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ABSTRACT

Interpretation of non-coding genome remains an
unsolved challenge in human genetics due to im-
practicality of exhaustively annotating biochemically
active elements in all conditions. Deep learning
based computational approaches emerge recently to
help interpret non-coding regions. Here, we present
LOGO (Language of Genome), a self-attention based
contextualized pre-trained language model contain-
ing only two self-attention layers with 1 million pa-
rameters as a substantially light architecture that
applies self-supervision techniques to learn bidirec-
tional representations of the unlabelled human ref-
erence genome. LOGO is then fine-tuned for se-
quence labelling task, and further extended to vari-
ant prioritization task via a special input encoding
scheme of alternative alleles followed by adding a
convolutional module. Experiments show that LOGO
achieves 15% absolute improvement for promoter
identification and up to 4.5% absolute improvement
for enhancer-promoter interaction prediction. LOGO
exhibits state-of-the-art multi-task predictive power
on thousands of chromatin features with only 3%
parameterization benchmarking against the fully su-
pervised model, DeepSEA and 1% parameterization
against a recent BERT-based DNA language model.
For allelic-effect prediction, locality introduced by

one dimensional convolution shows improved sensi-
tivity and specificity for prioritizing non-coding vari-
ants associated with human diseases. In addition, we
apply LOGO to interpret type 2 diabetes (T2D) GWAS
signals and infer underlying regulatory mechanisms.
We make a conceptual analogy between natural lan-
guage and human genome and demonstrate LOGO
is an accurate, fast, scalable, and robust framework
to interpret non-coding regions for global sequence
labeling as well as for variant prioritization at base-
resolution.

INTRODUCTION

In 2003, the Human Genome Project (HGP) successfully
digitalized the ‘book of life’. It is convinced that biological
structure and function are intrinsically encoded in the pri-
mary genome sequence. The non-coding regions, account-
ing for over 98% of the whole genome, implement signifi-
cant yet largely unknown regulatory functions. Recent large
consortia projects, including the ENCyclopedia of DNA
Elements (ENCODE) (1,2), Roadmap Epigenomics (3),
and the Genomics of Gene Regulation (GGR), have pro-
duced large amount of experimental mapping readouts to
help annotate non-coding genome in specific tissues or cell-
lines. On the other hand, Genome-wide association stud-
ies (GWAS) have discovered that the vast majority (>90%)
of associated genome loci for complex disease and traits
fall in non-coding regions (4). Hence, it is of exceptional
utility to explore these datasets and derive novel hypothe-
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sis to interpret non-coding regions. Unlike the protein cod-
ing region where there is a clear genetic code, incorporat-
ing broader sequence context is critical to understand func-
tional effects of regulatory variants, which requires more
powerful and semantic-rich representational model to cap-
ture higher-order complexity in the region. Deep learning
has transformed ranges of tasks in computer vision and
natural language processing (NLP). In bioinformatics field,
deep learning based computational methods have also been
proposed in various applications, such as predicting molec-
ular phenotypes based on raw DNA sequence as input
and achieving better performance than traditional machine
learning approaches, as referred to an excellent review pa-
per (5). One classical model is DeepSEA (6), pioneering to
apply deep convolutional neural network (CNN) architec-
ture to extract features of genome sequence given 1000-bp
context and train on chromatin profiles in a supervised mul-
titask learning manner. DeepSEA can able to predict the
binary presence or absence of 919 chromatin marks.

The inherent sequential nature of the genome is anal-
ogous to documents composed of words, characters and
phrases. The exciting advance in the NLP field has shed
light on using similar strategy to extract general and trans-
ferable information from biological sequence. Neural net-
work model was introduced into NLP since 2013. Word2vec
(7) was proposed to learn distributional vector embeddings
of each word to capture their similarities given the sen-
tence context. Word2vec uses multilayer perceptron (MLP)
(8) to predict neighboring words given center word (called
skip-gram) or predict center word given neighboring words
(called ‘Continuous Bag of Words’, CBOW). The learned
word vectors can then be directly queried for downstream
text classification tasks. Word2vec essentially relies on mod-
elling co-occurrence probabilities without considering word
position information and static embeddings cannot han-
dle words with multiple meanings, so-called polysemous
words. Traditional CNN-based feature extractors rely on lo-
cal parameter sharing and the pooling operation may lead
to loss of global information. Recurrent Neural Network
(RNN) (9,10) is an alternative architecture to process se-
quential data. RNN can capture position dependency in-
formation via passing the memory state from previous ele-
ments. RNN’s fundamental constraint of sequential opera-
tion leads to difficulty of parallelization and faces the risk
of vanishing gradient when processing longer sequence. In
2017, Transformer (11) has emerged as a powerful architec-
ture that relies completely on attention mechanism to draw
global dependencies in Seq2Seq modelling task. In the en-
coder part, self-attention mechanism relates different posi-
tions across a single sequence to compute a contextualized
representation with better parallelization. Transformer can
tackle long-range dependency without position bias, out-
performing CNNs or RNNs in many global sequence clas-
sification tasks. On the other hand, CNN is better at cap-
turing locality.

Since 2018, a new wave of pre-trained language models
using self-supervision techniques have emerged as a core
trend in NLP, including RNN-based ELMo (12), ULMFiT
(13), Transformer-based OpenAI-GPT (14) and Google-
BERT (15). Instead of conventional left-to-right unidirec-
tional modeling, BERT, which stands for Bidirectional En-

coder Representations from Transformers, leveraged a mul-
tilayer bidirectional Transformer architecture to pre-train
on large unlabeled corpora by jointly incorporating both
left and right contexts. The pre-trained model learns con-
textualized token embeddings through two proxy training
objectives: MLM (Masked Language Model), predicting
randomly masked tokens and NSP (Next Sentence Predic-
tion), predicting whether two sentences follow each other.
The pre-trained BERT can then be easily fine-tuned to vari-
ous downstream NLP tasks and obtain new state-of-the-art
results competing with human performance. Thereafter, a
series of pre-trained models spring up to further improve
performance, such as XLNet (16), UniLM (17), MASS
(18), MT-DNN (19), XLM (20), ALBERT (21), RoBERTa
(22) and ELECTRA (23). A comprehensive review can be
found in an integrative reference (24). One representative
model, ALBERT, a lite version of BERT, establishes better
results with significantly reduced model size through fac-
torized embeddings and cross-layer parameter sharing tech-
niques. Unlike models trained on general domain corpora,
SciBERT (25) and BioBERT (26) are proposed based on
BERT backbone and trained on a large amount of multi-
disciplinary scientific literature and biomedical text corpus,
respectively. The domain-specific BioBERT achieves dra-
matic improvement in biomedical text-mining tasks, such
as name entity recognition, relation extraction and question
answering. BioBERT is comprised of 12 layers with hidden
size of 768, 12 heads and 12 attention heads in each layer.
Recently, Transformer was reported by Facebook to learn
protein structure and function (27). DNABERT (28) is re-
cently proposed to learn the human genome and is com-
posed of 12 Transformer layers with 768 hidden units and
12 attention heads in each layer, which is configured as a
heavy version of BERT. DNABERT is fine-tuned on sev-
eral functional sequence recognition tasks and splicing site
identification. However, features learned by Transformer
are too general and not specific or sensitive to a single or few
changes in the sequence, unable to satisfy the needs of inter-
preting human genome at base-resolution. Recently, Face-
book and Google both propose introducing the concept of
convolution into Transformer architecture to bring soft in-
ductive bias with better locality, namely ConViT (29) and
CoAtNets (30).

Motivated by these observations, in this study we de-
velop LOGO, a pre-trained language model with much
lighter architecture than the pioneering DNABERT, which
is composed of only two layers with 256 hidden units and
8 heads (embedding size is set to 128), to learn contextu-
alized representations of reference genome hg19. The main
intuition to choose these hyperparameters is to keep LOGO
as lightweight as possible to save GPU memories without
compromising performance. We implement ablation stud-
ies covering both pre-training and downstream fine-tuning
tasks and demonstrate how to determine the optimal choice
of hyperparameters. Details can be found in Supplemen-
tary Tables S2–S4. LOGO with 3-mer tokenization contains
around 1 million parameters while DNABERT contains
100 million parameters. DNABERT leverages span mask-
ing strategy and consumes 25 days on 8 RTX2080TI GPUs
to implement pre-training. LOGO has much faster pre-
training speed, both due to lighter ALBERT-like structure
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as well as a random masking strategy following dividing the
tokenized sequence into k-mers k-stride groups. LOGO ac-
cepts fixed-length DNA sequence input (1000 and 2000 bp)
while DNABERT uses variable length input ranging from
5 bp to 500 bp. LOGO shows substantially more effective
parameter efficiency than DNABERT. To demonstrate the
versatility of LOGO, we implement fine-tuning for mul-
tiple downstream tasks and obtain excellent performance
from aspects of accuracy, speed, scalability, and robust-
ness. Sequence-level classification tasks include promoter
prediction, promoter-enhancer interaction prediction and
chromatin features prediction. Another key innovation of
LOGO is that we introduce a novel encoding scheme for al-
ternative alleles and leverage a hybrid architecture by mix-
ing convolution and self-attention to alleviate the locality-
insensitivity issue of Transformer and facilitate functional
prioritization of noncoding variants. DNABERT only re-
ports high-attention variants extracted from Transformer
encoder while LOGO leverages convolution operation and
forces the model to see the nucleotide change with allelic-
effects. We also propose a framework to embed prior knowl-
edge into LOGO and explore better performance over orig-
inal settings. LOGO provides a unified framework not only
for sequence labelling or motif identification task, but also
for SNP or indel prioritization to interpret non-coding re-
gions at base-resolution.

