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Introduction
Cell cycle progression after DNA damage is rapidly halted by 

checkpoint controls, which are relaxed after the damage has 

been assessed and processed. Cells with misrepaired or unre-

paired DNA lesions are eliminated by different cell death mech-

anisms (Zhou and Elledge, 2000; Roninson et al., 2001; Bree 

et al., 2004). One such mechanism is mitotic cell death (MCD), 

which is also known as “mitotic catastrophe,” a prominent but 

poorly defi ned form of cell death that is described mainly in 

morphological terms. MCD is an outcome of aberrant mitosis 

that results in the formation of giant multimicronucleated cells 

(Erenpreisa and Cragg, 2001; Roninson et al., 2001). It is a 

 major form of tumor cell death after treatments with ionizing 

radiation (IR) or certain chemotherapeutic agents (Torres and 

Horwitz, 1998; Roninson et al., 2001; Blank et al., 2003).

MCD has been shown to prevail in cells with impaired 

G1, G2, prophase, and mitotic spindle checkpoint functions 

(Chan et al., 2000; Roninson et al., 2001; Nitta et al., 2004). 

A prominent cell cycle checkpoint is activated by DNA double-

strand breaks (DSBs) at the G2/M boundary. Activation of this 

checkpoint is driven by the nuclear protein kinase ataxia telangi-

ectasia mutated (ATM), its downstream substrates p53 and 

the Chk1 and Chk2 kinases, Polo-like kinase 1 (Plk-1), and the 

p53-inducible proteins p21waf1 and 14-3-3-σ. The p53-mediated 

arm of the G2/M checkpoint was shown to be pivotal in preventing 

MCD in DNA-damaged cells (Chan et al., 2000; Fei and 

El-Deiry, 2003), although some studies challenge this observation 

(Andreassen et al., 2001; Castedo et al., 2004).

MCD has been assumed to result from the entry into mi-

tosis of cells with unrepaired DNA damage, although a mecha-

nism linking DNA lesions with mitotic abnormalities has yet to 

be uncovered. One of the early steps in the chain of events that 

culminates in MCD is cell entry into premature mitosis (Chan 

et al., 2000; Roninson et al., 2001; Nitta et al., 2004). To date, 

evidence of premature mitosis in damaged cells relies primarily 

on the appearance of uneven chromatin condensation (UCC), 

which is the formation of hypercondensed chromatin aggre-

gates at nucleolar sites (Swanson et al., 1995; Ianzini and 

Mackey, 1997; Roninson et al., 2001). The mechanisms under-

lying this phenomenon are unknown.
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During normal progression through mitosis, the structural 

reorganization of chromatin into condensed chromosomes en-

tails the multiprotein complexes condensin I and II (Schmiesing 

et al., 1998; Swedlow and Hirano, 2003; Ono et al., 2004). 

In vitro studies showed that condensin I possesses a DNA-

 stimulated ATPase activity and is capable of introducing con-

strained, positive supercoils into DNA (Hirano, 2002). This 

activity is believed to be essential for initiating the assembly of 

mitotic chromosomes and for proper assembly and orientation 

of centromeres (Hagstrom et al., 2002; Ono et al., 2004). The 

two condensin complexes are each composed of fi ve sub-

units conserved from yeast to mammals (Hirano et al., 1997; 

Schmiesing et al., 2000; Kimura et al., 2001). The core complex 

common to both condensins consists of the structural mainte-

nance of chromosomes (SMC) proteins CAP-E/SMC2 and 

CAP-C/SMC4. Two other members of this family, SMC1 

and SMC3, form the core of the cohesin complex that plays 

a central role in sister chromatid cohesion (Hirano, 2002). Each 

condensin complex then contains a regulatory subcomplex 

 consisting of three non-SMC proteins. In condensin I, these are 

CAP-D2, -G, and -H. CAP-D2 and -G possess a highly degen-

erate repeating motif known as the HEAT repeat (Neuwald 

and Hirano, 2000), whereas CAP-H belongs to a recently identi-

fi ed superfamily of proteins termed kleisins (Schleiffer et al., 

2003). In condensin II, the regulatory subcomplex contains the 

proteins CAP-D3, -G2, and -H2 (Fig. 1 A; Ono et al., 2003; 

Yeong et al., 2003). 

During interphase, both types of condensins appear to be 

localized in the cytosol and the nucleus (Cabello et al., 2001; 

Watrin and Legagneux, 2005), with condensin I being predo-

minantly cytosolic and condensin II being primarily nuclear 

(Ono et al., 2003; Hirota et al., 2004). The two condensin com-

plexes localize in different places along mitotic chromosomes 

assembled in vitro and in vivo, suggesting distinct functions in 

chromosome architecture (Hirota et al., 2004; Ono et al., 2003, 

2004). Importantly, in vitro studies indicated that cyclin-dependent 

 kinase 1 (Cdk1)–mediated phosphorylation of the non-SMC sub-

unit set is required for chromosomal localization of condensin I 

and stimulation of its supercoiling activity (Kimura et al., 

1998, 2001).

Another prominent type of chromatin condensation noted 

in mammalian cells is apoptosis-related condensation. It is be-

lieved to be mediated primarily by the nuclear protein acinus 

(apoptotic chromatin condensation inducer in the nucleus) after 

its cleavage by activated caspase 3 (Sahara et al., 1999). Acinus 

lacks the DNase activities exhibited by other cellular factors 

that can induce apoptotic chromatin condensation via DNA 

fragmentation. Therefore, acinus functions as a “pure” regulator 

of apoptosis-related chromatin condensation (Zamzami and 

Kroemer, 1999).

