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Metabolic dysregulation in the tumor microenvironment has significant impact on immune
infiltration and immune responses. However, interaction between immunity and
metabolism in the ovarian microenvironment requires further exploration. We
constructed an immunometabolism gene set and ovarian cancer cohort from The
Cancer Genome Atlas (TCGA) and classified these into three immunometabolism
subtypes. We explored the relationships between immune infiltration and metabolic
reprogramming. Additionally, we built risk score and nomogram as prognostic
signatures. Three distinctive immunometabolism subtypes were identified with
therapeutic and prognostic implications. Subtype 1, the “immune suppressive-glycan
metabolism subtype,” featured high levels of immunosuppressive cell infiltration and
glycan metabolism activation; Subtype 2, the “immune inflamed-amino acid metabolism
subtype,” showed abundant adaptive immune cell infiltration and amino acid metabolism
activation; Subtype 3, the “immune desert-endocrine subtype,” was characterized by low
immune cell infiltration and upregulation of hormone biosynthesis. Furthermore, we found
that epinephrine biosynthesis displayed a significantly negative correlation with MHC
molecules, which may result in defective antigen presentation. We proposed
immunometabolism subtypes with prognostic implications and provided new
perspectives for the ovarian cancer microenvironment.

Keywords: ovarian cancer, metabolism reprogramming, epinephrine biosynthesis, major histocompatibility
complex, immune microenvironment
INTRODUCTION

Ovarian cancer is the common cause of death related to gynecological cancer (1, 2). The standard
treatment of ovarian cancer is surgical resection with cisplatin-based chemotherapy (3). However,
about 70% of patients will experience a recurrence within 3 years after first-line treatment (4).

In the past decade, chemotherapy has maintained its pivotal role in drug therapy for ovarian
cancer. Very few new drug strategies have been approved. Recently, poly ADP ribose polymerase
(PARP) inhibitors have been approved for maintenance therapy (5). More therapeutic perspectives
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should be proposed to optimize ovarian cancer treatment.
Immunotherapy is one of the most effective new treatment
strategies, including immune checkpoint blockades, cancer
vaccines, and cell-based therapy (6). It has showed efficiency in
melanoma (7) and non-small-cell lung cancer (NSCLC) (8).
Immunotherapy in ovarian cancer is undergoing clinical trials,
but so far, the results of these clinical trials are not satisfying, and the
underlying mechanisms and effective immunotherapy subgroup
have not been elucidated (9). Infiltration of immune cells in the
ovarian cancer microenvironment is one of the key factors for
immunotherapy response. Further exploration of the immune
microenvironment and screening of biomarkers is needed.

Accumulating research has indicated that microenvironment
cells, including immune cells and stromal cells, are important
components of the tumor microenvironment (10). They are
associated with prognosis and immunotherapy response in
multiple malignant tumors, such as melanoma, gastric cancer,
lung cancer, and breast cancer. For example, CD8+ cytotoxic T
cells can effectively kill tumor cells (11); dendritic cells can capture
tumor antigen and urge effective immune response of T cells (12);
cancer associated fibroblasts (CAFs), as important components of
tumor stroma, indirectly regulate migration and invasion of tumor
cells by remodeling tumor matrix (13). Different patterns of
immune infiltration, including immune inflamed, immune
suppressive, and immune desert have been widely known and
have important effects on anti-tumor immune responses (14).

The field of immunometabolism has emerged in recent years
and focuses on the interaction between the immune
microenvironment and metabolism processes. Evidence shows
that dysregulated metabolism of cancer cells and metabolite
accumulation may suppress immune cell activation, causing
impaired anti-tumor immune responses (15). For example,
lactic acid produced by tumor cells via glycolysis regulated
expression of granulocyte colony-stimulating factor (G-CSF)
and granulocyte-macrophage colony-stimulating factor (GM-
CSF), promoting myeloid-derived suppressor cells (MDSCs)
and inhibiting the maturation of dendritic cells (16). Drugs
targeting tumor metabolism can synergistically enhance
immunotherapy via metabolic reprogramming (17). Thus,
targeted strategies based on the interaction of metabolism and
immunity might facilitate immunotherapy.

To investigate immune infiltration and metabolic reprogramming
in ovarian cancer, we defined an immunometabolism gene set,
clustered The Cancer Genome Atlas (TCGA) ovarian cohort into
three immunometabolism subtypes, and explored interactions
between immune infiltration and metabolic reprogramming. This
research provides insights into individual therapy for ovarian cancer
and new perspectives for identifying potential groups that would
benefit from immunotherapy.
MATERIALS AND METHODS

Patients and Samples
Gene expression profiles of human ovarian cancer were obtained
from The Cancer Genome Atlas Project (TCGA) (https://portal.
Frontiers in Oncology | www.frontiersin.org 2
gdc.cancer.gov/) and GEO datasets (https://www.ncbi.nlm.nih.
gov/geo/). Transcriptome raw count data of TCGA-OV cohort
were downloaded from the GDC data portal with 379 samples
including 374 primary and five recurrent tumor samples. Full
clinical characteristics of ovarian cancer patients were
downloaded from cBioPortal (https://www.cbioportal.org/). For
TCGA data set, RNA-sequencing data (count values) were
transformed into transcripts per kilobase million (TPM)
values. The GSE9891, GSE18520, GSE19829, GSE26193,
GSE30161, GSE63885, and GSE115635 from GPL570, the
GSE73614 from GPL6480 and the GSE140082 from GPL14951
were downloaded from the GEO database (Supplementary
Table S1). Based on the annotation of GPL6480, GPL14951,
and GPL570, probe mapping was applied to genes. If various
probes matched to one gene, we took the median and deleted
probes matched to multiple genes. The validation cohort 1
(GSE9891, GSE18520, GSE19829, GSE26193, GSE30161, and
GSE63885 from GPL570) and the validation cohort 2
(GSE73614 from GPL6480) were external cohorts. The
validation cohort 1 was preprocessed with batch effect removal
using sva package (18) and standardization algorithm.
Immunohistochemistry (IHC) staining images of ovarian
cancer were extracted from the Human Protein Atlas (19)
(http://www.proteinatlas.org).