MATERIALS AND METHODS

Architecture of the pre-training model

The pre-training model leverages the encoder part of Trans-
former architecture and learns representations of input se-
quences via multi-head self-attention mechanism. We fol-
low the BERT notation conventions and denote the vocab-
ulary embedding size as E, the number of encoder layers as
L, and the hidden size as H. Each training instance is started
with a 100-bp bin as described above and extended forward
along the reference genome until reaching 1000-bp length.
The model processes the genome into sequential segments
of k-mer tokens, and each token is labelled by a unique
vocabulary ID as input. The size of token embedding has
length E = 128. Token embeddings are summed with po-
sition embeddings and fed into Transformer encoder net-
work. We leverage the ALBERT strategy to untie the in-
put token embedding size E from the hidden layer size H
in the Transformer encoder. The encoder is composed of
a stack of L = 2 identical layers. Each layer has two sub-
layers. The first is a multi-head self-attention layer, and the
second is a position-wise fully connected feed-forward layer.
A residual connection is added to each sub-layer, followed
by layer normalization, leading to output of each sub-layer
being LayerNorm (x + Sublayer(x)), where Sublayer(x) is
the function implemented by the sub-layer itself. Each hid-
den sub-layer produces vector outputs with dimension of H
= 256 = dmodel. An attention function can be described
as mapping a query and a set of key-value pairs to an out-
put, where the queries (Q), keys (K), values (V), and out-
put are all vectors. The output is computed as a weighted
sum of the values, where the weight assigned to each value
is computed by a compatibility function of the query with

the corresponding key. For each self-attention layer, the in-
put consists of queries and keys of dimension dk, and values
of dimension dv. The dot products of the query with all keys,
divided by

√
dk, are fed into a sof tmax layer to obtain the

weights on the values. The attention functions on a set of
queries are computed simultaneously, packed together into
a matrix Q. The keys and values are also packed together
into matrices K and matrices V. The matrix of outputs is
computed as:

Attention (Q, K, V) = sof tmax
(

QKT

√
dk

)
V

To increase the capacity of the model, the input of each
hidden layer is processed by multiple attention heads, which
means on each projected version of queries, keys and val-
ues, the attention function is performedA(number of heads)
times in parallel. The outputs of each head are concatenated
and projected, resulting in the final values, as depicted:

Multi Head(Q, K, V) = Concat(head1, · · · , headh)WO,

×where headi

= Attention(QWQ
i , KWK

i , VWV
i )

WQ
i ∈ R

dk×dmodel , WK
i ∈ R

dk×dmodel , WV
i ∈ R

dv×dmodel ,

WO ∈ R
hdv×dmodel

We employ A = 8 heads. For each of these, we use dk =
dv = dmodel

A = 32. Due to the reduced dimension of each
head, the total computational cost is close to that of single-
head attention with full dimensionality. Following each at-
tention layer, the fully connected feed-forward network is
applied to each position separately and identically, which
consists of two linear transformations with a ReLU activa-
tion in between.

F F N (x) = max (0, xW1 + b1) W2 + b2

After a forward pass through L = 2 layers, a final classi-
fication layer is used to project the hidden state (dmodel ) to
output classes of dimension equal to k-mer vocabulary size.

Motivated by ALBERT architecture, we use a factor-
ization of token embedding parameters. By using this de-
composition, the embedding parameters are reduced from
O(V × H) to O(V × E + E × H). We also enforce sharing
all parameters across two layers motivated by improved pa-
rameter efficiency of ALBERT. In original BERT model,
for a given token, its input representation is constructed by
summing the corresponding token, segment, and position
embeddings. Position embeddings are used to capture rela-
tive positions of each input token within a sequence. Since
we discard NSP task, we do not use segment embeddings
in pre-training stage. One contribution of this work is that
we demonstrate a method to incorporate prior knowledge
into the language model. Knowledge layer is introduced
and encoded in one-hot format. For example, if we have
M knowledge items to label the input sequence, then a M-
dimension one-hot knowledge vector is introduced and con-
catenated with input sequence vectors. For example, if a se-
quence is labelled by an annotation knowledge, all k-mers
spanning from annotation start position to end position will
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be recorded as ‘1’ for this type of knowledge, and k-mers of
other positions will be recorded as ‘0’. Knowledge embed-
dings are learned by the model and the dimensions are set
as the same as token embeddings size. In this study, knowl-
edge embeddings are only used in the fine-tuning stage in
promoter prediction task.

Pre-training

We define similar self-supervised loss for Masked Language
Model [MLM] pre-training task as in BERT and discard
Next Sentence Prediction (NSP) task. In the pre-training
stage, to balance the computation burden and representa-
tion utility, we generate and evaluate four types of k-mer
(k = 3, 4, 5, 6) with 1-stride settings to tokenize the genome
(Data generation and tokenization in Supplementary Text
S1). For each k-mer setting of 1000-bp sequence, k sets of
input will be all used as training instances. For each set, we
use similar masking strategy as in BERT. The masked to-
ken will be represented as [MASK]. We randomly masked
15% of k-mer tokens for prediction, 80% of which are re-
placed with [MASK], 10% are replaced by a random token
from the vocabulary and another 10% remain unchanged.
The original token at masked position will be predicted with
cross-entropy loss. The pre-training loss is the sum of the
mean masked LM likelihood. We follow the BERT notation
conventions and denote the vocabulary embedding size as
E, the number of encoder layers as L, and the hidden size
as H. In LOGO model, each k-mer of input sequence will
be represented as 128-dimension vocabulary token embed-
ding vectors. The embedding size of hidden layers is set to
be larger than input token embedding size as in ALBERT,
since hidden layers are meant to learn context-dependent
representations. All embeddings and model weights are ex-
pected to be learned by the model from MLM task. We
use four Nvidia Tesla V100 SXM3 32G GPU to train the
model. Because the number of training records exceeds
180 million (3-mer: 60 million×3, 4-mer: 60 million×4,
5-mer: 60 million×5, 6-mer: 60 million×6), to speed up
training, we convert all data to Tensorflow tfrecord and
adopt Tensorflow’s ‘Multi Worker Mirrored Strategy’ strat-
egy to support multi-machine and multi-GPU training. Par-
allel training technique is used on four GPUs to support
large batch size. Hyperparameters are summarized as be-
low: layers (L) = 2; token embedding size (E) = 128; hid-
den dimension size (H) = 256; attention heads (A) = 8;
batch size (BSZ) = 512 for each GPU, 512×4 = 2048 for
4 GPUs; steps-per-epoch = 4000; maximum epochs = 100;
sequence length = 333, 250, 200, 166 tokens for 3-mer, 4-
mer, 5-mer, 6-mer setting, respectively to encode 1000-bp
input sequence. We use an Adam optimizer with learning
rate = 0.00001. Other hyperparameters are set as default in
ALBERT.

Analysis of T2D-related GWAS variants

We download all T2D-associated SNPs from GWAS
Catalog (2020–05-14 version) and obtain corresponding
LD SNPs from LDlink, resulting in 156 175 SNPs (P-
value ranging from 9×10–6 to 6×10–447). To make fair
comparison with DeepSEA, we use the same approach to

compute chromatin effects of variants. For each SNP, we
extract the 1000-bp or 2000-bp context sequence centered
on that variant based on hg19 reference genome (SNPs
locates at the 500th position). A pair of 1000-bp sequences
centered on both reference allele and alternative allele at
the variant position are used to calculate the probabilities
for each chromatin feature. Absolute differences between
probability values and relative log fold changes of odds
are calculated following DeepSEA pipelines. Both forward
and complementary sequences are computed and averaged
to obtain the predicted chromatin effects. The magnitude
of the predicted chromatin effect on a chromatin feature
for an SNP is computed as the product of the absolute
difference between probability values and the relative
log fold change of odds. We use the same protocol as in
DeepSEA to obtain negative non-functional SNPs which
contains 1 000 000 negative SNPs randomly chosen from
1000 Genomes Project. We calculate chromatin effects for
these negative SNPs to generate the empirical background
distribution and use the same E-value definition to evaluate
significance of variant effects. For each chromatin feature,
E-value is computed as the proportion of negative SNPs
with higher predicted chromatin effect magnitude on the
same chromatin feature. We use fine-tuned LOGO-919,
LOGO-2002 (Pretrained LOGO with 2000-bp context fine-
tuned on 2002 chromatin features from ExPecto, n = 690
TF, 334 DHSs and 978 HM, respectively) and LOGO-3357
(Pretrained LOGO with 2000-bp context fine-tuned on
3357 chromatin features after integrating EpiMap features
with ExPecto features, n = 826 TF, 668 DHSs and 1863
HM, respectively) to calculate E-values for 919, 2002
and 3357 chromatin features, respectively (data details in
Supplementary Text S4 and Supplementary Text S5). A
variant is considered as putative functional significant if at
least one chromatin feature’s E-value is equal or less than
a certain threshold, i.e. 1×10–5, which might be used to
infer underlying regulator disruption mechanism. Profile
of Thurner islet chromatin states is downloaded from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828664/
bin/elife-31977-fig3-data5.zip. Profile of Varshney islet
chromatin states is downloaded from https://theparkerlab.
med.umich.edu/data/papers/doi/10.1073/pnas.1621192114/
after consultation with Dr. Narisu from Francis Collins
Lab via email.

Model architecture for LOGO-E2E

To fine-tune on variant prioritization task in an end-to-end
manner, we modify LOGO architecture to accommodate
signed allelic information. We stack three layers to encode
input sequence. The first layer is called ‘Ref layer’. We to-
kenize each 1000-bp context sequence extracted from hg19
reference genome using 6-mer-1-stride and feed it into ‘Ref
layer’ via concatenating six sets of 6-mer [Ref] tokens in an
interlaced manner. This novel operation is introduced to
encode input sequence at base-resolution without compro-
mising representation capacity of k-mer strategy. The sec-
ond layer is called ‘Alt’ layer, we use this layer to encode
allelic information at certain position. Only changed posi-
tion compared to ‘Ref layer’ will have input value with cor-
responding 6-mer [Alt] token, other positions correspond-

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5828664/bin/elife-31977-fig3-data5.zip
https://theparkerlab.med.umich.edu/data/papers/doi/10.1073/pnas.1621192114/
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ing to the context sequence are set to [zero]. In this way, we
explicitly encode the alternative allele to enforce the model
to see directional alteration. The third layer is called ‘Type’
layer to encode variant type. In this paper, we do not eval-
uate SNVs and indels simultaneously, so we set [Type] to-
ken at corresponding position equal to 1 and other posi-
tions are set to [zero]. Each variant with surrounding con-
text of certain length will be encoded as a matrix input con-
taining ‘Ref’, ‘Alt’ and ‘Type’ information, which is for-
matted as a ‘npz’ compressed file. One-dimension convo-
lutional layer is added after token embeddings and then
fed into Transformer architecture. Three kernels with dif-
ferent sizes (2,3,5) are introduced to capture multi-scale fea-
tures. Through experiments, it is found that this method re-
duces the weight updating frequency and makes the fluc-
tuation range more stable during the fine-tuning process of
the model. The final hidden state corresponding to learned
[CLS] token embeddings is followed by a classification layer
with sigmoid output of deleteriousness effect of target vari-
ant. Binary cross entropy loss is used to calculate loss func-
tion. We download LOGO-919 model weights and perform
LOGO-E2E fine-tuning on HGMD training sets using 1
Nvidia TITAN Xp Pascal GPU. We use batch size of 64 and
L = 2, E = 128, H = 256, A = 8. We use Adam optimizer
with initial learning rate of 0.00001, and other parameters
are set as default, and use early stopping strategy and stop
training when validation loss no longer decreases for three
consecutive epochs.