Figure 1. DNA damage triggers the recruitment of condensin core subunits to damaged chromatin and the formation of UCC bodies. (A) Schematic of the 
condensin I and II complexes. H, G, and D2 denote condensin I non-SMC subunits hCAP-H, hCAP-G, and hCAP-D2, respectively. H2, G2, and D3 denote 
condensin II non-SMC subunits hCAP-H2, hCAP-G2, and hCAP-D3, respectively. (B) Recruitment of condensin proteins and UCC in HeLa cells after treat-
ments with NCS. The cells were treated with 200 ng/ml NCS and immunostained 24 h later with anti-SMC2 antibody (red). DNA was counterstained with 
Yo-Pro-1 (green) or DAPI (blue). Bars, 8 μm. (C) Western blotting analysis of chromatin fractions obtained from untreated HeLa cells and 24 h after treatment 
with 200 ng/ml NCS, demonstrating recruitment of SMC2 and SMC4 to chromatin in response to the treatment. (D) Treatment of DNA-damaged cells with 
DNase-I leads to the dissociation of condensin proteins from DNA. Arrows indicate the nucleolar sites where UCC is formed. Arrows with asterisks in 
 DNase-I–treated cells indicate nucleolar locations. Note the disappearance of condensin recruitment after DNase-I treatment. Bars, 20 μm.
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In this study, we show that induction of the highly cyto-

toxic DSBs in DNA of cells with compromised p53-mediated 

G2/M checkpoint functions triggers UCC and premature 

 mitosis. We demonstrate that the unscheduled activation of Cdk1 

and the recruitment of activated condensin I to damaged chro-

matin are specifi cally involved in UCC formation. Condensin II 

and cohesin proteins are not involved in this process. Impor-

tantly, the acinus-mediated pathway, which is responsible for 

apoptotic chromatin condensation, was also not found to oper-

ate in UCC. Using a panel of tumor cell lines, we show that the 

defective damage-induced, p53-mediated G2/M checkpoint is 

an important but not a sole requirement for the activation of 

this pathway.

Results
Condensin but not cohesin is recruited 
to chromatin during UCC induced by DSBs
DNA damage–induced MCD, with UCC as an early step, has 

been shown to occur at high rates in tumor cells in which cell 

cycle checkpoint functions are impaired (Roninson et al., 2001). 

We studied this phenomenon in human cervix carcinoma HeLa 

cells in which the G1 and G2 DNA damage checkpoint func-

tions are compromised as a result of p53 inactivation by human 

papilloma virus E6 (Scheffner et al., 1990). UCC was induced 

in exponentially growing HeLa cells by treatment with 10 Gy IR 

or 200 ng/ml neocarzinostatin (NCS), a radiomimetic agent that 

intercalates into cellular DNA and induces DSBs (Goldberg, 

1987). 24 h later, confocal microscopy revealed that cellular 

DNA was condensed into globular clumped structures typical of 

UCC (Fig. 1 B and Fig. S1 A, available at http://www.jcb.org/

cgi/content/full/jcb.200604022/DC1). This phenomenon was 

observed with two different DNA dyes: DAPI and Yo-Pro-1, 

a monomeric green fl uorescent cyanine with a high affi nity for 

double-stranded DNA (Suzuki et al., 1997). Importantly, these 

globular structures contained the condensin core subunits SMC2 

(Fig. 1 B) and SMC4 (Fig. S2), whose nuclear localization 

changed after treatment from a diffuse, pannuclear pattern to 

a compact one that overlapped the UCC bodies. Western blot-

ting analysis of chromatin fractions confi rmed the recruit-

ment of SMC2 and SMC4 to chromatin in response to DNA 

damage (Fig. 1 C). Accordingly, DNase-I treatment in situ led 

to  dissociation of the UCC bodies and release of the associated 

SMC2 (Fig. 1 D).

DSB-induced UCC was dose dependent and maximized 

at 24 h after treatment (Fig. S2). The percentage of cells exhibi-

ting UCC increased from 5 ± 2% in untreated cells to 65.8 ± 

25.1% 24 h after 200 ng/ml NCS (P < 0.01; n = 6). Importantly, 

the spatial distribution of the cohesin subunit SMC1 was not 

altered (unpublished data), suggesting that the cohesin  complex 

was not involved in this phenomenon. UV irradiation did not 

induce this process (Fig. S1 B), suggesting that it was asso-

ciated specifi cally with DSBs. Importantly, a similar rate 

of UCC induction was observed in both ATM-profi cient and 

Figure 2. Colocalization of UCC and coalesced nucleoli. (A) Simultaneous detection of the NCS-triggered recruitment of SMC2 (green) to UCC bodies and 
their colocalization with nucleoli marked by nucleostemin (NS) staining (red). DNA (DAPI) appears in blue. Note the nucleolar disruption after UV treatment 
versus nucleolar coalescence and colocalization of the resultant large nucleolar bodies with UCC bodies after NCS treatment. Bars, 20 μm. (B)  Visualization 
of NCS-triggered UCC colocalized with coalesced nucleoli using immunostaining with an antinucleolin antibody. Nucleolin, green; SMC2, red; DNA 
(DAPI), blue. Bars, 8 μm.
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ATM-defi cient HeLa cells in which ATM had been knocked 

down using stable expression of the appropriate short hairpin 

RNA (shRNA; Fig. S3, available at http://www.jcb.org/cgi/

content/full/jcb.200604022/DC1).

