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Abstract

Patients with Parkinson's disease with mild cognitive impairment (PD-M) progress to

dementia more frequently than those with normal cognition (PD-N), but the underly-

ing neurobiology remains unclear. This study aimed to define the specific morphologi-

cal brain network alterations in PD-M, and explore their potential diagnostic value.

Twenty-four PD-M patients, 17 PD-N patients, and 29 healthy controls

(HC) underwent a structural MRI scan. Similarity between interregional gray matter

volume distributions was used to construct individual morphological brain networks.

These were analyzed using graph theory and network-based statistics (NBS), and

their relationship to neuropsychological tests was assessed. Support vector machine

(SVM) was used to perform individual classification. Globally, compared with HC,

PD-M showed increased local efficiency (p = .001) in their morphological networks,

while PD-N showed decreased normalized path length (p = .008). Locally, similar

nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD

groups relative to HC; additionally in PD-M nodal deficits involved several frontal and

parietal regions, correlated with cognitive scores. NBS found that similar connections

were involved in the default mode and cerebellar networks of both PD groups (to a

greater extent in PD-M), while PD-M, but not PD-N, showed altered connections

involving the frontoparietal network. Using connections identified by NBS, SVM
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allowed discrimination with high accuracy between PD-N and HC (90%), PD-M and

HC (85%), and between the two PD groups (65%). These results suggest that default

mode and cerebellar disruption characterizes PD, more so in PD-M, whereas

frontoparietal disruption has diagnostic potential.
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1 | INTRODUCTION

Patients with Parkinson's disease with mild cognitive impairment (PD-

M), who make up 35% of PD patients at diagnosis, progress to demen-

tia more frequently than those with normal cognition (PD-N) (Broeders

et al., 2013). PD-M is associated with increased healthcare costs

(Vossius, Larsen, Janvin, & Aarsland, 2011), poorer self-reported quality

of life (Rosenthal et al., 2010), and greater global disability (Leroi,

McDonald, Pantula, & Harbishettar, 2012). Early identification of PD-M

in clinical practice would help in planning interventions. However, the

neural substrates of PD-M and the factors underlying the transition

from PD-N to PD-M are not fully understood. Objective biomarkers are

needed that would allow early identification of cognitive deficits in PD.

Neuroimaging studies show that cognitive deficits in PD do not

merely involve alterations in discrete brain regions, but are best charac-

terized in terms of altered networks of brain structures (Hall &

Lewis, 2019). One theory implicates the disconnection of neural net-

works in the neurobiology of cognitive deficits in PD (Lang et al., 2019).

The concept of the connectome was introduced to define the topology

of brain networks (Sporns, Tononi, & Kotter, 2005), and has identified

large-scale disconnections in functional and white matter networks in

PD-M (Aracil-Bolanos et al., 2019; Baggio et al., 2014; Galantucci

et al., 2017; Wang et al., 2020). However, the topology of gray matter

(GM) morphological networks remains unclear. What makes this a

promising research direction is the growing evidence implicating patho-

logical agents, for example, misfolded proteins, which deposit first in

cortical GM (Khairnar et al., 2017) and could induce GM density

changes (McMillan & Wolk, 2016), in the development of cognitive

decline in PD (Gomperts et al., 2013).

Structural MRI can be used to assess GM networks based on mor-

phological correlations which form a structural covariance network

(Bassett et al., 2008; He, Chen, & Evans, 2007; Sanabria-Diaz

et al., 2010). A study of interindividual structural covariation in PD-M

found disruptions in the parietal and frontal areas (Pereira

et al., 2015). While this approach has advanced understanding of brain

alterations, it does not provide GM networks for each participant, and

thus does not allow analysis of brain–behavior relationships or diag-

nostic classification at the level of individuals. A recently proposed

intraindividual structural covariation method constructs individual net-

works by computing the morphological similarity relationships of GM

(Wang, Jin, Zhang, & Wang, 2016). Studying morphological networks

in individuals could improve understanding of the causes and clinical

relevance of whole-brain GM network alterations in PD-M, and might

provide a noninvasive in vivo biomarker.