Model architecture for LOGO-C2P

For LOGO-C2P, one-dimension convolutional layer is
added after token embeddings and then fed into Trans-
former architecture. Three kernels with different sizes
(2,3,5) are introduced to capture multi-scale features. We
follow similar pipelines as in DeepSEA for functional SNP
prioritization architecture and firstly use previously trained
LOGO-919/LOGO-2002 to generate chromatin effect fea-
tures for both reference and alternative alleles. We then
conduct the same absolute difference and relative log fold
change transformation as DeepSEA and feed these fea-
tures into boosted model to train the classifier at the second
stage. We assess different model performances of whether
or not preserving four base-level evolutionary feature used
by DeepSEA, including PhastCons scores for primates (ex-
cluding humans), PhyloP scores for primates (excluding hu-
mans), and GERP++ neutral evolution and rejected sub-
stitution scores. We use well-trained LOGO-919, LOGO-
2002 and DeepSEA to generate chromatin features for
each target variant, convert these features into DMatrix
format, and train a regularized logistic regression model,
using the XGBoost v0.9 implementation (https://github.
com/tqchen/xgboost). It is worth mentioning that we dis-
card z-score transformation as used in DeepSEA classifier.
We argue that the tree-based approach does not require
normalization as stated by original XGBoost author. The
model is trained with L1 regularization parameter (alpha)
= 20 and L2 regularization parameter (lambda) = 2000
for iterations = 1000. Other hyperparameters are set as:
Step-size shrinkage parameter(eta):0.1booster:‘gbtree’, ob-
jective:‘binary:logistic’, loss:‘error’. We set early stopping

rules when validation error no longer decreases for 200
epochs and preserve the best model weight. 1 Nvidia TI-
TAN Xp Pascal GPU is used.

Benchmarking of classifier performance on HGMD, ClinVar
and GWAS variants

For HGMD regulatory variants, the performance of
each model is estimated by 10-fold cross-validation. For
filtered 3498 regulatory variants, we construct nega-
tive controls from 1000 Genomes Project SNPs using
two schemes: random sampling (unrestricted, 3690
negatives), and matched to positive ones within 1 kb
(restricted, 3034 negatives). We fine-tune LOGO-E2E
and LOGO-C2P on the HGMD dataset. We also re-
train DeepSEA based classifier on the HGMD dataset
with or without incorporating four evolutionary fea-
tures. CADD-precomputed scores are downloaded from
http://krishna.gs.washington.edu/download/CADD/v1.
3/whole genome SNVs.tsv.gz, FunSeq2 precomputed
scores are downloaded from http://org.gersteinlab.
funseq.s3-website-us-east-1.amazonaws.com/funseq2.
1.2/hg19 NCscore funseq216.tsv.bgz, GERP precomputed
scores are downloaded from http://mendel.stanford.edu/
SidowLab/downloads/gerp/hg19.GERP scores.tar.gz,
LINSIGHT precomputed scores are downloaded from
http://genome-mirror.cshl.edu/, CDTS metrics are down-
loaded from http://www.hli-opendata.com/noncoding.
DeepSEA functional scores are computed locally based
on 919 chromatin effect predictions and four evolution-
ary information–derived scores. DeepSEA functional
significance score for a variant is defined as the product
of the geometric mean E-value for predicted chromatin
effects and the geometric mean E-value for evolutionary
conservation features. We also assess DeepSEA functional
score without 4 evolutionary features. The direction of
different scores for all metrics is modified to ensure lower
rank represents higher probability of pathogenicity. For
held-out ClinVar test set, negative controls are subsampled
by bootstrapping 10 times. For held-out GWAS variants,
positive samples are subsampled by bootstrapping 10
times. To compare all methods, we compute false-positive
versus true-positive rates for the complete range of score
thresholds. Area under the receiver operating characteristic
(AUROC) is used for benchmarking. Data processing can
be found in Supplementary Text S6.

Benchmarking of classifier performance on CADD indels

We download the dataset from CADD Developmental re-
lease: v1.4, resulting in 3 675 207 indels. This dataset is less
biased and contains much larger examples than manually
curated ClinVar or HGMD. CADD is partially trained on
this dataset, containing 1 837 708 proxy-neutral variants
and 1 837 499 simulated de novo proxy-deleterious variants.
The former sets emerge since the last human-ape ances-
tor and are fixed in human populations, which are consid-
ered neutral (or, at most, weakly deleterious). The latter are
considered free of selective pressure including both neutral
and deleterious indels. We fine-tune LOGO-E2E on these
CADD Indels and use the expert-curated dataset as held-
out test set. We download known indels from NCBI/NIH

https://github.com/tqchen/xgboost
http://krishna.gs.washington.edu/download/CADD/v1.3/whole_genome_SNVs.tsv.gz
http://org.gersteinlab.funseq.s3-website-us-east-1.amazonaws.com/funseq2.1.2/hg19_NCscore_funseq216.tsv.bgz
http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz
http://genome-mirror.cshl.edu/
http://www.hli-opendata.com/noncoding


e81 Nucleic Acids Research, 2022, Vol. 50, No. 14 PAGE 6 OF 19

ClinVar database (2020-10-03 release), which leads to 5556
pathogenic (defined as pathogenic and likely pathogenic in
ClinVar) and 313 benign indels (defined as benign and likely
benign in ClinVar), respectively. Due to class imbalance, we
subsample positive indels five times to construct balanced
test sets and benchmark against CADD, LINSIGHT and
DeepSEA. Area under the receiver operating characteristic
(AUROC) is used to benchmark different methods.

RESULTS

LOGO learns contextualized representation of k-mers of hu-
man reference genome and achieves state-of-the-art perfor-
mance in promoter prediction task

The backbone of LOGO processing flow is motivated by
recently emerged Transformer-based bidirectional encoder
model (15,21) (Figure 1A). We conduct pre-training on hu-
man reference genome hg19 comprised of totally 3 billion
base pairs. We segment both forward and complementary
chain of whole genome sequence into 100-bp bins and get 60
million segments. For each bin, we extend forward to 1000-
bp along the genome to create training instances, which
are analogous to input sentences in the field of natural lan-
guage.

Conventional one-hot encoded representation for each
nucleotide has limited vocabulary size of five characters (i.e.
A, G, C, T and Unknown/Undetected), which is consid-
ered as a semantically poor representation. k-mer encodes
sequence into a certain length of successive nucleotides. For
instance, a trinucleotide is a k-mer for which k = 3. To in-
crease the information content, we tokenize each sequence
in the way of k-mer representation. The intuition is that
each nucleotide is not independent such as codon rules in
coding region and regulatory motifs in non-coding region.
Recent phrase-level or entity-level masking strategies used
by the NLP community proved to be better. BERT or AL-
BERT generally allows maximum sequence length of 512
tokens, thus k-mer setting can dramatically reduce the num-
ber of tokens required to incorporate a 1000-bp context. To-
ken vocabulary size equals to 5k when using k-mer strategy.
7-mer or longer settings result in unbearable computation
burden and memory overflow due to explosive vocabulary
size. To balance the computation consumption and repre-
sentation capacity, we evaluate four types of k-mer (k = 3,
4, 5, 6) to tokenize the genome. For any given sequence, dif-
ferent sets of k-mer representations can be generated when
choosing different split positions. To avoid biased segmen-
tation and further augment training data, we slide 1-bp (k-
mer-1-stride) for each 1000-bp sequence to generate multi-
ple sets (n = k) of k-mer tokens as input training instances.

Before being fed into the Transformer network, each to-
ken representation is created by summing its correspond-
ing token and position embeddings. Token embeddings
are learned through projecting the k-mer vectors into a
distributional embedding space. To utilize the order of
each sequence, we inject absolute position information of
each input sequence and make the model learn position
embeddings of the same size as token embeddings. Dur-
ing pre-training stage, we only adopt ‘masked language
model’(MLM) task to train a bidirectional representation
of the human genome. 15% of tokens are randomly masked

in each input sequence and the pre-training objective is to
predict the masked token by a Softmax layer over the vo-
cabulary. We choose 15% masking ratio according to the
empirical choice as in the original BERT model. However,
we apply masks at random positions across the genome in-
stead of at fixed positions, which is expected to inject sam-
pling diversities into the model. We denote the k-mer to-
kens embedding size as E, the number of encoder layers as
L, and the hidden layer embedding size as H, the number
of self-attention heads as A. Visualization of model archi-
tecture can be seen in Figure 1B. Hyperparameters are set
as follows, E = 128; L = 2; H = 256 and A = 8. We pre-
train LOGO with k-mer tokenization (k = 3, 4, 5, 6) on
hg19 for a maximum of 50 epochs on four Nvidia Tesla
V100 32G GPU. Model hyperparameters are determined
by choosing a model size as minimal as possible without
compromising the performance. Detailed hyperparameters
and pre-training configuration can be seen in Supplemen-
tary Table S1 and corresponding ablation studies on how to
choose these hyperparameters can be found in Supplemen-
tary Tables S2–S4.

Bigger k leads to larger vocabulary size, therefore requir-
ing increased model parameters, more memory usage and
longer convergence time. We assess the pre-training perfor-
mance based on the accuracy (ACC) of masked tokens pre-
diction. 3-mer tokenization achieves the highest MLM ac-
curacy with a minimum training time spent per epoch (Fig-
ure 2A, B). For all k-mer settings, LOGO can achieve inflec-
tion point of pre-training accuracy after five epochs, though
already surpasses 0.875 when training less than one epoch,
revealing recurring sequence patterns of human genome is
effectively learned. One epoch training time for 3-mer tok-
enization setting is around 11.4 h, and we reach accuracy
plateau (ACC = 0.893) after 15 epochs. One epoch training
time for 6-mer tokenization setting is around 70.8 h, and
we reach accuracy plateau (ACC = 0.887) after 25 epochs.
However, accuracy at the pre-training stage is not directly
correlated with utility of specific fine-tuning tasks. We assess
all four k-mer settings for different downstream tasks and
only report the best one. Other details of the pre-training
assessment can be found in Supplementary Table S5.