Collectively, the results suggest that UCC is a delayed cel-

lular response to DSBs that involves condensin but not cohesin 

complexes and apparently does not rely on the presence of ATM 

protein in the cells. It is noteworthy that UCC induction and 

 recruitment of condensin proteins to chromatin after DNA dam-

age were not strictly confi ned to HeLa but were also observed in 

other cell lines in which cell cycle checkpoints had been com-

promised, although at signifi cantly lower rates compared with 

HeLa cells (see the last paragraph in Results).

Colocalization of UCC bodies 
with coalescent nucleoli
According to our Nomarski images (Fig. 1, B and D), UCC struc-

tures colocalized with nucleoli, a phenomenon that has been pre-

viously reported (Swanson et al., 1995; Ianzini and Mackey, 1997; 

Roninson et al., 2001). However, although the mean number of 

nucleoli in untreated cells was about three per nucleus, most of 

the nuclei with damage-induced UCC contained a single nucleolar 

body (Fig. 1, B and D). These nucleolar bodies were signifi cantly 

larger than normal nucleoli: their major axis was measured 

as 5.82 ± 0.93 μm in damaged cells versus 3.06 ± 1.35 μm in 

untreated cells (P < 0.001). To examine this phenomenon further, 

nucleoli were visualized by immunostaining with antibodies 

 ag ainst the nucleolar proteins GNL3 (guanine nucleotide-binding 

proteinlike 3; nucleostemin; Tsai and McKay, 2002; Tsai and 

McKay, 2005) and nucleolin (Tuteja and Tuteja, 1998). Although 

UV irradiation led to nucleolar disruption and release of nu-

cleolar proteins into the nucleoplasm as previously described 

(Al-Baker et al., 2004; Tsai and McKay, 2005), in NCS-treated 

cells, the nucleolar proteins remained within a single nucleolar 

body that colocalized with the UCC bodies (Fig. 2). 

Condensin proteins are not involved 
in apoptotic chromatin condensation
HeLa cells are capable of activating the apoptotic cell death 

 pathway (Byun et al., 2001), making them suitable for determining

Figure 3. Condensin proteins participate in mitotic 
chromatin condensation and in UCC but not in apop-
totic chromatin condensation. (A) Induction of apopto-
sis in HeLa cells by staurosporine treatment. PARP-1 
cleavage is detected in staurosporine-treated cells 
(1 μM for 3.5 h). Note the absence of this response in 
NCS-treated cells (200 ng/ml). U, untreated; St, stauro-
sporine treated. (B) Western blotting analysis of 
 chromatin fractions from NCS- and staurosporine-
treated HeLa cells demonstrates condensin recruitment 
to chromatin in damage-induced UCC but not in apop-
totic chromatin condensation. (C) Three types of chro-
matin condensation in HeLa cells: mitotic, apoptotic, 
and damage-induced UCC. Immunofl uorescence im-
ages taken from logarithmically growing HeLa cells 
treated with 1 μM staurosporine (for 3.5 h) or 
200 ng/ml NCS (for 24 h). SMC2, red; DNA (Yo-Pro-1), 
green. Bars, 20 μm. (D) Visualization of three types 
of chromatin condensation in HeLa cells stained with 
both anti-SMC2 (red) and anti–HP-1α (green) anti-
bodies. DNA (DAPI), blue. Bars, 8 μm.
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whether the recruitment of condensin to chromatin is specifi c 

to UCC or also accompanies apoptotic chromatin  condensation. 

HeLa cells were treated with NCS or staurosporine, a docu-

mented apoptosis inducer (Couldwell et al., 1994), and the 

induction of apoptosis was monitored by following poly

(ADP-ribose)polymerase-1 (PARP-1) cleavage (Fig. 3 A; Soldani 

and Scovassi, 2002). The apoptotic chromatin condensa-

tion was morphologically distinct from damage-induced UCC 

and, unlike UCC and mitotic chromatin condensation, did not 

involve condensin recruitment (Fig. 3 C). In fact, in apoptotic 

cells, the chromatin-bound SMC2 fraction was reduced com-

pared with untreated cells (Fig. 3 B), conceivably because of 

apoptosis-associated DNA fragmentation, which subsequently 

released SMC2 from chromatin.

To further demonstrate the differential recruitment of 

SMC2 to chromatin upon different types of chromatin conden-

sation, we compared its distribution with that of HP-1α (hetero-

chromatin protein 1α). HP-1α is known to constitutively 

associate with condensed chromatin in interphase and mitotic 

cells (Minc et al., 1999). We found that HP-1α was associated 

with condensed DNA in all three types of chromatin condensa-

tion that we studied (mitotic, apoptotic, and UCC), whereas 

SMC2 was loaded onto DNA in mitosis and upon UCC but not 

upon apoptotic chromatin condensation (Fig. 3 D).  Interestingly, 

HP-1α and SMC2 were colocalized in normal mitotic 

 chromosomes and in UCC bodies, but HP-1α was observed 

mainly in subcompartments of these structures, particularly 

in the inner core of the UCC bodies (Fig. S4, available at 

http://www.jcb.org/cgi/content/full/jcb.200604022/DC1).