This case–control study thus aimed to explore the specific GM

brain network alterations in PD-M. As brain network alterations have

been implicated in the development of PD-M (Galantucci et al., 2017;

Pereira et al., 2015), we hypothesized that the GM network would be

abnormal in PD-M compared with PD-N and healthy controls (HC),

for example, disrupted nodal centrality in frontoparietal regions. Sec-

ond, based on the progressive disruptions as cognitive decline

worsens (Hassan et al., 2017; Lopes et al., 2017), we expected more

widespread topological alterations in PD-M relative to PD-N. Third,

we hypothesized that these network alterations would be related to

neurocognitive performance in PD-M. Finally, as our recent studies

have shown that connectome-wide connectivity can differentiate

individuals with brain disorders from HC with high accuracy (Lei

et al., 2019; Lei et al., 2020), we expected that GM networks would

allow accurate discrimination of PD-M, PD-N, and HC.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-four PD-M patients, based on Level II of the recommended

Movement Disorder Society (MDS) criteria (Litvan et al., 2012), were

recruited from the Movement Disorders Outpatient Unit, West China

Hospital of Sichuan Hospital. Seventeen PD-N patients were also rec-

ruited to match the demographic and motor features of these. All

patients were evaluated either drug-naïve or in an “off” state. Clinical
characteristics were assessed by an experienced neurologist. Motor

symptom severity was quantified by using the Unified PD Rating Scale

motor part (UPDRS-III) (Goetz et al., 2007) and Hoehn and Yahr stage

(Goetz et al., 2004). Depression was evaluated by the 24-item version

of the Hamilton Depression Scale (HAMD) (Moberg et al., 2001).

Diagnostic guidelines in China define Hoehn and Yahr stage ≤2.5 as

early-stage PD (Chen et al., 2016). Twenty-nine HC matched for age,

gender, and years of education, with no history of neuropsychiatric

disease, were recruited for comparative purposes. Details of inclusion

and exclusion criteria are described in our previous paper (Suo

et al., 2017; Suo et al., 2019; Suo et al., 2021a).
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This study was approved by the Ethics Committee of the West

China Hospital of Sichuan University. Written informed consent was

obtained from all participants before enrollment in the study.

2.2 | Neuropsychological assessments

In the 2 weeks before imaging sessions, each participant underwent

neuropsychological assessment with 10 tests (details in Table S1)

targeting five cognitive domains (executive function, memory, atten-

tion and working memory, visuospatial function, and language) (Litvan

et al., 2012), and global cognitive testing with the Mini Mental State

Examination (MMSE) and Montreal Cognitive Assessment (MoCA)

(Dalrymple-Alford et al., 2010). PD-M was defined as test scores at

least 1.5 SDs below normative means on at least two neuropsycholog-

ical tests within five cognitive domains (Litvan et al., 2012). PD-M

patients were further divided into cognitive subtypes according to the

Task Force criteria: single-domain subtype, with impairment on two

tests within only 1 of the 5 cognitive domains; multiple-domain sub-

type, with impairment on at least 1 test across more than 1 cognitive

domains (Cholerton et al., 2014). These were further classified

according to which cognitive domains were impaired.

2.3 | Data acquisition and preprocessing

Whole brain 3D T1-weighted images were acquired on a 3.0 T MRI

(Siemens Tim Trio, Erlangen, Germany) with the following scanning

parameters: echo time 2.3 ms; repetition time 1,900 ms; inversion

time 900 ms; field of view 24 � 24 cm2; matrix size 256 � 256; flip

angle 9�; thickness 1.0 mm without gap; 176 slices. During scanning

participants lay quietly with eyes closed.

Voxel-based morphometry was applied to the structural MRI

images after preprocessing by Statistical Parametric Mapping as previ-

ously described (Kong et al., 2015). In brief, we manually checked the

raw MRI images to exclude obvious artifacts. Each participant's

images were segmented to obtain the GM images, which were

converted to the Montreal Neurological Institute stereotactic space. A

custom template was created from related tissue segments using the

Diffeomorphic Anatomical Registration through Exponential Lie Alge-

bra (DARTEL) tool. The resulting GM images were smoothed individu-

ally with a 6 mm full-width at half-maximum Gaussian kernel. Finally,

the GM volume (GMV) map was obtained for each participant.

2.4 | Network construction

In graph theory, the two fundamental network elements are nodes

and edges. The Automated Anatomical Labeling atlas was used to

divide each brain into 116 regions of interest (ROIs) as nodes

(Tzourio-Mazoyer et al., 2002), then a Kullback–Leibler divergence-

based similarity (KLS) method was used to define interregional con-

nections as edges (Wang et al., 2016). In brief, for each participant,

the GMV values of all the voxels in each ROI were extracted, and

kernel density estimation was applied to estimate their probability

density function, from which the probability distribution function

(PDF) was computed. The Kullback–Leibler divergence was computed

between each pair of ROIs in their PDFs, then KLS values (ranging

from 0 to 1, where 1 represents two identical distributions) were cal-

culated between all possible pairs of brain regions. Finally, the

KLS-based 116 � 116 morphological connection matrix was gener-

ated for each participant. A wide range of sparsity (S) thresholds

(0.05 ≤ S ≤ 0.38 with steps of 0.01) were applied to each matrix to

ensure that morphological networks among the three groups had

the same number of edges (Zhang et al., 2011).