We first evaluate the utility of pre-trained LOGO on hu-
man promoter prediction tasks via fine-tuning. Data pro-
cessing details can be found in Supplementary Text S2.
Computational identification of promoters is analogous to
sequence labeling or sentence classification task in NLP.
Umarov et al. have developed CNN-based deep learning
models, DeeReCT-PromID (31), to predict human RNA
pol II promoters, outperforming other previous prediction
tools. For benchmark purposes, we generate datasets in the
same way with DeeReCT-PromID and define a positive pro-
moter region from −200 bp to +400 bp window around all
potential Transcription Starting Site (TSS) from EPDnew
Database (32). Promoters with TATA-box (TATA+) and
without TATA-box (TATA-) are assessed separately and af-
terwards jointly (Both), which leads to 2067, 14 388 and
16 455 positive sequences, respectively. Negative ones are
constructed by randomly sampling outside the promoter
region without containing a known TSS. Leveraging pre-
viously pre-trained LOGO model weights as initialization,
we simply plug in these 600-bp sequence inputs, and to-
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Figure 1. Overview of LOGO. LOGO is firstly pre-trained on human reference genome hg19 and then fine-tuned on several downstream tasks. (A) LOGO
uses self-attention based Transformer architecture, a light version language model (ALBERT) with only 2 self-attention layers with 256 hidden unites
and 8 heads. The input genome sequence is segmented by sequential k-mer tokens (k = 3, 4, 5, 6). Token embeddings under 1000-bp or 2000-bp context
are learned via masked language model (LM) task. The pre-training objective is to predict the randomly masked tokens by a Softmax layer over the
vocabulary. Token embeddings and position embeddings are summed up and fed into ALBERT network. For sequence labelling tasks at global sequence
level, including promoter identification, enhancer-promoter interaction (EPI) and chromatin features prediction, [CLS] token is used as global features
extracted by LOGO, standing for aggregated representations of each input sequence for sequence classification task. [SEP] token stands for the end of
each input sequence (Methods). (B) For variant prioritization task, LOGO utilizes a multi-stream scheme to encode reference allele, alternative allele, and
corresponding altered position as input. A convolutional layer is added to introduce locality to capture allelic-effect at base-resolution. Pre-trained LOGO
weights are used as model initializations for variant prioritization task (Materials and Methods).

kenize them via different k-mer-1-stride settings (k = 3,
4, 5, 6) and feed them into LOGO. When conducting se-
quence classification tasks, model input starts with a to-
ken [CLS] as in BERT and ALBERT. We use the final hid-
den vector of the [CLS] token as the aggregated represen-
tation for classification tasks and fine-tune model parame-
ters in an end-to-end manner, which only introduces a few
extra parameters in the final classification layer with sig-
moid outputs. We use batch size of 128, set early-stop rules
and fine-tune the model at most 20 epochs. The average
training time per epoch is only around 45 s, which demon-
strates excellent efficiency of ‘pre-training and fine-tuning’
paradigm. The best hyper-parameters are chosen based on
the validation sets (Materials and Methods). We evaluate
different k-mer settings of LOGO on promoter prediction
tasks. LOGO significantly outperforms DeeReCT-PromID
in all-settings as evaluated by Precision, Recall and F1-score
metrics, as shown in Figure 2D and Supplementary Ta-
ble S6. LOGO with 5-mer setting (LOGO-5-mer) achieves
15.0% point absolute improvement of mean F1-score than
CNN-based DeeReCT-PromID (10-fold cross-validation)
in case ‘Both’. LOGO has demonstrated its powerful rep-

resentation utility, which suggests bidirectional attention-
based architecture confers an advantage to capture com-
plex semantics of promoter structure over CNN-based
model. We also show that pre-training generally benefits
downstream promoter identification and chromatin feature
identification compared with end-to-end supervised learn-
ing with random initializations (Supplementary Tables S7,
S8).

We further explore a framework to integrate prior
knowledge into LOGO on promoter prediction task. Gen-
Bank (33) contains rich functional annotations of the
human genome sequence, including CDS, exon, gene,
promoter, enhancer, silencer, pseudogene, insulator, con-
served region, protein binding site, DNAse I hypersen-
sitive site, nucleotide cleavage site and so on. These an-
notations can be regarded as prior knowledge of se-
quence inputs. We download 11 annotations terms from
GenBank, i.e. ‘CDS’, ‘exon’, ‘enhancer’, ‘insulator’, ‘con-
served region’, ‘protein binding site’, ‘pseudogene’, ‘DNA-
seI hypersensitive site’, ‘nucleotide cleavage site’, ‘silencer’
and ‘gene’. Annotations of ‘promoter’ are abandoned to
avoid direct label leakage. We generate annotation labels for
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Figure 2. LOGO learns contextualized representation of k-mers of the human reference genome and achieves state-of-the-art performance for promoter
prediction and enhancer-promoter interaction prediction. (A) Pre-training accuracy (ACC) plateaus after five epochs for all k-mer settings. 3-mer tokeniza-
tion achieves the highest ACC. (B) LOGO pre-training time of one epoch for all k-mer settings is plotted. (All settings are trained on four Nvidia Tesla
V100 32G GPU). Larger k leads to longer training time due to larger vocabulary size. (C) Pre-trained LOGO is fine-tuned on enhancer-promoter inter-
action prediction task (LOGO-EPI) and evaluated against DeepTACT on promoter capture Hi-C (PCHi-C) datasets in six different cell types, including
fetal thymus (FoeT, n = 6676), monocytes (Mon, n = 8062), naı̈ve CD4+ T cell (nCD4, n = 8712), total B cells (tB, n = 9036), total CD4+ T cell (tCD4,
n = 8282) and total CD8+ T cell (tCD8, n = 8140). Mean area under precision-recall curve (AUPRC) are evaluated using 10-fold cross-validation. (D)
Pre-trained LOGO using 5-mer tokenization (LOGO-5-mer) is fine-tuned on promoter prediction task and evaluated against DeeReCT-PromID on pro-
moter sequences from EPDnew Database, including ones with TATA-box (TATA+, n = 2067), without TATA-box (TATA–, n = 14 388) and jointly (both,
n = 16 455). Knowledge embedded LOGO (LOGO-K-5-mer) further boost performance. 11 annotations terms from GenBank, i.e. ’CDS’, ‘exon’, ‘en-
hancer’, ‘insulator’, ‘conserved region’, ‘protein binding site’, ‘pseudogene’, ‘DNAseI hypersensitive site’, ‘nucleotide cleavage site’, ‘silencer’ and ‘gene’
are introduced in one-hot encoded format as knowledge input. Metrics of mean Recall, mean Precision and mean F1-score are evaluated using 10-fold
cross-validation.

each input sequence in a start-to-end spanning mode based
on the hg19 coordinate. We propose a knowledge-enabled
LOGO by adding input layers of one-hot encoded anno-
tations and concatenating them with k-mer inputs (Sup-
plementary Figure S1). Knowledge embeddings, position
embeddings and token embeddings are summed up and
then fed into Transformer network for fine-tuning tasks in
an end-to-end manner (Figure 1B). Knowledge embedded
LOGO with 5-mer setting (LOGO-K-5-mer) achieves F1-
score of 0.933, yielding extra 3.2% absolute improvement
than LOGO-5-mer (Figure 2D). We demonstrate the con-
figurability and utility of knowledge-embedded framework
for genome sequence labelling. We caution that this attempt
is preliminary and might introduce position bias or indi-
rect label leakage into the model. We envision that ratio-
nally incorporating experimentally validated human knowl-
edge can assist in developing better sequence representation
model for scientific discovery.

LOGO can be used to predict regulatory interactions between
enhancer-promoter sequence pairs

Predicting 3D chromatin contacts between promoters and
enhancers is critical to understand transcriptional regu-
lation in specific cell-lines or tissues. Computational ap-
proach is needed to improve the resolution of Hi-C data and
detect genome-wide physical interactions at correspond-
ing regulatory elements. This task is analogous to general
inter-sentence modelling in NLP, such as sentence pairs in
paraphrasing, hypothesis-premise pairs in entailment, and
question-passage pairs in the question-answering task. We
draw lessons from the NLP field and consider 3D chromatin
contacts prediction as a sequence pairing problem.

Li et al. proposed DeepTACT (34), a CNN and RNN
mixed deep learning model with one attention layer to
predict enhancer-promoter interactions (EPI). DeepTACT
leverage both raw sequence and chromatin accessibility in-
formation, but we only benchmark LOGO against Deep-
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TACT version without accessibility information input due
to unavailability of processed chromatin features. Data
for promoter-enhancer interaction and fine-tuning can be
found in Supplementary Text S3. We retrain DeepTACT
and fine-tune LOGO (LOGO-EPI) on the same boot-
strapped dataset provided by the author of DeepTACT,
which contains three parts: 2000-bp window enhancer se-
quences (35), 1000-bp window promoter sequences (36) and
paired enhancer–promoter interaction (EPI) labels from
promoter capture Hi-C (PCHi-C) experiments in six dif-
ferent cell types (37), i.e. fetal thymus (FoeT), monocytes
(Mon), naı̈ve CD4+ T cell (nCD4), total B cells (tB), total
CD4+ T cell (tCD4) and total CD8+ T cell (tCD8). De-
tails can be found in Supplementary Table S9. Similar data
augmentation technique is applied to generate larger pos-
itive training examples. The performance of each model is
evaluated by 10-fold cross-validation. LOGO-EPI uses 6-
mer setting to tokenize input sequences. We add one 1D
convolution operation for each input promoter or enhancer
sequence before being fed into the Transformer network.
The underlying intuition is to avoid large fluctuations of to-
ken embeddings during the fine-tuning stage and ensure cer-
tain disparities among tokens (Supplementary Figure S2).
The learned representations of paired promoter and en-
hancer sequences are concatenated and fed into the final
binary classification layer (model architecture seen in Fig-
ure S1). LOGO-EPI achieves 0.23–4.47% absolute improve-
ment than DeepTACT on AUPRC for six cell lines (Fig-
ure 2C). LOGO-EPI outperforms DeepTACT most signifi-
cantly for tCD4 and LOGO-EPI yields more consistent per-
formance while DeepTACT fluctuates across different cell
lines (AUPRC details can be found in Supplementary Table
S10).

LOGO achieves superior performance on chromatin features
prediction with significantly reduced model size and much less
training time than previous models

Next, we move on to compare LOGO against CNN-
based DeepSEA (6) to predict chromatin features from
DNA sequences. Unlike fully supervised training manner as
DeepSEA, we fine-tune the pre-trained LOGO with chro-
matin features prediction task and demonstrate higher ac-
curacy with significantly improved scalability. To make a
proper comparison as well as demonstrate model scalabil-
ity, we use three sets of chromatin profiles with some over-
laps; the first one is the same as the original DeepSEA paper
with 919 chromatin features, the second one is 2002 chro-
matin features expanded by DeepSEA developer group re-
ported in ExPecto (38), and we construct the third one of
3357 chromatin features by integrating ExPecto’s 690 tran-
scriptional factors (TF) binding features with recently re-
leased 2850 EpiMap (39) (for epigenome integration across
multiple annotation projects) features after deduplication.
Data details can be found in Supplementary Text S4.