Identification of Immunometabolism Gene
Set and Subtype Analysis
Wedownloaded 1784metabolic genes from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database and 1811 immune-related
genes from the Immport database, which includes 17 immune
categories in terms of different functions. The univariate Cox
proportional hazards model was used to assess their association
with overall survival. Eventually, genes meet the requirements of HR
> 1.2 orHR<0.8 andP values < 0.05were used for sample clustering.
Consequently, unsupervised consensus clustering was performed
using R package ConsensusClusterPlus (20), and this method was
applied to validation cohort 1, validation cohort 2, and GSE140082
with the same gene set. The values of k where the magnitude of the
cophenetic correlation coefficient began to fall were chosen as the
optimalnumberof clusters.Hierarchical clusteringwasperformedby
the hclust function. Boruta, a novel random forest algorithm-based
feature selectionmethod,was used to select characteristic genes of the
immunometabolism gene set (21).

Differentially Expressed Gene Analysis and
Functional Enrichment Analysis
The differentially expressed genes (DEGs) among ovarian cancer
subtypes were validated using the DEseq2 package in R (22). The
genes with an absolute Log2 (fold change) > 1 and P < 0.05 were
defined as DEGs. The gene set “hallmark gene set,” “KEGG gene
set,” “GO biological processes,” “GO cellular components,” and
“GO molecular functions,” downloaded from the Molecular
Signatures Database (MsigDB, https://www.gsea-msigdb.org/
gsea/msigdb), were used for functional enrichment analysis
using clusterprofiler package (23). Eventually, significantly
enriched pathways (P < 0.05) were ordered based on consensus
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scores. Top 10 pathways with the highest consensus scores were
selected for each subtype and used for heatmap visualization.

Immune Cell Infiltration and Metabolic
Pathway Scores
Single sample gene set enrichment analysis (ssGSEA) with GSVA
R package (24) was employed to evaluate the enrichment scores
of 23 immune cells and two stromal cells for each sample based
on the expression profiles. Genes representing 23 immune cell
and two stromal cell signatures were downloaded from Yi Xiao’s
research (25). Subsequently, differential analysis of the
enrichment scores was performed using the limma package
(26). Metabolic pathway gene sets were downloaded from
KEGG and classified into major categories. ssGSEA was used
to calculate the enrichment scores of metabolic pathways.
Differential analysis of enrichment scores of each metabolic
pathway was performed using the limma package.

Development of the Prognostic Gene
Expression Signature
The genes in the immunometabolism gene set were selected as
prognostic genes using Lasso-Cox penalized algorithm (27). Risk
scores were calculated based on the expression values of genes and
Lasso-penalized regression coefficients and its prognostic value was
tested using ROC curves with survivalROC package (28).

Bioinformatic Methods
and Statistical Analysis
Function enrichment analysis was performed usingGSEA Java (ver
1.3.0). According to the Genomics of Drug Sensitivity in Cancer
(GDSC, https://www.cancerrxgene.org/) database, the IC50 for each
subtype was estimated using the pRRophetic R package (29). For
comparisons of the three groups, Kruskal-Wallis tests and one-way
analysis of variance (ANOVA) were employed as nonparametric
and parametricmethods, respectively. Correlation coefficients were
calculated using Spearman analysis. Chi-square and Fisher’s test
were used for contingency table variables. Overall survival time was
used as primary clinical endpoint and progression free survival was
the secondary. Overall survival was chosen as it is the gold standard
formeasuring the clinical benefits of drugs in clinical trials. Survival
analysis was performed using Kaplan-Meier. PROC package (30)
was employed to plot receiver operating characteristic curves and
calculated the area under the curve. Tumor Immune Dysfunction
and Exclusion (TIDE, http://tide.dfci.harvard.edu/) and submap
(https://cloud.genepattern.org/gp/pages/index.jsf) were used for
immune checkpoint blocks (29). All statistical analyses were
performed using R software v3.5.0. A P value < 0.05 was
considered statistically significant.
RESULTS

Identificationof ImmunometabolismSubtypes
WithPrognosis Value inOvarianCancer
Lymphocytes, such as CD8+, CD4+ T cells, and natural killer
(NK) cells, infiltrating the tumor is a prerequisite for a successful
Frontiers in Oncology | www.frontiersin.org 3
anti-tumor immune response (31). The emerging field of
immunometabolism provides new perspectives for regulating
immune processes. Immune responses are influenced by tumor
metabolism, such as nutrient consumption, increased oxygen
consumption, and the production of reactive nitrogen and
oxygen intermediates (32).

To understand the impact of immune cells as well as metabolic
reprogramming, univariate Cox proportional hazards regression
model analysis was used to evaluate the prognostic value of 1784
metabolic genes in 113 KEGG pathways and 1811 immune genes
from the Immport database. Results showed immune-related genes
SCLC10A2 (HR=5.58,P=0.005, 95%CI, 1.65–18.8),AMBN (HR=
3.74,P=0.003, 95%CI, 1.15–9.01), andLCN9 (HR=2.42,P=0.009,
95%CI, 1.25–4.70)were the top three significant factors implicating
unfavorable prognosis, and PTH (HR = 0.22, P = 0.003, 95% CI,
0.08–0.59), IL2 (HR = 0.32, P = 0.004, 95% CI, 0.15–0.69), and
IFNB1 (HR = 0.50, P = 0.005, 95% CI, 0.31–0.81) were significant
protective factors (Figure 1A and Supplementary Table S2).
Previous reports showed that SCLC10A2 (33) is associated with
tumor proliferation in breast cancer, while IL2 plays amajor role in
promoting the cytotoxic activity of CD8+ T cells against tumor
cells (34).