2.5 | Network analyses

Graph theoretical analyses of GM networks were performed using

GRETNA software (Wang et al., 2015). Both global and nodal mea-

sures for GM networks were computed at each S threshold. Global

network measures were (a) network integration measures including

global efficiency (Eglob), characteristic path length (Lp), and normalized

characteristic path length (λ); (b) network segregation measures

including local efficiency (Eloc), clustering coefficient (Cp), and normal-

ized clustering coefficient (γ); and (c) small worldness measure σ

(Latora & Marchiori, 2001; Watts & Strogatz, 1998). Nodal centrality

measures for each node were nodal efficiency, nodal degree, and nodal

betweenness (Achard & Bullmore, 2007; Rubinov & Sporns, 2010).

Area under the curve (AUC) was computed for each network measure

across S thresholds to provide a summary measure (Zhang

et al., 2011).

2.6 | Statistical analysis

Analysis of variance was used to analyze the continuous variables of

demographic and neuropsychological data. Chi-square test was

applied to the categorical variables. Clinical assessment between two

PD groups was analyzed using two-sample t test.

In accordance with a previous study (Ma et al., 2020), nonpara-

metric permutation tests were applied to detect significant differences

in the AUC values of network measures among the three groups, and

to make post hoc comparisons (for 10,000 permutations). The rela-

tionships between network measures that showed significant group

differences with neuropsychological tests in each PD group were ana-

lyzed using partial correlations, with age, gender, duration, years of

education, and UPDRS III as covariates.

The Network-Based Statistic (NBS) toolbox was used to identify

specific pairs of regions in which the connections were altered in PD

(Zalesky, Fornito, & Bullmore, 2010). Significantly altered components

were determined by NBS as significant at p < .05 with each connec-

tion statistic F > 5.7 (by one-way ANOVA test, p < .005). Significantly

between-group altered components within these connections were

then tested, determined by NBS as significant at p < .05 with each
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connection statistic T > 3.0 (by two-sample t-test, p < .005). Explor-

atory support vector machine (SVM) analyses were applied to the

connectome-wide connections to determine whether morphological

networks can detect PD-M and PD-N at the individual level. Full

details of SVM evaluation can be found in our recent paper (Lei

et al., 2020).

3 | RESULTS

3.1 | Demographic and clinical characteristics

Significant overall neuropsychological differences were observed

among the three groups for MoCA and all specific cognitive measures

(all p < .05, Table 1) except MMSE, digit span backward, and clock

copying tests. LSD posthoc comparisons showed that PD-M per-

formed worse than PD-N and HC on all neuropsychological tests.

There was no significant difference in HAMD between PD-M and

PD-N.

In PD-M there were four cases (17%) with single-domain impair-

ment (executive function: N = 2, memory: N = 1, visuospatial func-

tion: N = 1) and 20 cases (83%) with multiple-domain impairment

(1 domains: N = 9, 3 domains: N = 7, 4 domains: N = 2, 5 domains:

N = 2; attention and working memory: N = 7, executive function:

N = 13, language: N = 12, memory: N = 13, visuospatial function:

N = 12). Those with the multiple-domain subtype had a diverse col-

lection of impairments, memory, and executive function being most

commonly affected.

TABLE 1 Demographics and clinical characteristics of participants

Variables
HC
(n = 29)

PD-N
(n = 17)

PD-M
(n = 24) ANOVA p

Posthoc LSD

HC vs.
PD-N p

HC vs.
PD-M p

PD-N vs.
PD-M p

Age (years) 52.8 ± 7.7 54.0 ± 8.2 54.3 ± 8.3 .782 .624 .513 .922

Gender (male/female)a 12/17 10/7 9/15 .367 .201 .499 .151

Years of education 10.4 ± 3.3 11.4 ± 2.5 9.6 ± 3.4 .239 .307 .413 .092

Age at onset (years)b NA 50.9 ± 8.9 51.0 ± 9.0 — — — .995

Disease duration (years)b NA 2.2 ± 1.6 3.3 ± 2.8 — — — .200

Hoehn and Yahr stageb NA 1.8 ± 0.6 1.9 ± 0.6 — — — .669

Unified PD rating scale IIIb NA 17.1 ± 9.7 24.3 ± 12.5 — — — .054

Levodopa equivalent daily dose (mg/day)b NA 241 ± 305 291 ± 356 — — — .640

Hamilton depression rating scale NA 6.1 ± 4.1 8.8 ± 5.1 — — — .081

Mini-mental state examination 28.1 ± 1.5 28.8 ± 1.0 27.7 ± 2.0 .122 .170 .387 .088