Condensin I but not condensin II 
is involved in UCC
SMC2 and SMC4 constitute the common cores of the condensin 

I and II complexes (Ono et al., 2003; Yeong et al., 2003). The 

condensin I–related protein hCAP-H (human chromatin-

 associated protein H; kleisin-γ) and the condensin II–related 

protein hCAP-H2 (kleisin-β) are thought to be the fi rst of the 

non-SMC subcomplex proteins to bind to SMC2/SMC4 hetero-

dimers, subsequently recruiting other non-SMC subunits to 

form the complete type I or II condensin complexes, respec-

tively (Nasmyth and Haering, 2005). We found that the conden-

sin I–associated protein hCAP-H but not condensin II–related 

hCAP-H2 was associated with damage-induced UCC bodies 

(Fig. 4 A). Accordingly, biochemical analysis of cytosolic, 

 nucleoplasmic, and chromatin fractions confi rmed that hCAP-H, 

similar to condensin core subunits, was recruited to the damaged 

Figure 4. Condensin I but not condensin II is recruited 
to chromatin after DNA damage. (A) NCS- (200 ng/ml 
for 24 h) and IR (10 Gy for 24 h)-induced DNA 
 damage triggers the recruitment to DNA of condensin I 
subunit hCAP-H but not condensin II subunit hCAP-H2. 
Note that DNA staining (DAPI) reveals the formation 
of UCC bodies in both hCAP-H– and hCAP-H2–stained 
fi elds. Bars, 20 μm. (B) Western blotting analysis of 
chromatin fractions demonstrates recruitment of hCAP-H 
(condensin I) but not hCAP-H2  (condensin II) to dam-
aged chromatin 24 h after NCS treatment. Protein 
loadings and degree of  fractionations are demonstrated 
by using antibodies against the  cytosolic α-tubulin, 
the nucleoplasmic ATM, and the chromatin compo-
nent histone H2B. (C) λ-phosphatase (λ-PPase) treat-
ment abolishes the shift of chromatin-bound hCAP-H. 
Western blotting analyses performed on chromatin 
fractions obtained from NCS-treated (200 ng/ml 
for 24 h) and untreated cells.
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chromatin, but hCAP-H2 was not (Fig. 4 B). These results sug-

gest that of the two condensin complexes, condensin I but not 

condensin II is involved in damage-induced UCC.

In the aforementioned experiments, we noticed slower gel 

migration of chromatin-bound hCAP-H compared with soluble 

hCAP-H (Fig. 4 B), suggesting that chromatin-bound hCAP-H 

underwent posttranslational modifi cations. During mitotic chro-

matin condensation, the non-SMC subunits of condensin I and 

 presumably condensin II undergo Cdk1/cyclin B–mediated 

phosphorylation, which is required for condensin targeting to 

chromatin and its subsequent functionality (Kimura et al., 1998, 

2001). We asked whether hCAP-H that had been recruited to 

chromatin upon UCC was phosphorylated. We treated the chro-

matin fractions with λ-phosphatase before Western blotting 

analysis and found that this treatment indeed abolished the shift 

in hCAP-H migration (Fig. 4 C). This result suggests that simi-

lar to its recruitment to mitotic chromatin, condensin I is re-

cruited to chromatin during UCC as an activated complex.

Unscheduled Cdk1 activation, recruitment 
of condensin I to chromatin, and UCC 
are hallmarks of premature mitosis
UCC is a morphological hallmark of premature mitosis that is 

typical of cells with a defective G2/M checkpoint (Roninson 

et al., 2001). Our data suggest that recruitment of condensin I 

to chromatin is a biochemical marker of this process. To sub-

stantiate the link between a defective G2/M checkpoint and pre-

mature mitosis, we examined this process in HeLa cells, in which 

the G2/M checkpoint is compromised, and the human osteo-

sarcoma cell line U2OS, in which p53 and the G2/M checkpoint 

are functional. Signifi cantly, U2OS cells exhibited neither UCC 

nor condensin recruitment to chromatin after the same radiomi-

metic treatment that induced them in HeLa cells (Fig. 5, A and B), 

even after prolonged time periods (up to 48 h) following high 

NCS doses (≥200 ng/ml). 

One of the biochemical markers of the G2→M transition 

is elevated phosphorylation of histone 3 on Ser10, which has 

been associated with the loading of condensins onto chromatin 

and chromatin condensation at the early stages of mitosis (Sauve 

et al., 1999; Schmiesing et al., 2000). We noticed that UCC-

 inducing treatments led to histone 3 hyperphosphorylation 

in HeLa but not in U2OS cells (Fig. 5 B), suggesting that 

DNA damage in HeLa cells indeed leads to premature mitosis. 

To substantiate this conclusion, we used FACS analyses to dem-

onstrate the G2/M and mitotic fractions in both cell types after 

DNA damage. The results (Fig. 5 C) showed that a vast majority 

of the HeLa cells were at G2/M 24 h after the treatment, with 

>70% of the cells being in mitosis. In contrast, the G2/M 

 population in U2OS cells consisted mainly of cells at G2; 

here, the mitotic fraction decreased from 1.3 to 0.4% after NCS 

treatment. Accordingly, the G2/M arrest in U2OS cells was 

 correlated with elevated levels of p53 and p21waf1 (Fig. 5 D), 

which are both required for sustaining the G2/M checkpoint 

(Bunz et al., 1998).