As for metabolic genes, GGCX (HR = 1.57, P = 0.004, 95% CI,
1.16–2.16), EZH1 (HR = 1.45, P = 0.004, 95% CI, 1.13–1.87), and
GALNT10 (HR = 1.40, P = 0.007, 95% CI, 1.15–1.70) were the top
three risk factors.Meanwhile,TPMT (HR=0.70,P=0.007, 95%CI,
0.57–0.86), SIRT5 (HR = 0.71, P = 0.003, 95% CI, 0.57–0.89), and
PRIM2 (HR=0.72,P=0.005, 95%CI, 0.57–0.90)were the top three
protective factors (Figure 1B and Supplementary Table S2). It is
reported that EZH1 promotes renal cell carcinoma proliferation
and is used as a prognostic indicator and therapeutic target (35). In
addition, high levels of SIRT5 are reportedly associated with
improved outcomes for ovarian cancer patients (36), which was
in accordance with our results. Furthermore, we screened genes
fromKEGGand the Immport database and retained genes thatmet
the requirements of HR > 1.2 or HR < 0.8 and P < 0.05 in the Cox
regressionmodel to construct an immune andmetabolic gene set (a
170-gene set named the immunometabolism gene set, including 97
metabolic genes and73 immune genes) (SupplementaryTable S3).
The feature selection method Boruta was used to determine 30
genes with the highest importance. In addition, we compared the
importanceof immuneandmetabolic genes in the classifier. Both in
the 170 gene set and the top 30 gene subset, the proportion and
average importance scores were similar, and no significant
differences were detected, indicating equally important roles of
immune and metabolic genes in constructing the classifier
(Supplementary Figures 2A–D).

To summarize immunometabolism characteristics of the tumor
microenvironment, we performed consensus clustering for TCGA
cohorts. The optimal cluster of three was estimated by the consensus
clustering matrix and NbClust test (Supplementary Figures 1B–E).
Patients (374) were divided into three clusters, namely C1, C2, and
C3 (Figure 1C), and survival analysis was performed. Results
indicated that overall survival (OS) and disease-free survival
(DFS) differed significantly among these subtypes (OS, C1 vs C2:
P < 0.0001, C1 vs C3: P < 0.05, C2 vs C3: P < 0.001; median OS, C1:
March 2021 | Volume 11 | Article 622752
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FIGURE 1 | Definition of the immunometabolism gene set and identification of immunometabolism subtypes in ovarian cancer (A) Hazard ratio of top 30 immune
genes meet the requirements of HR < 0.8 or HR > 1.2 and P < 0.05 associated with overall survival. (B) Hazard ratio of top 30 metabolic genes meet the
requirements of HR < 0.8 or HR > 1.2 and P < 0.05 associated with overall survival. (C) Unsupervised clustering based on the 170 selected immunometabolism
genes, with 30 genes defined as characteristic genes for 374 patients in TCGA cohort. (D, E) Kaplan-Meier curves of overall survival (D), Log-rank test: P < 0.0001,
and disease-free survival (E), Log-rank test: P = 0.02 among the subtypes in the TCGA cohort. (F, G) Kaplan-Meier curves of overall survival among the subtypes in
validation cohort 1 (F), Log-rank test: P = 0.0007, and validation cohort 2 (G), Log-rank test: P = 0.015. (H, I) Hallmark pathways from GSEA database were applied
in enrichment analysis of DEGs in the three subtypes. Significant upregulated (H) or downregulated (I) pathways were demonstrated. Heatmap showed mean
pathway scores constructed using the GSVA algorithm. (*P < 0.05; **P < 0.01; ***P < 0.001; nsP > 0.05).
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39.0, C2: 65.5, C3: 43.9; DFS, C1 vs C2: P < 0.05, C1 vs C3: ns, C2 vs
C3: P < 0.05; median DFS, C1: 16.8, C2: 19.1, C3: 15.1). C2 exhibited
the best survival among subtypes in OS (C1, HR: 1.70, 95% CI:
1.29–2.25; C2: HR: 0.45, 95% CI: 0.32–0.62; C3: HR: 1.22, 95% CI:
0.94–1.58) and DFS (C1, HR: 1.19, 95% CI: 0.90–1.57; C2: HR: 0.67,
95%CI: 0.50–0.88; C3: HR: 1.24, 95%CI: 0.96–1.62), followed by C1
and C3 (P < 0.05) (Figures 1D, E). Furthermore, we validated the
repeatability of our clustering results with the expression profiles of
validation cohort 1 and 2 (Supplementary Figures 2E–H). Results
showed that there were significant differences in prognosis among
subtypes in validation cohort 1 (P < 0.001, C1: median OS: 27, HR:
1.35, 95%CI: 1.07–1.70; C2: median OS: 45, HR: 0.63, 95%CI: 0.48–
0.81; C3: median OS: 37, HR: 1.13, 95% CI: 0.91–1.39) (Figure 1F)
and validation cohort 2 (P = 0.015, C1: median OS: 15, HR: 1.26,
95%CI: 0.69–2.30; C2: HR: 0.21, 95%CI: 0.07–0.68; C3: median OS:
90, HR: 1.63, 95% CI: 0.93–2.86) (Figure 1G). Regarding the
prognostic independence of the subtypes, multivariate Cox
regression analysis was performed on the TCGA cohort with multiple
factors, including age, clinical stage, and immunometabolism subtype.
Results showed that immunometabolism subtypes were independent
prognostic factors for ovarian cancer (C1 and C3 vs. C2, HR = 2.225,
95% CI: 1.603–3.089, P < 0.001) (Supplementary Table S4).

We also found the differentially expressed immune and
metabolic genes among immunometabolism subtypes at the
protein expression level. Immunohistochemistry (IHC) from the
humanproteinatlaswasused toexplore theprotein expressionof19
of the top 30 immunometabolism genes in ovarian cancer. Cluster
analysis using the hclust algorithm showed that 13 patients were
divided into three clusters (Supplementary Figure 3A). Immune
proteins (IFNG,HLA-DOB)were significantly overexpressed inC1
and metabolic proteins (GALNT10, POLR1A) were significantly
overexpressed in C1 and C2, while we observed low expression
levels of immune and metabolic proteins in C3 (Supplementary
Figure 3B).