Montreal cognitive assessment 22.2 ± 3.5 24.3 ± 2.4 19.3 ± 2.9 <.001 .063 .004 <.001

Attention and working memory

Digit span backward 4.6 ± 1.6 5.0 ± 1.3 4.3 ± 1.2 .269 .324 .463 .107

Trail making test 48.3 ± 21.1 49.2 ± 11.0 71.3 ± 45.6 .021 .925 .011 .028

Executive function

Clock drawing test 12.6 ± 1.5 12.5 ± 1.8 10.5 ± 3.3 .004 .917 .003 .008

Verbal fluency test 20.1 ± 5.2 19.7 ± 3.9 15.9 ± 4.6 .005 .799 .003 .012

Language

Boston naming test 25.1 ± 2.6 26.0 ± 1.5 22.7 ± 3.6 .001 .348 .005 .001

Wechsler adult intelligence scale similarities 16.2 ± 2.7 15.9 ± 3.4 12.3 ± 3.7 <.001 .745 <.001 .001

Memory

Brief visuospatial memory test–revised 20.6 ± 5.2 22.6 ± 3.6 16.8 ± 5.9 .002 .241 .013 .001

Hopkins verbal learning test 20.5 ± 3.6 22.3 ± 3.6 15.6 ± 4.3 <.001 .190 <.001 <.001

Visuospatial function

Clock copying test 14.0 ± 1.2 14.1 ± 1.0 13.5 ± 1.1 .174 .954 .098 .124

Judgment of line orientation 22.2 ± 3.9 23.3 ± 3.6 17.2 ± 6.0 <.001 .481 .001 <.001

Note: Data are presented as mean ± SDs unless otherwise indicated. p < 0.05, shown in bold.

Abbreviations: HC, healthy control; LSD, least significance difference; NA, not available; PD, Parkinson's disease; PD-M, PD with mild cognitive

impairment; PD-N, PD with normal cognition.
ap value for the gender distribution in the three groups was obtained using a χ2 test.
bp values were obtained using two-sample t tests between PD-N and PD-M.
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3.2 | Alterations of global brain network measures

Morphological networks of the three groups showed λ ≈ 1 and γ > 1

(Figure S1), indicating a small-world organization. There were signifi-

cant group effects in λ, σ, and Eloc among the global network measures

of the three groups (Table 2, Figure 1). Posthoc comparisons found

that (a) relative to HC, PD-N showed significantly lower λ (p = .008) in

the brain networks; (b) relative to HC, PD-M showed significantly

higher σ (p = .003) and Eloc (p = .001) in the brain networks; and

(c) while no significant differences were found between two PD

groups in these parameters (p > .05/3).

3.3 | Alterations of nodal brain network measures

Brain regions with altered nodal centrality in at least one nodal mea-

sure were further localized. Posthoc analysis showed that common to

both PD groups relative to HC were lower nodal centralities in left lin-

gual gyrus (LING) and right rectus gyrus (REC) with higher nodal cen-

tralities in left cerebellum Crus1 and Crus2. Additionally, in PD-M

relative to HC there were lower nodal centralities in right middle

frontal gyrus (MFG), left angular gyrus (ANG) and fusiform gyrus, and

higher nodal centralities in right cerebellum 3. Finally, three regions

showed significant differences between the PD groups, with lower nodal

centralities of right paracentral lobe, left inferior frontal gyrus, orbital

part, and right superior temporal gyrus (STG) observed in PD-M than

PD-N (Table 2, Figure 2).

3.4 | Alterations of morphological connection
characteristics

NBS tool was used to identify the disrupted connections in PD

(Figure 3). In PD-N relative to HC, NBS identified two disconnected

subnetworks (Figure 3a). One subnetwork included 7 nodes and

6 decreased connections which mainly encompassed the default

mode network regions [bilateral REC, left parahippocampal gyrus

(PHG), left precuneus (PCUN), and right Heschl gyrus (HES)], left cere-

bellum 10, and right amygdala. The second subnetwork included

6 nodes and 5 increased connections centered on cerebellum (Crus1

and 6), which was disconnected with right REC, right postcentral

gyrus, right STG, and left inferior occipital gyrus (IOG).

