doi: 10.1111/J.
1532-5415.2011.03323.X

41. Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, et al.
Physical activity predicts gray matter volume in late adulthood: the Cardiovascular
Health Study. Neurology. (2010) 75(16):1415–22. doi: 10.1212/WNL.
0B013E3181F88359

42. Feehan LM, Geldman J, Sayre EC, Park C, Ezzat AM, Young Yoo J, et al.
Accuracy of fitbit devices: systematic review and narrative syntheses of
quantitative data. JMIR mHealth uHealth. (2018) 6(8):e10527. doi: 10.2196/10527

43. Takacs J, Pollock CL, Guenther JR, Bahar M, Napier C, Hunt MA.
Validation of the Fitbit One activity monitor device during treadmill walking.
J Sci Med Sport. (2014) 17(5):496–500. doi: 10.1016/J.JSAMS.2013.10.241

44. Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise
interventions for cognitive function in adults older than 50: a systematic review
with meta-analysis. Br J Sports Med. (2018) 52(3):154–60. doi: 10.1136/
BJSPORTS-2016-096587

45. Yaffe K, Barnes D, Nevitt M, Lui LY, Covinsky K. A prospective study of
physical activity and cognitive decline in elderly women: women who walk. Arch
Intern Med. (2001) 161(14):1703–8. doi: 10.1001/ARCHINTE.161.14.1703

46. Pentikainen H, Savonen K, Ngandu T, Solomon A, Komulainen P,
Paajanen T, et al. Cardiorespiratory fitness and cognition: longitudinal
associations in the FINGER study. J Alzheimers Dis. (2019) 68(3):961–8.
doi: 10.3233/JAD-180897

47. Vidoni ED, Johnson DK, Morris JK, Van Sciver A, Greer CS, Billinger SA,
et al. Dose-response of aerobic exercise on cognition: a community-based, pilot
randomized controlled trial. PLoS One. (2015) 10(7):e0131647. doi: 10.1371/
JOURNAL.PONE.0131647

48. Harada ND, Chiu V, King AC, Stewart AL. An evaluation of three self-report
physical activity instruments for older adults. Med Sci Sports Exerc. (2001) 33
(6):962–70. doi: 10.1097/00005768-200106000-00016

49. Baranowski T. Validity and reliability of self report measures of physical
activity: an information-processing perspective. Res Q Exerc Sport. (2013) 59
(4):314–27. doi: 10.1080/02701367.1988.10609379

50. Friedman HS, Martin LR, Tucker JS, Criqui MH, Kern ML, Reynolds CA.
Stability of physical activity across the lifespan. J Health Psychol. (2008) 13
(8):1092–104. doi: 10.1177/1359105308095963
frontiersin.org

https://doi.org/10.3390/IJERPH10093967
https://doi.org/10.3390/IJERPH10093967
https://doi.org/10.1016/0895-4356(93)90053-4
https://doi.org/10.1097/00005768-200107000-00010
https://doi.org/10.1123/JPAH.9.2.225
https://doi.org/10.1016/J.SURG.2009.02.019
https://doi.org/10.1186/S12966-020-00938-3
https://doi.org/10.1136/BJSM.37.3.197
https://doi.org/10.1136/BJSM.37.3.197
https://doi.org/10.1093/FAMPRA/16.2.152
https://doi.org/10.1093/FAMPRA/16.2.152
https://doi.org/10.3389/FPSYG.2018.00509
https://doi.org/10.3389/FPSYG.2018.00509
https://doi.org/10.1080/02701367.1991.10607519
https://doi.org/10.1097/00146965-200312000-00002
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.10.026
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.10.026
https://doi.org/10.1371/journal.pone.0050425
https://doi.org/10.1017/S1355617713001094
https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/all-about-heart-rate-pulse
https://www.heart.org/en/health-topics/high-blood-pressure/the-facts-about-high-blood-pressure/all-about-heart-rate-pulse
https://doi.org/10.1016/J.JACC.2007.04.079
https://doi.org/10.1109/42.668698
https://doi.org/10.1016/J.NEUROIMAGE.2005.02.018
https://doi.org/10.1016/J.NEUROIMAGE.2007.07.007
https://doi.org/10.1006/NIMG.1995.1012
https://doi.org/10.1016/J.NEUROIMAGE.2006.01.021
https://doi.org/10.1073/PNAS.1015950108
https://doi.org/10.1249/MSS.0B013E3181FC7162
https://doi.org/10.1177/1359105313490771
https://doi.org/10.1111/J.1532-5415.2011.03323.X
https://doi.org/10.1111/J.1532-5415.2011.03323.X
https://doi.org/10.1212/WNL.0B013E3181F88359
https://doi.org/10.1212/WNL.0B013E3181F88359
https://doi.org/10.2196/10527
https://doi.org/10.1016/J.JSAMS.2013.10.241
https://doi.org/10.1136/BJSPORTS-2016-096587
https://doi.org/10.1136/BJSPORTS-2016-096587
https://doi.org/10.1001/ARCHINTE.161.14.1703
https://doi.org/10.3233/JAD-180897
https://doi.org/10.1371/JOURNAL.PONE.0131647
https://doi.org/10.1371/JOURNAL.PONE.0131647
https://doi.org/10.1097/00005768-200106000-00016
https://doi.org/10.1080/02701367.1988.10609379
https://doi.org/10.1177/1359105308095963
https://doi.org/10.3389/fdgth.2022.869790
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org/

	Physical activity measurement in older adults: Wearables versus self-report
	Introduction
	Materials and methods
	Procedure
	Actigraphy monitoring
	Physical activity questionnaires
	Physical activity scale for the elderly
	CHAMPS-MET

	Cognitive outcomes
	Episodic memory
	Processing speed
	Executive functioning

	Cardiometabolic outcomes
	Hemoglobin A1C
	Resting heart rate
	Hypertension

	Brain MRI
	Structural neuroimaging

	Statistical analyses

	Results
	Associations among physical activity measures
	Cognitive outcomes
	Cardiometabolic outcomes
	Brain MRI outcomes
	Discrepancy scores

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