In the first task, we use the same training, validation, and
test sets as in DeepSEA. LOGO-919 obtains 0.70%, 0.70%
and 0.80% absolute improvement of median AUROC than
downloaded DeepSEA for predicting 690 TF binding, 125
DNase hypersensitive sites (DHSs) and 104 histone modi-
fication marks (HM), respectively (Figure 3A). The maxi-

mum increase is for transcription repressor ZNF274 bind-
ing in HepG2 cell line (AUROC = 0.703 by LOGO-919
versus AUROC = 0.582 by DeepSEA). LOGO’s model ar-
chitecture and training strategy confer huge advantage on
computation efficiency and memory consumption over tra-
ditional deep CNN-based architecture completely trained
in a multitask supervised manner. LOGO has a much
smaller parameter size compared to DeepSEA. LOGO-
919 contains around 1.52 million parameters, which is 34x
fewer than DeepSEA’s 52.8 million parameters (Figure 3C).
LOGO-919 obtains better performance than downloaded
DeepSEA after 33 hours of pre-training and fine-tuning
on 4 Nvidia Tesla V100 GPU (around 110 h on 1 Nvidia
TITAN Xp Pascal GPU). We also retrain DeepSEA from
scratch on 1 Nvidia Titan Pascal GPU and stop after
1 month (720 hours) and reproduce slightly poorer per-
formance than the downloaded version, which indicates
LOGO-919 takes at least 6× shorter training time than
DeepSEA. (Figure 3D). The improvement in parameter effi-
ciency is the most critical advantage of LOGO framework,
which gives LOGO superior advantage to extend to ever-
growing chromatin maps. Interestingly, more complex mod-
els sometimes lead to inferior performance for chromatin
features prediction. We train another 8-layer LOGO model
with around 20M parameters, the same order of magnitude
with DeepSEA. However, the results are even worse, which
again justifies our choice of model hyperparameters (details
can be seen in Supplementary Table S2, Table S3, Table S4,
Table S15). The learned semantic-rich representation for k-
mer tokens in a self-supervised manner alleviates the exces-
sive needs of cumbersome model fitting for different super-
vised tasks from scratch. To demonstrate this concept, we
conduct the second experiment using 2002 chromatin fea-
tures, including 690 TF binding, 334 DHSs and 978 HM
features as reported in ExPecto model (Dataset details of
the number of chromatin features can be found in Supple-
mentary Table S16). ExPecto also used CNN-based archi-
tecture and extend DeepSEA by doubling the number of
convolution layers to increase model depth to satisfy dou-
bled learning objectives, ending up with around 150 mil-
lion parameters, nearly 3-fold of DeepSEA. We retrain the
chromatin marks prediction part of ExPecto and stop af-
ter 1000 h. Compared with DeepSEA, the number of learn-
ing tasks for Expecto is doubled, while model parameters
tripled, which shows severe lack of scalability. For fair com-
parison against ExPecto, we incorporate a 2000-bp con-
text window while remaining other settings unchanged and
fine-tune LOGO-2002 within 66 hours. We choose the time
upper bound according to the intuition of doubled train-
ing time (66 h versus 33 h) for doubled tasks (2002 fea-
tures versus 919 features) (Figure 3D). The model size only
marginally increases (1.87 million parameters) due to the
longer input context and additional parameters of the fi-
nal classification layer (Figure 3C). The model backbone
remains unchanged, and the results show LOGO-2002 can
achieve comparable median AUROC with retrained Ex-
Pecto on held-out chromosome within 66 hours. The me-
dian AUROC for TF, DHSs and HM is 0.954, 0.913, 0.883
respectively (Figure 3B). We demonstrate that LOGO can
scale easily via pre-training and fine-tuning paradigm with
benefits of computational speed and reduced parameteri-
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Figure 3. LOGO fine-tuned on chromatin profiles outperforms DeepSEA with significantly reduced parameter size and consumes much less training
time. (A) Receiver operating characteristic (ROC) curve is plotted to compare predictive power between DeepSEA (top) and LOGO-919 (down) for 690
Transcription factor binding (TF), 125 DNase hypersensitive sites (DHSs) and 104 histone modification marks (HM) on held-out chromosome using
1,000-bp context window. Metrics of median area under receiver operating curve (AUROC) for all TF, DHSs and HM are displayed above each curve.
(B) Boxplot shows AUROC for three types of features predicted by LOGO-2002 and LOGO-3357 (Methods). Box plots show median, upper, and lower
quartiles, and highest and lowest values excluding outliers. (C) Plot shows parameter size of DeepSEA, ExPecto, LOGO-919, LOGO-2002 and LOGO-
3357. (D) Plot shows comparison of training time among DeepSEA, LOGO-919, LOGO-2002 and LOGO-3357. Training time for DeepSEA is recorded
as duration of reproducing DeepSEA from scratch using 1 TITAN Xp Pascal GPU, with slightly lower model performance than downloaded version.
Training time of LOGO-919, LOGO-2002 and LOGO-3357 include both pre-training (about 2 epochs) and fine-tuning. Three sets of GPU configurations
used to fine-tune LOGO are indicated by different colors.

zation. It is noted that DNABERT contains >100 million
parameters while LOGO only contains 1 million parameter,
which domonstrates LOGO’s superior efficiency of param-
eter sharing among attention layers. In addition, LOGO
predicts chromatin features in a jointly multi-task manner
while DNABERT only supports TF-binding site prediction
one TF by one TF, which is considered as a much simpler
task and cannot effectively transfer the knowledge among
different chromatin annotations. In light of LOGO’s supe-
rior performance for sequence feature identification over
DeepSEA, we further check whether LOGO can recapitu-
late those 4 representative variants reported by the original
DeepSEA paper, i.e. chr1:109817590 G > T; chr16:209709
T > C; chr10. 23508363 A > G and chr16:52599188 C > T.

We collect 1000 bp of DNA sequences centered around
each variant and implement ‘in silico’ saturated mutagen-
esis by LOGO to scan all potential single-nucleotide sub-
stitutions and evaluate these mutation effects for binding
events. LOGO is able to identify canonical motifs such as
TTGCTCAA for CEBPB (HepG2), TGATAA for GATA1
(K562), GTAAATA for FOXA1 (HepG2) and GTACATA
for FOXA2 (HepG2). Detailed results can be found in Sup-
plementary Figure S10.

Incorporating more comprehensive chromatin profiles
and using task-specific features have both been reported
useful for functional analysis of noncoding variants (40,41).
Abundant experimental mappings of human epigenomes
are continuously accumulating chromatin profiles for more
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cell types and tissues. Further expanded chromatin fea-
tures require larger CNN-based models with explosive pa-
rameters, while LOGO can be easily extended to more
chromatin features with marginally increased parameters.
LOGO demonstrates its powerful scalability and easy de-
ployment, which is of critical importance to tackle even
larger-scale functional maps. To further prove this concept,
in the third experiment, we utilize the most comprehensive
chromatin profiles from EpiMap and integrate them with all
TF features from ExPecto. We construct datasets of a 2000-
bp context window paired with a label vector for 3357 chro-
matin features using Selene (42). We fine-tune LOGO-3357
using the same model architecture as LOGO-2002, achiev-
ing median AUROC of 0.926, 0.928, 0.883 for 826 TF, 668
DHSs and 1863 HM features respectively (Figure 3B). The
slightly lower performance than LOGO-919 and LOGO-
2002 is mainly due to less stringent dataset construction and
less precise position calibration for EpiMap related features.
LOGO-3357 has nearly 2.22 million parameters, which is
still significantly fewer than DeepSEA and ExPecto (Figure
3C), again demonstrating its scalability to triple chromatin
features without the need of increasing model size substan-
tially or extending disproportionate training time. All train-
ing details can be found in Supplementary Table S11.

LOGO can be used to predict functional effects of noncoding
variants at base-resolution and provides mechanistic insights
for investigating complex diseases

The associated loci identified by GWAS provide abundant
information regarding the genetic basis of human com-
plex diseases and traits. Nevertheless, owing to Linkage
Disequilibrium (LD), it remains challenging to identify
high-resolution causal variants in an interpretable manner
(43). Variants from GWAS catalog predominantly consist
of marginally associated variants that have not been fine-
mapped. We attempt to extend LOGO to prioritize noncod-
ing functional variants for complex diseases based on the
predicted signals of the above three sets of chromatin fea-
tures. We anticipate that, if a complex disease-related vari-
ant exerts its effect via disruption of TF binding motif or
via alteration of DNA accessibility or histone modification,
this SNP can be identified de novo from sequence by LOGO.
We choose type-2 diabetes (T2D) as an example to test this
hypothesis and construct evaluation datasets from the lat-
est published literatures and GWAS resources. (Data De-
tails see in Methods). We employ the same DeepSEA E-
value metric to estimate the regulatory potential of a SNP
by comparing the allele-specific probabilities per SNP to
one million random SNPs from the 1000 Genome Project
(Phase 3). In order to provide the community with a com-
prehensive catalog of LOGO annotated regulatory genome,
we have implemented LOGO for all dbSNP reported non-
coding SNPs and derive functional scores for each variant
(Details can be found in Supplementary Text S8, Supple-
mentary Table S17, Supplementary Figure S13), which can
be accessed at https://github.com/melobio/LOGO.