Because damage-induced premature mitosis in HeLa cells 

was characterized by histone 3 phosphorylation, a hallmark of 

normal mitosis, we examined whether premature mitosis was 

also associated with Cdk1 activation, which is an important 

 requirement for the initiation of normal mitosis (Morgan, 1997). 

The activation status of Cdk1 can be monitored by comparing 

the extent of its phosphorylation on Tyr15 (inhibitory phosphor-

ylation) and Thr161 (activating phosphorylation; Makela et al., 

1994; Fletcher et al., 2002). Therefore, Cdk1 activation was 

compared in HeLa and U2OS cells after DNA damage. We found 

that in U2OS cells 24–48 h after treatment, Cdk1 exhibited the 

expected phosphorylation of Tyr15 that is typical for G2/M-

 arrested cells (Fig. 5 E). The level of cyclin B, Cdk1’s regulatory 

subunit that is highly expressed at G2/M and decreases as the 

cells progress through mitosis, was also markedly elevated 

24–48 h after NCS treatment and began to decrease thereafter 

(Fig. 5 E). These results indicate that the G2/M arrest in DNA-

damaged U2OS cells lasted for at least 48 h after treatment. 

FACS analysis supported these conclusions (unpublished data). 

Interestingly, in HeLa cells, Cdk1 was hyperphosphorylated on 

both Tyr15 (inhibitory phosphorylation) and Thr161 (activating 

phosphorylation; Fig. 5 E). Cyclin B levels were markedly 

 elevated 24 h after NCS treatment but declined signifi cantly 

thereafter (Fig. 5 E).

We compared this unique Cdk1 phosphorylation pattern 

with Cdk1 phosphorylation in HeLa cells artifi cially arrested 

in mitosis using colcemid treatment. In metaphase-arrested 

cells, the expected dephosphorylation of Tyr15 occurred con-

comitantly with the hyperphosphorylation of Thr161 (Fig. 5 F). 

This experiment allowed us to demonstrate the sharp difference 

between this pattern of Cdk1 phosphorylation and the one ob-

served in DNA-damaged cells, in which Cdk1 was hyperphos-

phorylated on both Thr161 and Tyr15 (Fig. 5 F).

Cell fractionation further revealed that after NCS treatment, 

cyclin B/pT161-Cdk1 (activated complex) was predominantly 

nuclear, whereas inactivated Cdk1, which was tagged by pTyr15, 

was largely sequestered in the cytosol (Fig. 5 G). These fi ndings 

indicate that the induction of DSBs leads to unscheduled Cdk1 

activation with the appearance of two Cdk1 pools exhibiting 

 distinct subcellular localizations. Collectively, our data provide 

insights into the mechanism of damage-induced UCC and sug-

gest that the unscheduled activation of Cdk1, recruitment of con-

densin I to chromatin, and UCC together lead to (and represent) 

a hallmark of premature mitosis and could serve as useful mark-

ers for distinguishing premature from regular mitotic events.

Premature mitosis precedes MCD 
rather than apoptosis
We asked whether cells that react to extensive damage with UCC 

and premature mitosis (HeLa) will activate a different death path-

way compared with cells that activate the G2/M checkpoint in the 

face of such damage and do not exhibit premature mitosis (U2OS). 

The results are summarized in Fig. 6. 3 d after damage infl iction, 

U2OS cells exhibited typical morphological and biochemical fea-

tures of apoptosis: pyknosis with the condensation of chromatin, 

nuclear fragmentation, phosphorylation of Ser46 of p53 (Fridman 

and Lowe, 2003), activation of caspase 3, and subsequent cleav-

age of its downstream substrates such as acinus (a marker of 

apoptosis-related chromatin condensation) and PARP (Fig. 6, 

A and B). On the other hand, the same DNA  damage led in HeLa 
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Figure 5. Biochemical analysis of premature mitosis versus G2/M arrest and normal mitotic events. (A) Condensin recruitment and UCC develop in 
DNA-damaged HeLa but not in U2OS cells. Cells were treated with NCS (200 ng/ml for 24 h), immunostained with anti-SMC2 antibody (red), and counter-
stained with DAPI (blue). Bars, 20 μm. (B) Western blotting analyses of chromatin fractions from NCS-treated (200 ng/ml for 24 h) HeLa and U2OS cells. 
Note that in HeLa cells, recruitment of SMC2 to damaged chromatin coincides with the phosphorylation of histone 3 on Ser10 (p-H3). (C)  Biparametric 
FACS analysis demonstrating that DNA damage drives HeLa cells into mitosis and arrests U2OS cells in G2/M. The fi gure represents one of three inde-
pendent experiments. (D) Levels of expression of p53 and its inducible regulator p21waf1 in DNA-damaged U2OS cells. U24 and U72 represent two untreated 
controls obtained at 24 and 72 h, respectively. (E) Western blotting analysis of G2→M transition regulators in DNA-damaged cells. Total cell lysates were 
obtained from NCS-treated U2OS and HeLa cells 24–72 h after 200 ng/ml NCS administration. U24 and U72 represent two untreated controls obtained 
at 24 and 72 h, respectively. Hsc70 was used as a loading control. (F) Comparative analysis of Cdk1 phosphorylation pattern in DNA-damaged and 
 mitotic-arrested HeLa cells. Cells were either treated with 200 ng/ml NCS (for 24 h) or arrested in metaphase using colcemid. Total cell lysates were ana-
lyzed by Western blotting. (G) DNA damage leads to the appearance of two Cdk1 pools marked with the activating phosphorylation on Thr161 or the 
 inhibitory phosphorylation on Tyr15, each with a distinct subcellular localization. Cytosolic and nuclear fractions were prepared from untreated and NCS-
treated HeLa cells 24–72 h after the treatment and subjected to Western blotting analysis. The degree of fractionation is demonstrated using antibodies 
against α-tubulin and PARP-1, refl ecting cytosolic and nuclear protein fractions, respectively. Asterisks in the cytosol fraction of the PARP-1 immunoblot 
 denote the cross-reactive bands. 
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cells to the appearance of giant multimicronucleated cells, 