We analyzed theDEGsamong subtypes to explore the biological
characteristics of the three subtypes (Supplementary Table S5).
Gene set enrichment analysis was performed with the MsigDB
Hallmark,KEGG, andGeneOntology (GO)gene sets forDEGs.We
observed upregulation of immune activation pathways in C1 and
C2, including inflammatory response pathways, chemokine
signaling pathways, and antigen presentation pathways, whereas
these were downregulated in C3. Interestingly, oncogenic pathways
were also upregulated in C1 and C3, including epithelial-
mesenchymal transition pathway, cell adhesion pathway, and MYC
andWNT pathways (Figures 1H, I, Supplementary Figures 4A, B,
and Supplementary Table S6). Taken together, we conducted a
comprehensive immunity and metabolism assessment of ovarian
cancer patients, and we proposed an immunometabolism clustering
of ovarian cancer with prognosis implications.

Characterization of Immune
Microenvironments of
Immunometabolism Subtypes
Considering different activation levels of immune response
pathways among subtypes in function enrichment analysis, we
estimated the immune microenvironment and anti-tumor
Frontiers in Oncology | www.frontiersin.org 5
immune response levels in three subtypes. In general, the anti-
tumor immune response requires several steps (37), and we
performed analysis from four aspects: immune cell infiltration;
antigen presentation pathway, expression level of co-stimulator
and co-inhibitor molecules; immune response-related
cytokines (38).

First, we estimated the abundance of 25 cells using the
ssGSEA algorithm in each sample of TCGA ovarian cancer
cohort, and comparisons were carried out among subtypes.
Results showed that C1 displayed high infiltration of innate
immune cells, such as M0 macrophages and dendritic cells, and
immunosuppressive cells, like CAFs, MDSCs, and M2
macrophages, while C2 displayed abundant adaptive immune
cell infiltration, such as M1 macrophages and CD8+ T cells.
Besides, C3 was characterized by low infiltration of immune and
stromal cells (Figures 2A, B). To further interrogate the function
of T cells, we evaluated IFN-g-related gene expression profiles
(GEP) in each subtype. The GEP score in C2 was higher than
other subtypes (P < 2.2e-16; Figure 2C), suggesting T cell
activation and effective immune response in C2 (39, 40). Thus,
C1 was preliminary considered as an immune-suppressive
subtype, with C2 as the immune-inflamed subtype, and C3 as
the immune-desert subtype. Second, we analyzed the expression
of antigen presentation molecules. Expression of MHC
molecules in C3 was significantly lower than other subtypes
(P < 0.001, Figure 2D, and Supplementary Figure 5A), which
may dampen the immune response (41), while the immune-
desert microenvironment was observed in C3.

Regarding co-stimulatory molecules, significantly lower
expressions were detected in C3 compared to other subtypes,
such as CD80 (P < 0.001), CD86 (P < 0.001), and CD28 (P <
0.001) (Figure 2E), which were confirmed as important
molecules delivered by antigen presenting cells to expand T
cell activation. In addition, high expression levels of co-
inhibitory molecules, such as CTLA4 and VTCN1, were found
in C2 (Figure 2F), suggesting that C2 may benefit from immune
checkpoint inhibitors (42). Finally, differences regarding
cytokines and chemokines among groups were analyzed. In
C1, various cytokines were upregulated, such as CCL4, TNF,
and IL6, which could be recognized as a cytokine storm (43).
Previous reports showed that a cytokine storm may lead to
immune tolerance after counteracting between positive and
negative mediators. For example, a cytokine storm induced by
M2 macrophages upon new-adjuvant treatment in ovarian
cancer promotes tumor growth and progression (44). As for
specific upregulated cytokines, we found that PDGFRB, a
molecular marker of CAFs (45), was highly expressed in C1 (P <
0.001). CXCL10, upregulated in C2 (P < 0.001), is a pro-
inflammatory cytokine involved in the chemotactic recruitment of
macrophages, natural killer cells, dendritic cells, and active T
lymphocytes to tumor cells (46). Cytokine expression levels were
low in C3, in accordance with the immune-desert tumor
microenvironment (Figure 2G and Supplementary Figure 5B).

Considering the importance of microenvironment cells to
prognosis, we next explored the prognostic significance of
immune and stromal cells both in the entire cohort and in
March 2021 | Volume 11 | Article 622752
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FIGURE 2 | The characteristics of immune microenvironment of immunometabolism subtypes (A) The volcano plots of enriched and depleted immune and stromal
cells for each subtype compared with other subtypes with limma package. Red: enriched; Blue: depleted. (B) Patients were classed according to the median
infiltration scores of immunosuppressive cells (CAFs, MDSC, and M2 macrophages), and the percentages of the high score group and the low score group were
calculated. (C) GEP scores differences in three subtypes. The differences were compared using the Kruskal-Wallis test. (D) Differences of MHC molecules expression
level in three subtypes. The differences among each subtype were compared by Kruskal-Wallis test. (E, F) Differences of co-stimulatory (E) and co-inhibitory (F)
molecules expression level in three subtypes. (G) The volcano plots of enriched and depleted expression of chemokines and cytokines for each subtype compared
with other subtypes with limma package. Yellow: enriched; Green: depleted. The differences among each subtype were compared by Kruskal-Wallis test. (*P < 0.05;
**P < 0.01; ***P < 0.001).
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each subtype (Supplementary Table S7). High immune cell
infiltration played a protective role regarding prognosis in the
entire cohort. Interestingly, different cells diversely influenced
the prognosis among three subtypes. For example, M1
macrophages played a protective role in C2 (HR = 0.60, P <
0.05, 95% CI, 0.38–0.94), which promotes immune response. M2
macrophages (HR = 1.50, P < 0.01, 95% CI, 1.13–1.98) reportedly
exert pro-tumorigenic functions by inhibiting the immune
response (47), which predicted worse prognosis in C3
(Supplementary Figure 5C).