First, we demonstrate LOGO can be used to prioritize
putative causal regulatory variants from GWAS reported
T2D-associated loci. We hypothesize that if LOGO is fine-
tuned on more comprehensive chromatin profiles, it can

identify more functional variants within LD blocks. We
download all T2D-associated SNPs from GWAS Catalog
(44) (2020-05-14 version, P-value ranging from 9×10–6 to
6×10–447) and corresponding LD SNPs (r2 > 0.2) from
LDlink (45), resulting in 156,175 SNPs after deduplica-
tion. A variant is considered as functional significant if at
least one chromatin feature’s E-value is equal or less than
1×10–5 (6,46). LOGO-3357 can identify more functional
SNPs (n = 14 764) than LOGO-2002 (n = 729) and LOGO-
919 (n = 374), details can be found in Supplementary Ta-
ble S12. Within the 71 GWAS Catalog lead SNPs identi-
fied by LOGO-3357, 30 of them reach genome-wide signif-
icance (P-value < 5×10–8) in at least one GWAS. We di-
vide all functional significant SNPs identified by LOGO-
2002 and LOGO-3357 into two groups (r2 ≥ 0.5 and
r2 < 0.5), we compare the mean activated chromatin fea-
tures (E-value < 1×10–5) of each group and discover that
SNPs with higher LD activate more chromatin marks (P-
value = 0.00093 for LOGO 3357, P-value = 0.02 for LOGO
2002, by Mann–Whitney U-test, details can be found in
Supplementary Figure S3). Inspired by Basenji (47) and
Enformer (48), we also implement saturation mutagene-
sis to interpret several T2D-related SNPs in a visually in-
terpretable manner. We refer to a European T2D fine-
mapping study conducted by Mahajan (49), who charac-
terized 51 variants with posterior probability of associa-
tion (PPA) >80% by incorporating islet-specific epigenome
information. For example, PPA of rs963740 boosts from
50.3% to 87.9% by fGWAS (50) (Supplementary Figure S9),
a statistical package for integrating regulatory annotations
into GWAS. LOGO correctly predicted strong alteration of
related chromatin feature caused by minor allele relative to
the major allele, the most activated feature also indicates
rs11257655 position overlapping with strong islets enhancer
region and modulating the known motif of the transcription
factor FoxA2. LOGO suggests that perturbed TF binding
within islets as a potential etiological mechanism for T2D
(Figure 4E). Another example variant consistent with Ma-
hajan’s finding (49) is SNP rs963740 (located in the DLEU1
locus), which can be found in Supplementary Figure S9.

We demonstrate that LOGO has the potential of fine-
mapping causal variants within LD block in an explain-
able manner and the model fine-tuned on more chromatin
features provides more functional attributions. We further
conduct tissue-enrichment analysis for all putative func-
tional variants identified by LOGO-2002. Hypergeomet-
ric test is used to evaluate whether activated chromatin
features are enriched in certain categories. We find that
these SNPs are functionally enriched in 18 categories out
of total 27 with activation signals, including smooth mus-
cle (n = 51), lymphoblastoid (n = 45), adipose (n = 20),
muscle (n = 63), spleen (n = 10), and liver (n = 48), (–
log(P-value) = 11.1, 5.3, 5.0, 3.2, 3.1 and 1.3 respectively),
which is consistent with years of pathogenesis research that
insulin mainly acts on liver, muscle and adipose as T2D-
relevant tissues (Figure 4A, Supplementary Figure S8). Fig-
ure 4A has some abbreviations as follows: T2D, type 2 di-
abetes; EEM, extra-embryonic membranes; ESC, embry-
onic stem cell; ES-deriv, embryonic stem-derived; iPSC, in-
duced pluripotent stem cell; HSC, hematopoietic stem cell.
Recent integrative epigenomics study (39) (EpiMap) lever-

https://github.com/melobio/LOGO


e81 Nucleic Acids Research, 2022, Vol. 50, No. 14 PAGE 12 OF 19

Figure 4. LOGO can be used to infer underlying regulatory mechanisms of T2D GWAS signals and prioritize functional variants both inherited diseases
and complex traits or diseases. (A) Tissue enrichment results for significant T2D-related variants identified by LOGO-2002 located in promoter/enhancer
state regions, sorted by -log(P-value) (Hypergeometric test). The size of circle/diamond represents the number of activated chromatin marks in corre-
sponding tissue or cell types, also displayed on the right side of the plot. Red symbols indicate four well-known tissue types related to T2D. Tissue or cell
types enriched by EpiMap for T2D GWAS signals are represented by diamond shape. (B) Prediction power of various models for prioritizing HGMD
regulatory mutations (n = 3266) against negative controls (n = 3266) in restricted scenario that negative samples matched to positive ones within 1 kb. (C)
Prediction power of various models for prioritizing HGMD regulatory variants (n = 3498) against negative controls (n = 3690) in unrestricted scenario
of random sampling. Mean AUROC of 10-fold cross-validation for B and C are reported, Error bars represent standard deviations. (D) Comparison of
model performance by metric of mean AUROC on the held-out test set from inherited disease domain (top: n = 177 stringent ClinVar regulatory variants,
negative controls are bootstrapped 10 times) and complex trait or disease domain (bottom: n = 2731 genome-wide significant non-coding variants from
GWAS Catalog, positive variants are bootstrapped 10 times). (E) LOGO prediction for rs11257655 captures its influence on CDC123-CAMK1D locus.
rs11257655 is associated with T2D disease and overlapped with islets epigenome map. In silico mutagenesis of the region surrounding rs11257655 reveals
an affected transcription factor motif.
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ages enhancer sharing tree to investigate tissue enrichment
of T2D-related SNPs and indicates that T2D is polyfacto-
rial trait enriched in up to 18 tissue categories out of 33
tested. Sequence-based LOGO-2002 shows similar diversity
of enrichment with significant tissue overlaps. Islets only
constitute ∼1% of the pancreas and specific annotations
of islet epigenome are absent in ENCODE and Roadmap
Epigenomes Project (51). Thus, analyzing the pancreas or-
gans alone fails to provide reliable information of islet
epigenomes. Thurner (51) and Varshney (52) have specifi-
cally annotated promoter/enhancer state of islets, which are
regarded as typical T2D relevant cell types. Specifically, 10
functional SNPs identified by LOGO-3357 are overlapping
with islets-specific promoter/enhancer state with at least
five activated chromatin features (E-value < 1×10–5) (Table
1). The disruption of regulatory function is consistent with
a previous report that parts of T2D-related risk variants are
considered to act through primary effects on beta-cell func-
tion. For instance, T2D-risk allele at rs9693089 (FAM167A
locus) locates at the active enhancer state of islet sample
identified by Varshney (52) and has been reported to be
associated with very low-density lipoprotein (VLDL) syn-
thesis by Kraja (53). The corresponding activated chro-
matin features include H3K4me3, H3K4me1, H3K27ac.
Even though LOGO-3357 is not specifically trained on islet
chromatin marks, this experiment demonstrates that deep
learning based methods have the potential of providing ex-
tra informativeness using sequence alone as input (54).

Second, we demonstrate that LOGO can be a sequence-
based tool to help interpret those GWAS signals with pos-
sible population bias or sample size limitations. The statis-
tical power of GWAS relies heavily on sample size, allele
frequency and effect size of candidate SNPs (55). GWAS
with inadequate sample size can result in a multitude of
nominally significant loci (P-value < 0.05). This problem is
mainly mitigated by expanding the sample size or conduct-
ing meta-analysis across cohorts or ethnic groups. Sequence
based LOGO model is expected not to be affected by allele
frequency or population bias and can evaluate both com-
mon and rare variants ab initio. We illustrate this potential
using the following examples. In study GCST005414 (56),
rs340874 (PROX1 locus) reaches nominally significant (P-
value = 1×10–7). However, this SNP achieves genome-wide
significant in study GCST009379 (49)/GCST006867 (57)
(P-value = 2×10–22 and 8×10–18, respectively) with larger
sample size. PROX1 has been reported to be associated with
after-meal metabolism (58), non-esterified fatty acids, and
glucose metabolism (59), which is also validated in both
Japanese and Chinese populations (60,61) (MAF = 0.376).
LOGO-3357 can directly identify rs340874 as a functional
significant SNP (1 activated feature with E-value ≤ 1×10–5,
transcription factor POLR2A). PROX1 is reported to be a
target gene of the POLR2A transcription factor from the
ENCODE Transcription Factor Targets dataset. Rs896854
(TP53INP1 locus) is perceived to be associated with lipid
levels of the Chinese population with nominal significant
signal (P-value = 2×10–6) in the study GCST004894 (62)
and genome-wide significant signal (P-value = 1×10–9) in
the study GCST000712 (63). Rs516946 (ANK1 locus) is
reported in several independent studies to be correlated
with decrease of insulin level and dysfunction of pancre-

atic islet cells at a nearby site (64). Again, LOGO-3357
can identify both rs896854 (1 activated feature with E-
value ≤ 1×10–5, Blood & T-cell, H3K9me3) and rs516946
(1 activated feature with E-value ≤ 1×10–5, Other, DNase-
seq) to be functional. Furthermore, we evaluate another
43 regulatory variants with posterior probability of asso-
ciation (PPA) >80% in a recent fine-mapping study (49).
2 SNPs are identified as functional significant by LOGO-
3357 (rs340874 at PROX1 locus and rs76549217 at ANKH
locus). Another largest-scale T2D meta-analysis study ac-
cumulates 1.4 million samples and discovered 318 new loci
(65), out of which LOGO-3357 can identify 14 SNPs to be
functional. It is worth mentioning that all these 14 SNPs
do not reach genome-wide significance in other populations
except European ancestry. This result further indicates the
unbiased predictive power of LOGO. 16 reported SNPs val-
idated by LOGO-3357 with corresponding activated fea-
tures are listed in Supplementary Table S14. We demon-
strate that LOGO fine-tuned on chromatin features can help
interpret GWAS non-coding SNPs and provide hints re-
garding underlying tissue-specific regulatory mechanism.

Introducing locality-sensitive encoding scheme and convolu-
tion facilitates prioritizing functional variants for both inher-
ited diseases and complex traits or diseases

Next, we evaluate whether fine-tuning LOGO can be
used to develop functional predictor of pathogenic regula-
tory single-nucleotide variants (SNV) or common GWAS
phenotype-associated SNPs. We define two schemes of fine-
tuning: end-to-end training on the binary label of dele-
teriousness (LOGO-E2E) and two-stage training of chro-
matin features prediction followed by variant prioritiza-
tion (LOGO-C2P) (6,40). Perturbation of molecular phe-
notypes can serve as an indicator of potential deleterious-
ness inspired by DeepSEA. We compare LOGO against
six common predictors, including evolution-based method
(GERP) (66), sequence-based predictor based on chro-
matin effect signals with four evolutionary conservation
features (DeepSEA) (6), functional genome-based method
(Funseq2) (67), evolutionary method incorporating func-
tional genome features (LINSIGHT) (68), machine learn-
ing based classifier (CADD) (69) and genome diversity met-
ric (CDTS) (70). It is noted that DeepSEA and CADD
can provide allele-specific evaluations, whereas others as-
sign identical scores to all alternative variants. Our predic-
tors, LOGO-E2E and LOGO-C2P, are designed to capture
allelic effect.