TABLE 2 Gray matter network measures showing significant differences among the PD-M, PD-N, and HC groups

p(F)

Posthoc tests

Measurements HC vs. PD-Np (t) HC vs. PD-Mp (t) PD-N vs. PD-Mp (t)

Global

Normalized characteristic path length .045 (3.324) .008 (2.470) .116 (1.229) .081 (�1.444)

Small-worldness .032 (3.657) .034 (�1.922) .003 (�2.844) .423 (�0.185)

Local efficiency .043 (3.243) .243 (�0.716) .001 (�3.024) .088 (�1.405)

Nodal betweenness

Right middle frontal gyrus .023 (3.857) .118 (1.182) .003 (2.653) .065 (1.615)

Left fusiform gyrus .023 (3.998) .024 (1.949) .010 (2.355) .433 (0.164)

Left angular gyrus .039 (3.423) .040 (1.738) .013 (2.309) .398 (0.238)

Nodal degree

Left inferior frontal gyrus, orbital part .040 (3.389) .212 (�0.808) .027 (1.940) .008 (2.504)

Right gyrus rectus .038 (3.451) .017 (2.180) .011 (2.357) .419 (�0.205)

Left lingual gyrus .016 (4.452) .015 (2.250) .006 (2.641) .418 (0.236)

Right paracentral lobule .037 (3.645) .017 (�2.162) .350 (0.391) .002 (3.006)

Right superior temporal gyrus .006 (5.532) .048 (�1.700) .032 (1.861) .001 (3.434)

Left cerebellum Crus1 .007 (5.281) .003 (�2.848) .006 (�2.537) .266 (0.641)

Left cerebellum Crus2 .032 (3.541) .016 (�2.257) .008 (�2.548) .347 (0.386)

Right cerebellum 3 .031 (3.731) .167 (�0.993) .005 (�2.690) .090 (�1.388)

Nodal efficiency

Left inferior frontal gyrus, orbital part .035 (3.564) .098 (�1.306) .050 (1.686) .007 (2.494)

Right superior temporal gyrus .010 (4.851) .037 (�1.777) .061 (1.590) .001 (3.265)

Left cerebellum Crus1 .002 (6.902) .003 (�2.834) .001 (�3.084) .369 (0.363)

Right cerebellum 3 .024 (3.917) .054 (�1.656) .005 (�2.671) .201 (�0.865)

Note: Comparisons of global and nodal measures among the three groups (p < 0.05, shown in bold) and post hoc pairwise comparisons (p < 0.05/3, shown

in bold) were performed using nonparametric permutation tests.

Abbreviations: PD, Parkinson's disease; PD-M, PD with mild cognitive impairment; PD-N, PD with normal cognition.
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In PD-M relative to HC, there were two disconnected subnet-

works (Figure 3b). One subnetwork included 11 nodes and

10 decreased connections, which encompassed default mode network

(right REC, left medial and posterior cingulate gyrus, right PCUN, right

HES, left temporal pole: middle temporal gyrus and right STG),

frontal–parietal regions (right supplementary motor area and left

superior parietal gyrus), left IOG and left cerebellum 10. The second

subnetwork included 8 nodes and 7 increased connections centered

on the right REC, which was disconnected with the cerebellum

(Crus1, Crus2, 45, 6, and vermis 7).

In PD-M compared with PD-N, there was one disconnected sub-

network comprising 8 regions and 7 decreased connections

F IGURE 1 Global network properties among the PD-M, PD-N, and HC groups. The bar graph shows the area under the curve of the global
network parameters among the 3 groups. Error bars denote SD. Black asterisks indicate significant differences in the post hoc comparisons.
Abbreviations: PD, Parkinson's disease; PD-M, PD with mild cognitive impairment; PD-N, PD with normal cognition; HC, healthy control; Cp,
clustering coefficient; γ, normalized clustering coefficient; Lp, characteristic path length; λ, normalized characteristic path length; Eloc, local
efficiency; Eglob, global efficiency; σ, small-worldness

F IGURE 2 Brain regions with significant group effects in the nodal centralities in morphological brain networks compared among the PD-M,

PD-N, and HC groups. Node sizes indicating their T values are visualized using the BrainNet viewer (http://www.nitrc.org/projects/bnv). The
regions are located according to their centroid stereotaxic coordinates. Abbreviations: PD, Parkinson's disease; PD-M, PD with mild cognitive
impairment; PD-N, PD with normal cognition; HC, healthy control; ANG, angular gyrus; CRBL, cerebellum; FFG, fusiform gyrus; LING, lingual
gyrus; MFG, middle frontal gyrus; ORBinf, inferior frontal gyrus, orbital part; PCL, paracentral lobule; REC, rectus gyrus; STG, superior temporal
gyrus; L, left; R, right
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(Figure 3c). This subnetwork was centered on right STG, which had

decreased connections with left medial and posterior cingulate cortex,

PHG, amygdala, putamen, and cerebellum Crus1.