In summary, we assessed the immune microenvironment and
identified C1 as the immune suppressive subtype, characterized
by infiltration of innate immune cells, immunosuppressive cells,
and a cytokine storm, C2 as the immune inflamed subtype,
which features adaptive immune cell infiltration, and C3 as the
immune desert subtype, which displayed low infiltration of
microenvironment cells and reduced expression of antigen
presentation molecules.

Metabolic Reprogramming Patterns
Among Subtypes and Interactions With
Immune Infiltration
Metabolic factors are important attributes for distinguishing
subtypes. In the above analysis, immunometabolism subtypes
displayed distinctive immune microenvironments and previous
studies have demonstrated that metabolic flux could influence
immune infiltration (15). However, the specific regulatory
relationship between metabolic factors and immune infiltration
remains to be explored. To gain insights into metabolic
heterogeneity among subtypes, we calculated enrichment
scores of 113 metabolic pathways from the KEGG and
differential analysis was subsequently performed among
subtypes. Furthermore, we ranked the differential metabolic
pathways of each subtype according to Log2 (fold change) and
selected the top five metabolic pathways. We found that
glycosaminoglycan biosynthesis and other glycan degradation
were significantly upregulated in C1 (Figure 3A left and
Supplementary Figure 6A), which belongs to glycan
metabolism pathways. In C2, kynurenine metabolism and
valine, leucine, and isoleucine biosynthesis, from amino acid
metabolism, were upregulated (Figure 3A middle and
Supplementary Figure 6B). In C3, testosterone, estradiol, and
epinephrine biosynthesis, pertaining to hormone metabolism,
were specifically upregulated (Figure 3A right and
Supplementary Figure 6C). Therefore, we considered C1 as
the “glycan metabolism subtype,” C2 as the “amino acid
metabolism subtype,” and C3 as the “endocrine subtype.”

Increasing evidence suggested that metabolic reprogramming
participated in the regulation of immune cell infiltration and
function. The metabolic activity of tumor cells has an important
role in shaping the immune microenvironment. Notably, the
effect of stromal cells cannot be ignored (48). To assess the role of
the stroma and tumor tissue in metabolic reprogramming, we
calculated enrichment scores of 113 metabolic pathways of the
laser micro-dissected cancer-associated stroma and tumor
samples of ovarian cancer in GSE115635 (49). Thereafter,
Frontiers in Oncology | www.frontiersin.org 7
differential analysis was performed between stroma and tumor
samples and the significantly upregulated metabolic pathways
were classified into metabolic patterns based on KEGG. In the
stroma tissue, metabolism of cofactors and vitamins, lipid
metabolism, amino acid metabolism, and glycan biosynthesis
and metabolism patterns were upregulated (Figure 3B up). In
the tumor tissue, lipid metabolism, amino acid metabolism,
carbohydrate metabolism, metabolism of cofactors and
vitamins, and endocrine system were upregulated (Figure 3B
down). Though it appears that amino acid metabolism pathways
were shared by tumor and stroma tissues, differential analysis
showed 95% (20/21) of these were significantly upregulated in
tumor tissues compared with stroma tissues (Supplementary
Figure 6C). Therefore, we speculated that upregulation of amino
acid metabolism pathways in C2 and endocrine metabolism in
C3 may be mediated by tumor cells. On the contrary, our results
indicated that glycan biosynthesis and metabolism pathways
were primarily upregulated in stromal cells, which suggested
C1 as the stroma-abundant subtype. This is also consistent with
CAF infiltration in C1, as CAFs reportedly produced ECM
proteoglycans through glycan metabolism (50).

Given the close re lat ionship between metabol ic
reprogramming and immune cell infiltration, correlations
between featured metabolic pathways and infiltration of
immune and stromal cells were analyzed (Figure 3D). First,
glycosaminoglycan biosynthesis, upregulated in C1, displayed
significant positive correlations with endothelial cells (P < 0.001,
r = 0.51), CAFs (P < 0.001, r = 0.49) and M0 macrophages (P <
0.001, r = 0.38), suggesting an immune suppressive phenotype in
C1 was correlated with activation of glycosaminoglycan
biosynthesis. Second, there were significant positive
correlations between kynurenine metabolism, a featured
pathway of C2, and multiple immune cells, such as dendritic
cells (P < 0.001, r = 0.40) and M1 macrophages (P < 0.001, r =
0.48). Studies reported that IDO, the key gene of kynurenine
metabolism, accompanied by an immune inflammatory
response, may be an immune escape mechanism by tumors
after sensing IFN-g (51). Third, significant negative correlations
were found between epinephrine biosynthesis, a featured
pathway of C3, and multiple immune cells, such as dendritic
cells (P < 0.001, r = −0.33) and M1 macrophages (P < 0.001, r =
−0.37), which suggested that epinephrine biosynthesis may
contribute to the immune desert phenotype.