For variants associated with inherited human diseases,
we extract a dataset from Human Gene Mutation Database
(version 2019–03) (71) to define positive examples of strin-
gent regulatory mutations. We construct negative con-
trols from 1000 Genomes Project (72) SNPs by strin-
gent frequency and population control, resulting in 3498
pathogenic regulatory mutations and 3,690 negatives (to-
tal 7,188 variants, details can be found in Supplementary
Figure S6). We use 10-fold cross-validation to make a ro-
bust comparison. For each fold, test variants are ensured
to be scorable across methods. To increase stringency, we
consider two schemes of negative sets selection: random
sampling (unrestricted), and negative samples matched to
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Table 1. Significant SNPs identified by LOGO-3357 overlapped with islet promoter/enhancer regionsa

RS ID Locus
Significant

marksb min E-valuec
GWAS

P-valued GWAS oddsd 1000G AF
Paper

(PMID)

rs9693089
chr8:11298385 A-G

FAM167A H3K4me3
H3K4me1
H3K27ac

0.000001 - - 0.68111 23192668

rs4735337
chr8:95973465 T-C

TP53INP1 H3K4me3
H3K4me1
DNase-seq

0.000001 - - 0.552516 25393876

rs1126899
chr7:130021488 G-C

CPA1 H3K4me1 0.000001 - - 0.582268 -

rs11774700
chr8:118220270 T-C

LOC105375716 HNF4G 0.000001 - - 0.271965 21188353

rs163800
chr20:57578508 T-C

CTSZ H3K27ac 0.000001 - - 0.000399361 29795304

rs4383259
chr19:53661337 A-G

ZNF347 H3K4me1
H3K27ac

0.000001 - - 0.752196 24306210

rs3176447
chr1:51433687 T-A

CDKN2C DNase-seq 0.000001 - - 0.0740815 21145615

rs11671664
chr19:46172278 G-A

GIPR H3K27me3 0.000001 3E-12 4.22[2.73–5.71] 0.155152 27480816

rs998451
chr2:135429288 G-A

TMEM163 CEBPB 0.000001 - - 0.10643 24843659

rs1776897
chr6:34195011 G-T

- EP300 0.000004 - - 0.776757 27104953

aIslet promoter and enhancer regions are annotated by Thurner (51) and Varshney (52).
bSignificant Marks means all chromatin marks with E-value < 1 × 10–5.
cMin E-value means the minimum E-value of corresponding chromatin mark activated by LOGO-3357.
dGWAS P-value and GWAS odds are only shown for lead SNP reported from GWAS Catalog.

positive ones within 1 kb (restricted, total 6532 variants).
Dataset construction details are illustrated in Supplemen-
tary Text S6.

For LOGO-E2E, we use three layers to encode variant
presence and allelic information at specific position, in-
cluding the Ref layer, Alt layer and Variant Type layer.
Ref layer is used to encode 1,000-bp context with 6-mer-
1-stride setting. (Model architecture details can be found
in Supplementary Figure S4) Alt layer is used to en-
code alternative allele at certain position to enforce the
model to see directional alteration. Another Variant Type
layer is set as default for SNV. By this means, we ex-
plicitly encode the alternative allele, ensure the ALT al-
lele is always the effect allele. Each variant with surround-
ing context of certain length will be encoded as a ma-
trix input containing ‘Ref’, ‘Alt’ and ‘Type’ information.
1-dimension convolutional layer is added before fed to-
ken embeddings into LOGO to learn the binary delete-
riousness effect of the target variant. Fine-tuning LOGO
in this way is expected to learn allelic pathogenicity. For
LOGO-C2P, we follow similar pipelines in DeepSEA’s func-
tional SNP prioritization part and firstly use previously
trained LOGO-919/LOGO-2002 to generate chromatin ef-
fect features for both reference and alternative allele. We
then conduct the same absolute difference and relative log
fold change transformation as DeepSEA and feed these fea-
tures into boosted logistic regression model to train the clas-
sifier at the second stage. It is worth mentioning that we
discard the z-score transformation used in DeepSEA-C2P
classifier. We also assess the difference between preserv-
ing or removing evolutionary conservation features. The
original scores of LINSIGHT, CADD, FunSeq2, GERP,
CDTS and DeepSEA functional significant score are used

to obtain the binary classification result with full range of
thresholds.

In the end-to-end setting, LOGO-E2E outperforms all
other methods in restricted negative control scenario (AU-
ROC = 0.722) (Figure 4B) and performs the second
in the scenario of unrestricted negative control (AU-
ROC = 0.823). It is consistent with previous finding that
restricted scenario poses more difficulties for distinguish-
ing functional sites from surroundings than separating
functional regions from genome background. Nonethe-
less, LOGO-E2E leverages an Alt token layer to enforce
the model to explicitly encode allele position and direc-
tional mutation event to be distinguished from nearby
unchanged context, which equips the model with al-
lelic specificity under 1,000-bp context. For the less chal-
lenging unrestricted task, LOGO-E2E performs slightly
worse than LINSIGHT(AUROC = 0.847), one possi-
ble reason might be that LOGO has not been trained
on population genomic data with conservation informa-
tion to witness enough genome diversity from human
and other related outgroup species. To overcome these
shortcomings, LOGO-2002-C2P incorporates four evo-
lutionary conservation features as in DeepSEA (Phast-
Cons scores (73), PhyloP scores (74), and GERP++ neu-
tral evolution (75) and rejected substitution scores (66))
and achieves the highest performance (AUROC = 0.883)
(Figure 4C) in the scenario of the unrestricted negative
control.

It is noted that all compared methods except DeepSEA-
C2P are not specifically trained on the HGMD dataset.
To avoid potential over-fitting controversy and assess the
generalizability of LOGO-C2P, we extract from ClinVar
database (76) to define an independent test set with 177
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highly confident non-coding pathogenic SNVs (Data de-
tails in Methods and Supplementary Figure S5, all splic-
ing variants removed). Analysis with LOGO-E2E, LOGO-
919-C2P and LOGO-2002-C2P are compared with that of
CADD, LINSIGHT, GERP, Funseq2, CDTS, DeepSEA
and DeepSEA-C2P (Figure 4D). DeepSEA and DeepSEA-
w/o Evo means DeepSEA derived functional significant
score including and excluding four evolutionary features,
respectively. DeepSEA-C2P represents a logistic regres-
sion model based on 919 chromatin marks and 4 evo-
lutionary features. LOGO-E2E means LOGO fine-tuned
on binary label of allelic deleteriousness in an end-to-end
manner. LOGO-919-C2P and LOGO-2002-C2P stand for
LOGO fine-tuned on prediction of 919/2002 chromatin fea-
tures with four evolutionary features followed by allele-
specific variant prioritization via logistic regression model.
LOGO-2002-C2P ranks third (AUROC = 0.927) and sig-
nificantly outperforms CDTS (AUROC = 0.734) but is
slightly worse than LINSIGHT (AUROC = 0.946) and
CADD(AUROC = 0.966). CDTS solely relies on 11,257
whole-genome sequences to obtain 7-mer constraint un-
der 550-bp context of human species, whose lack of inter-
species conservation leads to poorer performance to eval-
uate fitness consequence of inherited disease related vari-
ants. LOGO-E2E (AUROC = 0.769) is only trained on 3498
HGMD variants yet performs better than genome diversity
based CDTS, which again proves end-to-end fine-tuning ar-
chitecture captures some intrinsic features of non-coding
genome by only using a few annotated examples. LOGO-
C2P is only trained on HGMD dataset and proved to be
well generalizable on the ClinVar dataset. LINSIGHT is
trained on human polymorphism data from 54 unrelated in-
dividuals and three outgroup species divergence data from
aligned primates genomes conditioned on 48 genomic fea-
tures, revealing the utility of incorporating genome diver-
sity information to interpret non-coding genome. CADD is
trained with more than 60 genome annotations on a much
larger dataset (n = 30 million) containing fixed or nearly
fixed variants in human populations but is absent in human-
ape ancestor as proxy-neutral variants and matched proxy-
deleterious variants, which is essentially designed for binary
classification of fitness consequence. The superior perfor-
mance of LOGO-C2P, LINSIGHT and CADD shows that
evolutionary information is likely to be powerful to identify
regulatory pathogenic variants that tend to be under strong
purifying selection.

We conduct another benchmark experiment to prioritize
complex trait or disease-associated variants. GWAS vari-
ants are generally of weaker functional impact than HGMD
mutations. We construct a positive test set by extracting
all genome-wide significant variants (P-value < 5×10–8)
replicated in at least two independent studies from GWAS
Catalog followed by retaining SNPs overlapped with EN-
CODE candidate cis-Regulatory Elements (ccREs) (2) and
fixation index (FST) lower than 0.01 to ensure little ge-
netic differentiation (77,78). We ensure that all test vari-
ants have never been used in previous HGMD experiment,
resulting in 2,731 positive GWAS SNPs and 704 negative
controls. We bootstrap 10 times to obtain balanced held-
out test set of 1408 variants (Data details in Supplemen-
tary Text S6 and Supplementary Figure S6). All predic-

tors show reduced performance. Compared with more dele-
terious HGMD mutations under significant purifying se-
lection, common GWAS-associated variants have smaller
effect size with lower evolutionary conservation, thereby
plausibly more difficult to predict. LOGO-C2P-2002 is the
top performer (AUROC = 0.841) (Figure 4D) across all
methods We show that LOGO-C2P-2002 has the advan-
tages of considering both chromatin effects and evolution-
ary constraint at base-resolution. Though LOGO-C2P is
solely fine-tuned on HGMD mutations, the result proves
its domain transferability from inherited diseases to com-
mon phenotypes. The second-best predictor is LOGO-919-
C2P (AUROC = 0.832), indicating the benefit of broad col-
lection of chromatin features. LOGO-919-C2P outperforms
DeepSEA-C2P (AUROC = 0.804), which again demon-
strates the edge of attention-based Transformer over CNN-
based architecture. For these two independent evaluations,
LOGO-C2P performs relatively better than CADD and
LINSIGHT in GWAS domain than ClinVar domain, which
suggests that chromatin features are more informative for
complex traits while evolutionary information is more im-
portant for inherited diseases. This is consistent with the
hypothesis that highly deleterious mutations of genetic dis-
eases are subject to stronger selection than complex disease
loci (79). Recent EpiMap results also emphasize the cen-
tral role of dense, rich, high-resolution epigenomic anno-
tations to investigate regulatory circuitry of complex dis-
ease. LOGO-C2P exhibits its capability of integrating se-
quence context, regulatory annotation, and evolutionary
constraint either explicitly or implicitly at different levels.
It is noted that CDTS, which solely relies on human genetic
diversity, shows poorer performance in both rare and com-
mon disease scenarios. We argue that the statistical test of
7-mer regional tolerance is not powerful enough to capture
complex semantics underlying human genome sequence,
even though more than 10,000 human genomes are incor-
porated (70). For the variant prioritization task, we also
benchmark against Basenji and achieve better performance
on a small dataset. Details can be found in Supplementary
Figure S12.