which is a hallmark of MCD (Fig. 6, A and C). Caspase 3, acinus, 

and PARP remained intact in these cells (Fig. 6 B). FACS analy-

sis supported the occurrence of apoptosis in U2OS cells, with 

the sub-G1 fraction increasing approximately ninefold, whereas 

the same treatment in HeLa cells resulted in only a 1.7-fold in-

crease in the sub-G1 fraction (unpublished data).

We concluded that the process that begins in HeLa cells 

with UCC and premature mitosis and eventually culminates in 

MCD involves mechanisms distinct from those operative in 

apoptosis, whereas G2/M arrest typical of U2OS cells leads to 

apoptotic cell death.

Defective G2/M checkpoint is important 
but is not the only requirement 
for the UCC–MCD pathway
The role of the p53-mediated G2/M checkpoint in MCD is 

 currently unresolved (Bunz et al., 1998; Chan et al., 1999; 

 Andreassen et al., 2001; Castedo et al., 2004). Data reported 

here imply that a compromised p53-mediated G2/M checkpoint 

might be associated with MCD, but the role of p53 in preventing 

MCD requires further substantiation. We examined MCD in 

a panel of tumor cell lines with different p53 constitutions. 

We also stably knocked down p53 in U2OS cells by expressing 

in them an appropriate shRNA. The p53 status and functionality 

(measured by the ability to induce the gene encoding p21waf1) 

in these cell lines are demonstrated in Fig. S5 A (available at 

http://www.jcb.org/cgi/content/full/jcb.200604022/DC1). After 

NCS treatment, UCC was observed in three cell lines in which 

p53 was impaired—HeLa, 293T, and HCT166 (p53−/−) cells—

but not in other p53-compromised cell lines (Table I and Fig. 

S5 B). Neither increasing the NCS dose (≥500 ng/ml) nor pro-

longing cell exposure to this drug (up to 48 h) changed these re-

sults  (unpublished data). Accordingly, 72 h after NCS treatment, 

MCD was observed only in HeLa, 293T, and HCT166 (p53−/−) 

cells (Table I and Fig. S5 C) but not in the cell lines that did not 

exhibit UCC. Notably, the highest levels of MCD was observed 

in HeLa cells (60–70%), whereas MCD levels in 293T and 

HCT166 (p53−/−) cells reached only 15–20%. Apoptosis was 

the other prominent type of cell death noted to occur at high 

rates in all of these cell lines (with the exception of HeLa cells) 

after DNA damage (Fig. S5 C).

Discussion
MCD results from aberrant mitosis, which fails to produce proper 

chromosome alignment and subsequent chromosome segrega-

tion, and culminates in the formation of large polynucleated cells 

(Erenpreisa and Cragg, 2001; Roninson et al., 2001). Abnormal 

mitosis in drug-treated or irradiated cells may proceed through 

several different pathways, but the fi nal step is almost always the 

Figure 6. DNA damage–induced MCD engages 
mechanisms distinct from those operative in apoptosis. 
(A) HeLa and U2OS cells undergoing MCD and apop-
tosis after DNA damage, respectively. The cells were 
treated with 200 ng/ml NCS for 72 h, immunostained 
with SMC2 (red), and counterstained with DAPI. The 
fi gure represents merged images. Bottom panels show 
the appearance of apoptosis and MCD in NCS-treated 
cells stained with Hemacolor reagents and photo-
graphed under light microscopy. M-labeled arrows in-
dicate MCD, and A-labeled arrows denote apoptotic 
features (pyknosis, apoptotic chromatin condensation, 
and nuclear fragmentation). Bars, 20 μm. (B) DNA-
damaged U2OS but not HeLa cells exhibit biochemi-
cal markers of apoptosis. The cells were treated with 
200 ng/ml NCS for periods ranging from 24 to 72 h. 
Total cell extracts were analyzed by Western blotting. 
U, untreated samples. Hsc70 was used as a loading 
control. (C) MCD develops in DNA-damaged HeLa 
cells (200 ng/ml NCS for 72 h) at high frequency. 
The percentages of mono-, bi-, and polynucleated 
(more than three nuclei) cells were calculated from a 
total of 300 counted cells (n = 4). Each bar represents 
the mean ± SD (error bars). 