We next determined the prognosis value of metabolic pathways
in ovarian cancer (Supplementary Table S8). Univariate Cox
analysis was employed to screen metabolic pathways with
prognostic value (HR > 1.2 or HR < 0.8 and P < 0.05) across
subtypes. Considering there were various pathways with significant
prognostic value, two major criteria were chosen to select
prognostic-associated metabolic pathways, namely metabolic
pathways distinctly activated in each subtype and important
oncogenic pathways reported in previous studies were also
considered. The prognostic metabolic pathways are further
elucidated below. In C1, glycogen biosynthesis, a featured
metabolic pathway of C1, was associated with poor prognosis
(HR = 1.33, P < 0.05, 95% CI, 1.03–1.73). In C2, two metabolic
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FIGURE 3 | Different pattern of metabolism reprogramming among subtypes and its relationship with immune infiltration (A) Enrichment scores of metabolic
pathways were calculated by ssGSEA and then the differential analysis was performed among three subtypes. Significantly upregulated metabolic pathways were
selected based on Log2 (fold change). Patients were classed according to the median enrichment scores of featured metabolic pathways of each subtype, and the
percentages of the high and the low score group were calculated (left: C1, middle: C2, right: C3). (B) Enrichment scores of metabolic pathways of stroma and tumor
samples in GSE115635 were calculated and then the differential analysis was performed (FDR < 0.05 and Log2 (fold change) > 0 was consider significant).
Significantly upregulated metabolic pathways were classified into metabolic patterns defined by KEGG. The upregulated metabolic pathways belonging to each
category, divided by the total upregulated metabolic pathways, are the percentages of the metabolic pattern in pie charts. (C) Prognostic value of metabolic
pathways estimated by the univariate Cox proportional hazards model for OS in TCGA cohort and each subtype. The color represents the hazard ratio, the size of
circles represents -Log10 (P value). (D) Spearman correlation matrix of characteristic metabolic pathways and enrichment scores of immune cells in the whole
cohort. Correlation coefficients are represented in the form of heatmap using colored scale ranging from blue (minimum correlation) to red (maximum correlation).
(*P < 0.05; **P < 0.01).
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pathways were associated with prognosis. Lysine degradation was a
protective factor (HR = 0.61, P < 0.01, 95% CI, 0.46–0.82) and
oxidative phosphorylation was a risk factor (HR = 1.46, P < 0.05,
95% CI, 1.02–2.12). Lysine degradation exhibited the lowest HR in
univariate Cox regression analysis. Lysine is associated with various
carcinogenic pathways and further lead to tumor proliferation.
Therefore, lysine degradation is a protective factor in C2,
consistent with previous reports . As for oxidative
phosphorylation, it has been reported that inhibition of oxidative
phosphorylation could improve hypoxia and increase treatment
effects (52). Finally, propanoate metabolism (HR = 1.22, P < 0.05,
95% CI, 1.01–1.49) was significantly upregulated in C3, despite not
being a characteristic metabolic pathway of C3 (Figure 3C).
However, it has been reported that the propanoate metabolism
pathway may play an important role in TSA inhibition in gastric
cancer and could be a potential therapeutic target for it (53).

In short, we assessed metabolic differences among subtypes
and considered C1 as the immune suppressive-glycan
metabolism subtype, C2 as the immune inflamed-amino acid
metabolism subtype, and C3 as the immune desert-endocrine
subtype. Metabolism-immune microenvironment interactions
were further elucidated. Glycosaminoglycan biosynthesis
displays a positive correlation with CAFs in C1, activation of
kynurenine metabolism was synchronized with immune
inflamed microenvironment in C2, and hormone metabolism
correlated with the desert phenotype in C3.

Activation of Epinephrine Biosynthesis
Correlates Inversely With Expression of
MHC Molecules and Antigen Presentation
Antigen presentation, the key step in the cancer immunity cycle
(37), starts by capturing and processing new tumor antigens, and
then presents tumor antigens bound with MHC peptides to T
cells, initiating the effector T cell response against tumor-specific
antigens (Figure 4A above) (54). Antigen presentation genes
were downregulated in C3 (NES = −2.31, P < 0.001, Figure 4A
below) compared to C1 and C2 in GSEA. MHC molecules are
functional executants of antigen presentation (54). The
expression of MHC molecules was analyzed in each subtype
and results indicated reduced expression of these in C3 (P <
0.001), consistent with the above-mentioned results, suggesting
that antigen presentation might be impaired (Figure 4B).

Recently, David O’Sullivan’s research found that the process of
antigen presentation may be affected by metabolites of the tumor
microenvironment (55). For example, the accumulation of lactic acid
in the tumor microenvironment could interrupt the maturation of
dendritic cells (15). Therefore, we speculated that antigen
presentation differences among each subtype may be partially
attributed to metabolic reprogramming. We conducted correlation
analysis to identify the metabolic pathways that may affect the
expression of MHC molecules. Top 30 differential metabolic
pathways among subtypes were included. Metabolic pathways, such
as other glycan degradation (with HLA-B, P < 0.001, r = 0.39),
glycosaminoglycan degradation (with HLA-A, P < 0.001, r = 0.33),
and kynurenine metabolism (with HLA-B, P < 0.001, r = 0.35),
display significant positive correlations with MHC molecules
Frontiers in Oncology | www.frontiersin.org 9
(Figure 4C left and middle). Interestingly, we found that
epinephrine biosynthesis, a featured pathway of C3, negatively
correlated with most MHC molecules, such as HLA-A (P < 0.01,
r = −0.14), HLA-B (P < 0.001, r = −0.22), and HLA-C (P < 0.01, r =
−0.15) (Figure 4C right). Furthermore, correlation analysis also
revealed that epinephrine biosynthesis negatively correlated with
APCs, including M1 macrophages (P < 0.001, r = −0.37) and
dendritic cells (P < 0.001, r = −0.33) (Supplementary Figures 7A,
B and Supplementary Table S9).

We next tested genes in the epinephrine biosynthesis pathway
for correlation with both MHC and APCs. Among them, the TH
gene displayed significantly negative correlations with HLA-B
(P < 0.05, r = −0.11), HLA-C (P < 0.05, r = −0.12), and M1
Macrophages (P < 0.01, r = −0.13) (Figure 4D and
Supplementary Figure 7C). Additionally, GSEA analysis
showed reduced antigen presentation (NES = −2.01, P < 0.01)
and enriched WNT (NES = 1.71, P < 0.01) and focal adhesion
(NES = 1.67, P < 0.01) in the high TH group compared to the low
TH group, suggesting that antigen presentation pathways were
negatively correlated with TH expression (Figure 4E). Based on
the results above, we proposed that over-expression of TH may
participate in suppressing antigen presentation and activation of
T cells, which may consequently inhibit tumor immune
response. In total, we found key metabolic factors in the
regulation of antigen presentation. Upregulation of the
epinephrine biosynthesis pathway, especially the TH gene,
exhibited a significant negative correlation with MHC
molecules and APCs, which may restrict an effective
immune response.