In order to demonstrate the utility of incorporating 1D
convolution, we conduct ablation experiments on GWAS
Catalog SNPs benchmark dataset and obtain better result
than convolution-excluded version (Details can be found
in Supplementary Text S7, Supplementary Table S13 and
Supplementary Figure S11). The convolution module adds
three kinds of channel information, 2-mer, 3-mer and 5-mer,
which can effectively provide more diverse contextual infor-
mation and help the model clearly distinguish the variant
change before and after the mutation. In addition, the con-
volution operation reduces the weight updating frequency
and makes parameter updating more stable during the fine-
tuning process, which is well suited for variant effects pre-
diction task at base-resolution.

Furthermore, we explore LOGO performance of prior-
itizing pathogenicity of small insertion or deletion vari-
ants (Indels). We fine-tune LOGO in a similar way with
LOGO-E2E using 3-mer tokenization with 1000-bp context
(LOGO-E2E-Indel) on a much larger dataset from CADD
Developmental release: v1.4 with 3,675,207 indels, includ-
ing similar number of human-derived variants and simu-
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lations (69). We evaluate model performance of LOGO-
E2E-Indel against LINSIGHT, CADD and DeepSEA-
w/o Evo (excluding evolutionary features) on independent
test set, consisting of 5869 non-coding Indels (<48 bp)
from ClinVar recent release (clinvar 20201003), including
5556 positive samples (defined as pathogenic and likely
pathogenic in ClinVar) and 313 negative samples (defined
as benign and likely benign in ClinVar). LOGO-E2E-Indel
achieves the best performance (AUROC = 0.743) across
all compared methods (Supplementary Figure S7). These
results indicate that LOGO-E2E can effectively utilize the
learned semantic representations from pre-training and
shows stronger generalizability for downstream classifica-
tion tasks than CADD, which is trained in a fully supervised
manner.

DISCUSSION

Genome sequence contains tremendous biological informa-
tion regarding the species to which it belongs. Even though
a multitude of high-throughput biochemical assays have
been used to characterize the sequences, the complex na-
ture of genome poses tremendous challenges to well inter-
pret it. It is impractical to exhaustively perform functional
annotations at every position in all conditions, and current
assay design is believed to only cover the tip of the ice-
berg due to the limitations of existing hypothesis. A sub-
stantial gap remains between the outcomes of these exper-
iments and a comprehensive understanding of the whole
genome, especially those regulatory regions. New computa-
tional approaches are in pressing need to help interpret the
underlying code. Motivated by recent huge progress in the
field of NLP and CV, we propose a light language model
called LOGO, utilizing ALBERT-version Transformer ar-
chitecture for sequence labelling, and integrating convolu-
tion with a novel input encoding scheme for base-resolution
interpretation.

Learning from raw reference genome successfully equips
the model with strong adaptability across various down-
stream tasks by fine-tuning. No explicit annotation label
is given during pre-training stage, and we have shown that
the intrinsic bidirectional representations learned by the
model can easily extend to sequence labelling tasks. In chro-
matin features prediction task, LOGO achieves higher ac-
curacy than DeepSEA with significantly reduced parame-
ters in much shorter computing time. Facing the needs of
continuously growing number of functional annotations, we
demonstrate that supervised multitask learning incurs prob-
lem of parameter explosion and tedious architecture tun-
ing, while LOGO can efficiently extend to more abundant
features with marginally increased parameters and trivial
modification. Sequence-based chromatin effects prediction
is informative to characterize GWAS SNPs via identifying
certain disruption of regulatory function. These results of-
fer a strong justification that developing pre-trained lan-
guage model can enable accurate, fast, scalable, and robust
genome modelling. The community can benefit from sim-
ply and economically fine-tuning the pre-trained LOGO for
specific chromatin profiles of intertest with trivial effort. By
initializing model with pre-trained weights, only one addi-
tional output layer needs to be modified instead of extensive

architecture tuning. We also show that fine-tuning LOGO
with an explicit ref/alt token encoding strategy and convo-
lutional operation proves powerful to prioritize functional
non-coding variants associated with human disease at base-
resolution.

It is noted that LOGO is only trained on human refer-
ence genome hg19. We envision that introducing genome
diversity in pre-training stage can further boost represen-
tation power. This can be done by feeding LOGO with all
currently identified variants across human populations and
from other related outgroup species, which is expected to
automatically learn evolutionary conservation and context-
dependent constraint across the genome. The learned rep-
resentation will in turn facilitates variant function pre-
diction and evolutionary landscape discovery. We make
an analogy between biological sequence and human lan-
guage that genome possesses diversified combinations of
words or phrases without compromising intrinsic gram-
mar constraints. Overall, LOGO offers a versatile strat-
egy to represent both global and local patterns of the hu-
man genome and sheds light on unearthing more value of
ever-growing WGS data in the boom of national genome
project.

We hypothesize that there exist many dimensions not yet
captured by LOGO. The intrinsic property of naı̈ve self-
attention based Transformer model leads to its incompe-
tency to capture even longer-range context (80), which is
essential for modeling distal regulatory dependency across
human genome. Recently, Enformer (47) combines dilated
convolutions and Transformers to model interactions up
to 100 kb away and successfully links remote enhancers
to target genes. In the future, we would like to explore
whether designing advanced LOGO via incorporating hier-
archical interactive mechanism (81) would solve the prob-
lem. For example, encoding a 1 Mb DNA sequence with
‘sentence Transformer’ and then feeding it to ‘document
Transformer’. LOGO can also be fine-tuned on tissue or
cell-type specific expression profiles to investigate variant
effects, potentially shedding light on eQTL fine-mapping
and cis-regulatory evolution. Furthermore, there could be
alternative ways to construct underlying vocabulary and de-
fine pre-training objectives with a further optimized mask-
ing strategy. We already show that injecting knowledge post
hoc into the model can help boost performance. On the
other hand, we anticipate that a large amount of existing
somewhat noisy knowledgebase can be utilized to further
boost the effectiveness of deep learning model. For exam-
ple, sequence annotation databases (82,83) and biological
networks (84) can be introduced systematically and struc-
turally to guide self-supervised representation learning of
genome sequence or inspire novel knowledge-guided mask-
ing strategy design. This will in turn help construct a better
downstream prediction model in a more interpretable man-
ner. In addition, LOGO can be reconfigured into a genera-
tive version, potentially be used to improve in silico muta-
genesis efficiency and assess artificially designed sequences
in the field of genome editing and synthetic biology. Inte-
grating adversarial feedback loop of functional constraint
into language model can potentially aid perturbation exper-
iment and rational de novo design of new regulatory circuit
(85,86).
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(2017) The eukaryotic promoter database in its 30th year: focus on
non-vertebrate organisms. Nucleic Acids Res., 45, D51–D55.

33. Benson,D.A., Cavanaugh,M., Clark,K., Karsch-Mizrachi,I., Ostell,J.,
Pruitt,K.D. and Sayers,E.W. (2018) GenBank. Nucleic Acids Res., 46,
D41–D47.

34. Li,W., Wong,W.H. and Jiang,R. (2019) DeepTACT: predicting 3D
chromatin contacts via bootstrapping deep learning. Nucleic Acids
Res., 47, e60.

35. Noguchi,S., Arakawa,T., Fukuda,S., Furuno,M., Hasegawa,A.,
Hori,F. and Wolvetang,E. (2017) FANTOM5 CAGE profiles of
human and mouse samples. Scientific Data, 4, 170112.

36. Cunningham,F., Amode,M.R., Barrell,D., Beal,K., Billis,K., Brent,S.
and Flicek,P. (2015) Ensembl 2015. Nucleic Acids Res., 43,
D662–D669.

37. Javierre,B.M., Burren,O.S., Wilder,S.P., Kreuzhuber,R., Hill,S.M.,
Sewitz,S. and Fraser,P. (2016) Lineage-specific genome architecture
links enhancers and non-coding disease variants to target gene
promoters. Cell, 167, 1369–1384.

38. Zhou,J., Theesfeld,C.L., Yao,K., Chen,K.M., Wong,A.K. and
Troyanskaya,O.G. (2018) Deep learning sequence-based ab initio
prediction of variant effects on expression and disease risk. Nat.
Genet., 50, 1171–1179.

39. Boix,C.A., James,B.T., Park,Y.P., Meuleman,W. and Kellis,M. (2021)
Regulatory genomic circuitry of human disease loci by integrative
epigenomics. Nature, 590, 300–307.

40. Zhou,J., Park,C.Y., Theesfeld,C.L., Wong,A.K., Yuan,Y., Scheckel,C.
and Troyanskaya,O.G. (2019) Whole-genome deep-learning analysis
identifies contribution of noncoding mutations to autism risk. Nat.
Genet., 51, 973–980.

41. Richter,F., Morton,S.U., Kim,S.W., Kitaygorodsky,A., Wasson,L.K.,
Chen,K.M. and Gelb,B.D. (2020) Genomic analyses implicate
noncoding de novo variants in congenital heart disease. Nat. Genet.,
52, 769–777.

42. Chen,K.M., Cofer,E.M., Zhou,J. and Troyanskaya,O.G. (2019)
Selene: a pytorch-based deep learning library for sequence data. Nat.
Methods, 16, 315–318.

43. Schaid,D.J., Chen,W. and Larson,N.B. (2018) From genome-wide
associations to candidate causal variants by statistical fine-mapping.
Nat. Rev. Genet., 19, 491–504.

44. Buniello,A., MacArthur,J.A.L., Cerezo,M., Harris,L.W., Hayhurst,J.,
Malangone,C. and Parkinson,H. (2019) The NHGRI-EBI GWAS
catalog of published genome-wide association studies, targeted arrays
and summary statistics 2019. Nucleic Acids Res., 47, D1005–D1012.

45. Machiela,M.J. and Chanock,S.J. (2015) LDlink: a web-based
application for exploring population-specific haplotype structure and
linking correlated alleles of possible functional variants.
Bioinformatics, 31, 3555–3557.

46. Arloth,J., Eraslan,G., Andlauer,T.F., Martins,J., Iurato,S., Kühnel,B.
and Mueller,N.S. (2020) DeepWAS: multivariate genotype-phenotype
associations by directly integrating regulatory information using deep
learning. PLoS Comput. Biol., 16, e1007616.

47. Kelley,D.R., Reshef,Y.A., Bileschi,M., Belanger,D., McLean,C.Y.
and Snoek,J. (2018) Sequential regulatory activity prediction across
chromosomes with convolutional neural networks. Genome Res., 28,
739–750.
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