Table I. Condensin recruitment and activation of the UCC–MCD 
 pathway in a panel of human cell lines with different p53 constitutions 
treated with NCS

Cell lines p53 status Condensin recruitment 
and UCC

MCD

HeLa Inactivated + +
U2OSwt Wild type – –

U20SshLacZ Wild type – –

U20Sshp53 Knocked down – –

293T Inactivated + +
HCT116wt Wild type – –

HCT116p53−/− Knocked out + +

MDA-MB-231 Mutated – –

MDA-MB-435 Mutated – –

Cells were treated with ≥200 ng/ml NCS and examined for UCC and MCD at 
24 and 72 h, respectively. In HEK 293T cells (293T), p53 is stabilized and in-
activated by SV40 large T antigen (Ahuja et al., 2005). In HCT116 (p53−/−) cells, 
the TP53 gene encoding p53 was inactivated using homologous recombination 
(Bunz et al., 1998). In MDA-MB-231 and -435 cells, both TP53 alleles are 
inactivated by mutations (Gartel et al., 2003). In HeLa cells, p53 is inactivated 
by the HPV-E6 protein (Scheffner et al., 1990).
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formation of nuclear envelopes around individual clusters of 

missegregated chromosomes (Roninson et al., 2001).

At least two mechanisms have been proposed for MCD. 

The fi rst one is based on the aberrant duplication of centrosomes 

that leads to multipolar mitosis and subsequent formation of 

 micronuclei (Sato et al., 2000). The second one is based on cell 

entry into premature mitosis, implying that cells proceed into 

mitosis before the completion of S or G2 phase. Such cells can-

not properly compact their chromatin and segregate their chromo-

somes and must be eliminated. This mechanism offers an 

attractive explanation for DNA damage–induced MCD, but the 

evidence for premature mitosis in damaged cells has rested 

 primarily on the morphological observations of UCC, whose 

mechanism is elusive (Roninson et al., 2001). Thus, elucidation 

of the molecular pathways underlying these processes is a pre-

requisite to understanding MCD. In this study, we provide some 

of the missing components of this process.

Although damage-induced UCC appears, at least morpho-

logically, to differ from other types of chromatin condensation 

in eukaryotic cells such as mitotic or apoptotic chromatin con-

densation, the question arises whether the mechanisms involved 

in mitotic or apoptotic chromatin condensations are involved in 

MCD-related UCC. We demonstrated that UCC engages some 

of the proteins involved in mitotic chromatin packaging but not 

the acinus-mediated mechanism that operates in apoptotic chro-

matin condensation. Condensin recruitment was found to be a com-

mon denominator of mitotic chromatin condensation and UCC, 

but UCC involved activated condensin I and not condensin II, 

thereby differing from mitosis, which entails the recruitment of 

both condensins to chromatin (Hagstrom et al., 2002; Ono et al., 

2004). Because condensin recruitment is important for proper 

chromosome alignment and subsequent segregation, the exclu-

sive targeting of condensin I to damaged chromatin might lead 

to the formation of unaligned, hypercondensed chromatin ag-

gregates typical of UCC.

Another difference between cell progression through nor-

mal mitosis and premature mitosis is unscheduled activation of 

Cdk1. In contrast to cells entering mitosis normally, Cdk1 in 

premature mitosis undergoes unscheduled activation, resulting 

in the appearance of two Cdk1 pools with different subcellular 

localizations. We showed that cyclin B/pThr161-activated Cdk1 

is localized predominantly in the nucleus, whereas Cdk1, which 

is inactivated by Tyr15 phosphorylation, is sequestered pri-

marily in the cytosol. This division of Cdk1 into two pools may 

refl ect two populations of Cdk1 molecules, each characterized 

by different posttranslational modifi cations and each probably 

 capable of responding to different stimuli or interacting with 

different regulators.

DNA damage–induced UCC was noted previously to 

develop in close proximity to the nucleolar site (Roninson 

et al., 2001). Our fi ndings, although confi rming these obser-

vations, also indicate that the number of nucleoli in such cells 

was markedly reduced, mainly to a single enlarged nucleolus. 

We propose that the UCC might entail coalescence of the 

 nucleoli. A similar change in nucleolar morphology resulting 

in a single, enlarged nucleolar body was shown in HeLa cells 

after DNA damage induced by the alkylating agent MNNG 

(Alvarez-Gonzalez et al., 1999), but the underlying mecha-

nisms were unknown. Unscheduled activation of Cdk1 in 

cells with UCC might explain this phenomenon. Because 

Cdk1 was shown to play a role in the maintenance of func-

tional nucleoli and perturbation of its activation was associ-

ated with dramatic changes in nucleolar organization (Sirri 

et al., 2002), it is reasonable to assume that the unscheduled 

activation of Cdk1 could lead to the changes in nucleolar 

morphology. Furthermore, alteration of the nucleolar mor-

phology after DNA damage could result from the marked 

changes in the spatial distribution of condensin. It has been 

recently shown that condensin could take part in nucleolar 

 organization by the arrangement of rDNA gene repeats into 

 heterochromatic-like structures thorough its interactions with 

Sir2p (Machin et al., 2004), a histone deacetylase that deacetyl-

ates histone tails to generate a hypoacetylated histone envi-

ronment characteristic of heterochromatin.

The UCC–MCD pathway was primarily observed in cells 

with compromised p53-mediated G2/M checkpoint functions 

(Chan et al., 2000; Fei and El-Deiry, 2003), although its pivotal role 

in preventing MCD has recently been questioned (Andreassen et al., 

2001; Castedo et al., 2004). In our panel of several human 

cell lines with compromised p53, an impaired p53- mediated 

G2/M checkpoint was not the sole requirement for  activation 

of the UCC–MCD pathway after extensive DNA damage. 