Immunometabolism Subtypes Can Predict
the Treatment Efficacy and Survival of
Ovarian Cancer Patients
Drug therapy for ovarian cancer includes chemotherapy,
targeted therapy, and immunotherapy. Chemotherapy is first-
line treatment for ovarian cancer, while targeted therapy is
usually used for maintenance therapy (56). However,
immunotherapy, such as immune checkpoint inhibitor
monotherapy, still displays a poor complete response rate
(~10%) and requires further exploration (9). As for
chemotherapy, cisplatin, paclitaxel, and doxorubicin are
important first-line drugs for ovarian cancer (3, 57, 58). We
used the predictive model of the three drugs based on Xiaofan
Lu’s research to estimate the IC50 for each subtype (29). Results
showed that C2 was more sensitive to chemotherapy compared
to C1 and C3 (cisplatin, P < 2.2e-16; paclitaxel, P = 0.00061;
doxorubicin, P = 1.2e-12) (Figure 5A).

Bevacizumab, the vascular endothelial growth factor (VEGF)
inhibitor, is currently approved for maintenance therapy of
ovarian cancer (59). We analyzed the validation cohort
GSE140082 with bevacizumab treatment information. Results
demonstrated that only C1 gained progression free survival
(PFS) benefit from bevacizumab combined with chemotherapy
(P = 0.017, bevacizumab: median OS: 24.8, HR: 0.58, 95% CI:
0.36–0.91; standard: median OS: 12.6, HR: 1.72, 95% CI: 1.72–
2.70) (Figure 5B and Supplementary Figures 8B, C), suggesting
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FIGURE 4 | Activation of epinephrine biosynthesis correlates inversely with expression of MHC molecules and antigen presentation (A) Schematic diagram of
antigen presentation. First, tumor antigens released by tumor cells are captured by dendritic cells. Next, dendritic cells present the captured antigens on MHC-I
molecules to T cells, leading to activation of T cells. Activated T cells infiltrate the tumor bed and kill tumor cells. TA, tumor antigen (A, up). GSEA plot showing the
negative enrichment of antigen processing and presentation in C3 compared to C1 and C2 (A, down). (B) The boxplot of MHC molecules in three subtypes.
P values are the results of Kruskal-Wallis test for three subtypes. (C) Correlation matrix of characteristic metabolic pathways of each subtype and expression of
MHC-I molecules (left, C1, middle, C2, right, C3.) Correlation coefficients are represented in the form of heatmap using colored scale ranging from blue (minimum
correlation) to red (maximum correlation). (D) Correlations between genes in epinephrine biosynthesis pathway and MHC-I molecules (D, left) and antigen
presentation cells (D, right) were determined by Spearman correlation analysis. The numbers are the correlation coefficient. (E) Grouping the patients in the TCGA
cohort according to the median expression of TH. GSEA plot showing the negative enrichment of antigen processing and presentation in the high TH expression
group compared with low TH expression group. (*P < 0.05; ** P < 0.01; ***P < 0.001).
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us bevacizumab combined with chemotherapy treatment may
improve the prognosis in C1 (Supplementary Figure 8A). The
results above indicated that immunometabolism subtypes could
screen potential groups that would benefit from bevacizumab
combined with chemotherapy.

Though maintenance therapy for ovarian cancer has rapidly
developed, patients who suffer from locally advanced or
metastatic ovarian cancer rarely experience satisfying clinical
outcomes (60). To identify potential groups that may benefit
from immunotherapy, we used the TIDE algorithm to predict the
response of immunotherapy in different subtypes (29). Results
showed that C2 (46%) displayed a significantly better response to
immunotherapy compared to C1 (20%) and C3 (37%) (P =
0.000184) (Figure 5C). The submap algorithm showed similar
results. C2 displayed a higher response rate to PD-1 inhibitors
(Bonferroni adjusted P = 0.012) (Figure 5D), suggesting that C2
may benefit from immunotherapy. Taken together, these data
imply that the application of immunometabolism subtypes can
identify potential groups that would benefit from immune
checkpoint inhibitors. Simultaneously, for further verification,
we used the Submap algorithm to predict the response of
immunotherapy in GSE73614 cohort. Results showed C2
displayed a higher response to PD-1 inhibitors (Bonferroni
adjusted P = 0.012) (Supplementary Figure 8D).

Furthermore, we established a risk signature including 27 genes
(Supplementary Table S10), based on the immunometabolism
gene set using the Lasso-Cox algorithm (27). The high-risk group
exhibited a worse prognosis compared to the low-risk group (Log
rank P <0.001, median OS: high risk: 2.98, low risk: 4.92; HR: 0.33,
95%CI: 0.25–0.48) (Figure 5E).Next, we validated the repeatability
ofour resultswith the expressionprofiles of validation cohort 1 (Log
rank P < 0.001, median OS: high risk: 2.50, low risk: 3.75; HR: 0.65,
95% CI: 0.53–0.80) (Figure 5F) and validation cohort 2 (Log rank
P < 0.001,medianOS: high risk: 3.42, low risk: 14.33;HR: 0.16, 95%
CI: 0.09-0.30) (Figure 5G). Further, the time-dependent area under
the curve (AUC) demonstrated that the prognostic efficacy of the
risk score was higher than the clinical stage (AUC: 0.775 vs 0.521)
(Figure 5H and Supplementary Figure 8E). To further assess the
application value of the above results, nomogram prediction for 3-
and5-year survival probabilitywas establishedbasedonage, clinical
stage, subtype, and risk score (Figure 5I). The calibration plot
demonstrated good consistency between the prediction by
nomogram and actual observation of the 3- and 5-year survival in
ovarian cancer (Supplementary Figure 8F). In total,
immunometabolism subtypes have predictive value for therapy
stratification, especially in terms of chemotherapy and
immunotherapy. In addition, we proposed a risk score and
nomogram as new clinical prognostic indicators from the
immunometabolism perspective.
DISCUSSION

It has been reported that tumor metabolism could affect immune
cells and lead to immune evasion via local nutrient reduction and
production of metabolic excreta (15). In this study, we defined an
Frontiers in Oncology | www.frontiersin.org 11
immunometabolism gene set of 170 genes based on Immport and
KEGG databases, and then clustered patients into three subtypes,
with validation on external datasets. The three immunometabolism
subtypes displayed significant differences in prognosis, tumor
microenvironment, efficacy of chemotherapy, and potential
response to immunotherapy. Definition of immunometabolism
subtypes of ovarian cancer may help unveil interactions between
metabolic reprogramming and immune cell infiltration, putting
forward new biomarkers for stratified prognosis and providing a
new direction for screening out potential immunotherapy.