3.5 | Correlations between network measures and
neuropsychological variables

For each PD group, correlations between neuropsychological

variables and network measures with significant group differences

were examined. As shown in Figure 4, in the PD-M group, clock

drawing test (CDT) score was positively correlated with nodal

betweenness of right MFG (r = 0.596, p = .007), brief visuospatial

memory test-revised (BVMT-R) score was positively correlated with

nodal betweenness of left ANG (r = 0.583, p = .009), and Boston

naming test (BNT) score was positively correlated with nodal degree

of left cerebellum Crus2 (r = 0.603, p = .006). In the PD-N group,

Wechsler Adult Intelligence Scale-IV (WAIS-IV) similarities score

was positively correlated with nodal degree of right STG (r = 0.754,

p = .019). However, these correlations did not survive multiple com-

parison corrections at false discovery rate < 0.05.

In correlation analyses between network metrics and cognitive

tests in the multiple-domain PD-M subtype, our main findings were

maintained. Additionally, we found positive correlations between

CDT score and Eloc (r = 0.622, p = .013) and nodal degree of left cere-

bellum Crus2 (r = 0.519, p = .047) as well as between Judgment of

line orientation (JLO) score and nodal degree of left LING (r = 0.516,

p = .049) (Figure S2).

3.6 | Single-subject classification performance

The detailed performance of individual classification is shown in

Table S2. Using whole-brain networks, it was only possible to distin-

guish PD-M from HC with a high mean balanced accuracy (75.2%,

p = .003). In contrast, using NBS subnetworks, the mean balanced accu-

racy of three classifications was all above chance (90.0, 85.3, and 64.7%

for PD-N vs. HC, PD-M vs. HC, and PD-N vs. PD-M, respectively).

F IGURE 3 The networks showing
altered morphological connections
compared among the PD-M, PD-N and HC
groups. Every node denotes a brain region
and every line denotes a connection,
mapped onto the cortical surfaces using
BrainNet viewer software (www.nitrc.org/
projects/bnv/). Red (blue) color represents
increased (decreased) morphological

connections. Abbreviations: PD, Parkinson's
disease; PD-M, PD with mild cognitive
impairment; PD-N, PD with normal
cognition; HC, healthy control; AMYG,
amygdala; CRBL, cerebellum; DCG, median
cingulate and paracingulate gyri; HES,
Heschl gyrus; IOG, inferior occipital gyrus;
OLF, olfactory cortex; PCG, posterior
cingulate gyrus; PCUN, precuneus; PHG,
parahippocampal gyrus; PoCG, postcentral
gyrus; PUT, putamen; REC, rectus gyrus;
SMA, supplementary motor area; SPG,
superior parietal gyrus; STG, superior
temporal gyrus; TPOmid, temporal pole:
middle temporal gyrus
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4 | DISCUSSION

Using structural MRI, we found morphological disruptions of individ-

ual brain networks in early-stage PD-M and PD-N. There are five main

findings: (a) global network organization in PD was disrupted, as indi-

cated in PD-N by lower λ, and in PD-M by higher Eloc and σ;

(b) altered nodal centralities in REC, LING, and cerebellum were com-

mon to both PD subgroups relative to HC, with additional altered

nodal centralities in frontal, parietal and temporal regions in PD-M rel-

ative to HC and PD-N; (c) connection deficits of default mode and

cerebellar regions were common to both PD subgroups relative to

HC, generally to a greater extent in PD-M, while different connections

mainly in frontoparietal regions were observed only in PD-M relative

to HC; (d) in PD-M positive correlations were observed between

nodal betweenness of right MFG and executive function (CDT score),

and between nodal betweenness of left ANG and memory (BVMT-R

score); (e) this connection analysis permits accurate classifications

both between the PD subgroups and HC, and between the PD sub-

groups. These findings extend the understanding of the neurobiology

of cognitive decline in PD, and have potential diagnostic value.