Immune phenotype can be stratified into three main types:
immune inflamed type, characterized by the presence of CD4+ T
cells and CD8+ T cells with myeloid cells and monocytes, immune
suppressive type, characterized by the presence of innate immune
cells and stromal cells, and immune desert type, characterized by the
absence of immune cells (14). Research has shown thatmetabolism of
tumor cells influences the function of immune cells, thereby affecting
anti-tumor immune responses and promoting immune evasion (15).
The immune subtype in ovarian cancer has provided insights into the
tumor microenvironment (61). However, clustering based on the
interplay between metabolic flux and immunology remains unclear.
Here we presented immunometabolism subtypes of ovarian cancer
and explored the relationship between immunity and metabolism to
find potential therapeutic targets.

Glycosaminoglycan biosynthesis, kynurenine metabolism, and
epinephrine biosynthesis were characteristic metabolic pathways of
three subtypes, respectively. We found that metabolic characteristics
of subtypes exhibited close relationships with immune phenotypes.
Glycosaminoglycans, metabolites of glycosaminoglycan
biosynthesis, are attached to the core protein to form
proteoglycans (62). Proteoglycans, such as versican, are associated
with recruitment of MDSCs (63), which may be the reason for high
levels of MDSCs in the immune suppressive-glycan metabolism
subtype. Kynureninemetabolism displayed positive correlation with
APCs, including dendritic cells and M1 macrophages. It is reported
that the kynurenine pathway is a regulator of adaptive immune
responses and may serve as a negative feedback mediator of Th1
activation (51). Therefore, we speculated that the positive
correlation between the kynurenine metabolism pathway and
APCs may be due to the feedback mechanism. Interestingly, we
found that epinephrine biosynthesis was one of the characteristic
metabolic pathways of the immune desert-endocrine subtype and
exhibited negative correlation with APCs. Further, epinephrine is a
species of catecholamine. The primate ovary has a catecholamine-
producing system for catecholamine biosynthesis. Panina-
Bordignon et al. have shown that b-adrenergic receptors could
promote Th2 cell development, which could suppress activated
immunity (64). Thus, we considered that epinephrine biosynthesis
upregulation may lead to the immune desert phenotype in C3.

Antigen presentation is a process including presentation of the
MHC complex by APCs to naive T cells, and activation of CD8+ T
cells (54). It is a key step in the tumor immune cycle. As a result, low
or no expression of MHC molecules could lead to defective tumor
antigen presentation. Excrescent metabolites produced by tumor
cells may affect the expression of MHC molecules (65). It has
been reported that adrenergic signaling can inhibit activation of
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Immunometabolism Characterization in Ovarian Cancer
A

B C D

E

H I

F G

FIGURE 5 | Immunometabolism subtypes could predict the treatment efficacy and survival of ovarian cancer patients (A) The boxplots of the estimated IC50 for
cisplatin, paclitaxel, and doxorubicin for three subtypes based on GDSC database. P values were calculated using Kruskal-Wallis test for three subtypes. (B) Kaplan-
Meier curves of progression free survival (PFS) for bevacizumab versus standard treatment stratified in C1 from GSE140082 (P < 0.05). (C) The predicted response
rate of immunotherapy (TRUE/FALSE) to anti-PD-L1 among three subtypes in the TCGA ovarian cancer cohort. Fisher exact test, P < 0.001. (D) Submap analysis of
the response to PD-L1 inhibitor among three subtypes. (Bonferroni corrected P value: 0.012). (E–G) Kaplan-Meier curves of OS for high and low risk score group in
the TCGA ovarian cancer cohort (E), validation cohort 1 (F), validation cohort 2 (G). (H) ROC curves measuring the predictive value of risk score and clinical stage.
The area under the ROC curve was 0.774 and 0.521 for the risk score and clinical stage, respectively. (I) The nomogram for predicting probability of survival at 3 and
5 year in patients. (*P < 0.05; **P < 0.01; ***P < 0.001, nsP > 0.05).
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T cells (66). Consistent with this, we found that MHC molecules
were negatively correlated with epinephrine biosynthesis. We
considered that epinephrine biosynthesis may reduce expression
levels of MHCmolecules in APCs, block antigen presentation, and
subsequently cause inactivation of T cells. TH is the rate-limiting
enzyme in the synthesis of catecholamines (67). Huang et al.
reported that overexpressed TH promotes the differentiation of
CD4+T cells toTh2 cells (68), which suggested a possible role of the
THgene in regulating immunecell function.Notably,we found that
TH was consistently negatively correlated with MHC molecules at
the gene level, highlighting the importance of the TH gene in
antigen presentation.

The first-line treatment of ovarian cancer includes cytoreductive
surgery and platinum-based chemotherapy (56). Using GDSC, we
considered that the immune inflamed-amino acid metabolism
subtype may be more sensitive to commonly used chemotherapy
drugs, which could lead to an improved prognosis. Analysis of the
external validation cohort reveals bevacizumab combined with
chemotherapy drugs could extend the PFS for patients in C1.
Considering the important role played by angiogenesis in the
tumor microenvironment (69), we speculated bevacizumab may
improve the immune suppressive microenvironment in C1, which
may provide favorable conditions for bevacizumab combined with
immunotherapy. Based on two algorithms predicting
immunotherapy efficacy, we considered that the immune
inflamed-amino acid metabolism subtype displays a better
response to immunotherapy. Thus, we speculated that the
immune inflamed-amino acid metabolism subtype group may
benefit from immunotherapy.

Overall, this study represents a novel perspective in ovarian
cancer immunometabolism, and the subtypes could be applied to
therapy and prognosis prediction. Further, we proposed an
intimate relationship between epinephrine biosynthesis and the
immune desert phenotype, and thus provide potential metabolic
targets to reshape the immune microenvironment.
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