In formal terms, the brain's small-world organization strikes an

optimal balance between network segregation (reflected by Cp, γ, and

Eloc) and integration (reflected by Lp, λ, and Eglob) of information

processing (Suo et al., 2018). PD-M showed higher network segrega-

tion (indicated by higher Eloc) compared with HC. A similar network

segregation in PD-M (reflected by higher Cp and γ) has been found in

previous brain network studies (Baggio et al., 2014; Wang, Mei,

et al., 2020). In the present study, PD-M also showed higher network

segregation (indicated by higher Eloc) relative to HC. These findings

taken together suggest that higher network segregation may be more

specific to cognitive impairment in PD. However, the higher integra-

tion (reflected by lower λ) in early-stage PD-N relative to HC, and the

trend toward lower λ in early-stage PD-M relative to HC, were differ-

ent from that reported for structural networks in early-advanced

PD-N or PD-M relative to HC (Galantucci et al., 2017; Pereira

et al., 2015). Several factors may contribute to this difference. First, a

longitudinal study showed preserved network integration in early-

stage PD at baseline, followed by lower network integration over a

4-year follow-up (Olde Dubbelink et al., 2014). This suggests that

brain networks in PD may evolve to lower network integration as the

disease progresses. Second, there were more elderly (61–80 years)

PD participants in these earlier studies, which might contribute to the

discrepancy as network integration of structural network is known to

decrease with aging (Pereira et al., 2015).

F IGURE 4 The partial correlations between network measures and clinical variables in PD-M and PD-N individuals. Abbreviations: PD,
Parkinson's disease; PD-M, PD with mild cognitive impairment; PD-N, PD with normal cognition; ANG, angular gyrus; BVMT-R, brief visuospatial
memory test–revised; BNT, Boston naming test; CDT, clock drawing test; MFG, middle frontal gyrus; STG, superior temporal gyrus; WAIS,
Wechsler adult intelligence scale; R, right
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Convergent abnormalities in nodal centralities involving REC and

LING were found in both PD subgroups relative to HC, consistent with

previous findings in PD (Hou et al., 2018; Zhang, Wang, Liu, Chen, &

Liu, 2015). Furthermore, more widespread alterations were observed in

PD-M, in line with previous structural findings of additional frontal, tempo-

ral, and parietal alterations in PD-M (Beyer, Janvin, Larsen, &

Aarsland, 2007; Song et al., 2011; Zhang et al., 2015). Taken together

these observations support the idea that the frontal and parietal areas are

the substrate responsible for cognitive impairment in PD. Additionally, a

positive correlation between the nodal degree of right STG and language

(WAIS-IV similarities score) was observed in PD-N. Increased nodal cen-

trality in this region may reflect compensatory improvement in perfor-

mance, preserving cognition in early cognitively unimpaired PD.

There were similar patterns of reduced connections mainly in the

default mode network in both PD subgroups compared with

HC. Disrupted default mode network connection is not only related to

cognitive deficits in PD-M (Baggio et al., 2015), but also occurs in cogni-

tively unimpaired PD (Tessitore et al., 2012). These findings, with previ-

ous reports (Amboni et al., 2015), suggest that default mode network

disruption might be a common feature in PD, possibly as a result of neu-

rodegeneration, as in other neurodegenerative disorders (Seeley,

Crawford, Zhou, Miller, & Greicius, 2009). Further, compared with PD-N,

PD-M showed decreased connections mainly in the temporal areas of

default mode network, to a greater extent with increasing levels of cogni-

tive decline. Additionally, PD-M and PD-N showed different connections

in the frontoparietal network. Involvement of the frontoparietal net-

works, and the idea that their disconnection is the substrate of PD-M,

has also been suggested on the basis of diffusion and functional MRI

studies (Amboni et al., 2015; Galantucci et al., 2017). The network disrup-

tions found in our study are possible morphological correlates of these

substrates observed previously in PD-M. Increased morphological con-

nection in the “frontocerebellar loop” may be compensatory (Zhan

et al., 2018). Similar observations of disrupted networks have been made

in other neurodegenerative disorders such as Alzheimer disease (Mohan

et al., 2016; Samson & Claassen, 2017), suggesting a shared profile of

neurobiological changes in the cognitive disorders (Pearlson, 2017). Fur-

ther study is needed of the distinct patterns of network alterations

unique to specific neurodegenerative diseases.

Some altered network measures in PD-M were associated with neu-

ropsychological performance. In particularly, positive correlations were

observed between nodal betweenness of right MFG and executive func-

tion (CDT score), and between nodal betweenness of left ANG and mem-

ory (BVMT-R score), which were maintained in the multiple-domain

PD-M subtype. Additional positive correlation between nodal degree of

left LING and visuospatial function (JLO score) was observed in the

multiple-domain PD-M subtype. Previous studies have found positive

correlations between executive function performance and dopaminergic

activity/synaptic density in the MFG (Andersen et al., 2021; Picco

et al., 2015); furthermore, atrophy, hypometabolism, and hypoactivity in

the occipito-parietal areas associated with cognitive dysfunction in PD

(Gonzalez-Redondo et al., 2014; Guo et al., 2021; Pagonabarraga

et al., 2013). All these findings help explain why impairment of frontal/

executive and posterior cortical/memory and visuospatial functions

are frequent neuropsychological features in PD-M (Lin & Wu, 2015).

Notably, PD individuals with visuospatial and memory deficits (posterior

cortical deficits) had an increased risk of progression to dementia

(Williams-Gray et al., 2009). Interestingly, we found correlations between

cerebellum and language (BNT score) in all PD-M as well as with execu-

tive function (CDT score) in the multiple-domain PD-M subtype. Recent

evidence implicates the cerebellum in the control of several cognitive

processes including in memory and language (Stoodley, 2012). Our

results, consistent with these reports, support the PD-related cognitive

pattern characterized by metabolic reductions in frontal and parietal

regions and increases in cerebellum (Huang et al., 2007).

Lastly, consistent with our final hypothesis, the exploratory SVM

classification analyses showed that NBS subnetworks could not only dif-

ferentiate PD-M and PD-N from HC, but also between PD-M and PD-N

at an individual level with significant above-chance accuracy. Our struc-

tural results, combined with previous functional findings (Lei et al., 2019),

support the emerging view that network connections may be a powerful

tool to characterize brain disorders at the individual level. Although

machine learning is not yet available in day-to-day clinical practice, in light

of the urgent clinical need for objective biomarkers in the early stage of

the disease, it has the potential to inform the development of diagnostic

imaging-based markers. Future studies could explore whether our find-

ings are specific to PD or trans-diagnostic features of neurologic disor-

ders. The accuracy of the SVM classification between PD-M and PD-N

was not particularly high, and better classification performance may be

achieved via other advanced models such as deep learning, although

computation involving large numbers of parameters will require a larger

sample size (Vieira, Pinaya, & Mechelli, 2017).

Our study has some limitations. First, it was cross-sectional; longitu-

dinal studies are needed to investigate how these network disruptions

evolve with the progression of cognitive deterioration. Second, the sam-

ple size is not large, which may be why the results of correlation analyses

between network metrics and clinical variables did not survive multiple-

comparison correction. However, our main findings are comparable to

studies with large or multicenter PD-M cohorts that also used the MDS

Task Force criteria, in which most PD-M showed multiple-domain deficits

(Cholerton et al., 2014; Kalbe et al., 2016). Our finding are in some con-

trast to older studies reporting greater single-domain impairments (Litvan

et al., 2011); the differences may be related to cohort characteristics

(e.g., early vs. late-stage PD) and the definition of PD-M (e.g., whether

the cut-off scores are taken as 1 or 1.5 SDs below normative means).

There is substantial heterogeneity in cognitive subdomain deficits in

PD-M. Full study of the different subtype profiles will require a stratified

statistical analysis which is beyond the scope of the current study,

although it is a focus of our ongoing work. Third, the individual brain net-

works were constructed on the basis of the similarities between inter-

regional GM volume distributions. Other morphological features could

also be considered for calculating network metrics (Li et al., 2021), and it

will be interesting to explore different types of GM networks for compre-

hensively mapping cognitive impairment in PD. Fourth, depression is

reportedly associated with PD-M, although this has not reached statistical

significance in all studies (Baiano, Barone, Trojano, & Santangelo, 2020).

Some neurobiological changes in brain circuits are common to PD-M and
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other causes of neuropsychiatric symptoms, and these may play an

important role in the complex relationship between cognitive impairment

and psychiatric symptoms in PD (Petkus et al., 2020), which deserves fur-

ther study.

In conclusion, this study shows both convergent and divergent dis-

ruptions of morphological network organization in PD-M and PD-N.

Disrupted network segregation and frontoparietal regions in GM mor-

phological networks were associated with cognitive impairment in

PD. Furthermore, connectome-wide connections showed potential

single-subject discriminative value between each PD group and HC as

well as between PD-M and PD-N. Disrupted morphological networks

may contribute to the pathophysiology, and have promise as potential

neuroimaging biomarkers for the early diagnosis of cognitive impair-

ment in PD. Specifically, this study adds to the field of psychoradiology

(Gong, Kendrick, & Lu, 2021; Lan et al., 2021; Pan et al., 2021; Suo

et al., 2021b; Wang et al., 2020), an evolving subspecialty of radiology,

which is primed to be of major clinical importance in guiding diagnostic

and therapeutic decision making in patients with neuropsychiatric

disorders.
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