 Presumably, the combination of compromised p53 and im-

paired function of other mediators of G2/M progression are 

 responsible for this phenomenon. Among the possible candi-

dates for such mediators are Chk1, Plk-1, and the Aurora A 

kinase, which were recently shown to play a key role in the 

 reactivation of Cdk1 and onset of mitosis after DNA damage 

(Krystyniak et al., 2006). In addition, it has recently been shown 

that in cells with compromised p53, p73, another member of 

the p53-like family of proteins, can at least partly substitute for 

p53 in cell cycle regulation (Ozaki and Nakagawara, 2005), 

making p73 still another possible candidate for involvement in 

IR-induced MCD.

It is noteworthy that ATM, the chief regulator of cellular 

responses to DSBs, was uninvolved in this pathway. In the face 

of DSBs, ATM mediates the pathways leading to cellular rescue 

and survival on the one hand and apoptosis on the other (Bree 

et al., 2004; Rashi-Elkeles et al., 2006). The ATM-dependent 

apoptotic response relies on functional p53 (Morgan and  Kastan, 

1997; Fridman and Lowe, 2003). Our fi ndings suggest that 

the UCC–MCD pathway is turned on in cells that are destined 

to die and cannot activate the ATM–p53-mediated apoptotic 

pathway. This is probably one of the very few DSB-triggered 

pathways that are ATM independent. This observation draws 

a line between DSB-induced processes that are under ATM 

 jurisdiction and those that are not.

In summary, our fi ndings disclose a cell death pathway 

that is triggered by the extensive induction of DSBs, is ATM 

 independent, and is distinct from the apoptotic pathway. It leads 

to the unscheduled activation of Cdk1 followed by premature 

mitosis characterized by UCC that is associated with recruit-

ment of condensin I to chromatin and ultimately to MCD (Fig. 7). 

Thus, the unscheduled activation of Cdk1 and phosphorylation 
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of the non-SMC subunits of condensin I could be sequentially 

linked. Considering the importance of this pathway in the re-

sponse of tumor cells to radiotherapy and chemotherapy, further 

elucidation of its molecular steps is crucial for understanding 

the action of anticancer drugs and the rational design of thera-

peutic regimens.

Materials and methods
Antibodies and reagents
The following antibodies were used in this study: α-SMC2 (BL548) and 
α-SMC4 (BL551) were obtained from Bethyl Laboratories, Inc.; anti–hCAP-H 
and hCAP-H2 were provided by J.-M. Peters (Research Institute of Molecular 
Pathology, Vienna, Austria); α-SMC1 was a gift from R. Jessberger (Mount 
Sinai School of Medicine, New York, NY); α-nucleolin (7G2) was a gift 
from Y. Shav-Tal (Bar-Ilan University, Ramat-Gan, Israel); α–HP-1α was 
 purchased from Chemicon; α-nucleostemin was obtained from R&D 
 Systems; α-phospho-Cdk1 (pTyr15), α-phospho-Cdk1 (pThr161), α-phospho-
p53 (Ser46), α-cleaved caspase 3 (5A1), and α–PARP-1 were obtained 
from Cell Signaling Technology, Inc.; anti-H2B, α-p53 (DO-1), α-Hsc70, 
and α-Cdc2 p34 were obtained from Santa Cruz Biotechnology, Inc.; 
α-p21waf1 (C19) was obtained from Delta Biolabs; α-acinus (C terminus) 
and α-phospho-histone H3 were purchased from Upstate Biotechnology; 
α-tubulin was obtained from Sigma-Aldrich; and α–cyclin B was obtained 
from BD Transduction Laboratories. Secondary HRP-conjugated as well as 
rhodamine red– and FITC-conjugated antibodies were purchased from 
Jackson ImmunoResearch Laboratories.

DNase-free RNase, DNase-I RNase free, and DAPI were purchased 
from Roche Diagnostics; Yo-Pro-1 was obtained from Invitrogen. Stauro-
sporine was obtained from Cell Signaling Technology, colcemid was pur-
chased from Calbiochem, and NCS was purchased from Kayaka Chemicals.

Cell cultures
HeLa and U2OS cells were obtained from American Type Culture Collec-
tion, MDA-MD-231 and MDA-MB-435 cells were a gift from I. Tsarfaty 
(Tel Aviv University, Tel Aviv, Israel), and HCT116 cells and their p53-null 
variant (HCT116 p53+/+ and HCT116 p53−/−, respectively) were gifts 
from B. Vogelstein (Johns Hopkins University, Baltimore, MD). Cells were 
cultured in the recommended growth media under standard conditions.

DNA damage
DNA damage was induced either by adding NCS to the cultures, by X irra-
diation using an irradiator (MGC40; Philips), or by UV-C irradiation using 
an irradiator (FLX-35M; Vilber Lourmat) at dose ranges of 30–50 J/m2.

Confocal and light microscopy
Cells were fi xed in methanol-acetone (1:1) at −20°C for 5 min. After 
RNase or DNase-I treatments, the cells were blocked in 3% BSA and 
immuno stained. DNA was counterstained with 1 μM Yo-Pro-1 or 0.1 μg/ml 
DAPI. The samples were mounted using an aqueous mounting medium 
(Biomeda) and subjected to confocal microscopy using the AOBS system 
(TCS SP2; Leica) with a HCXPLAPOL NA 1.2 objective lens. All confocal 
images were taken with a 63× water correction objective and operated by 
confocal software (LCS Lite, version 2.5 Build 1347; Leica).

Apoptosis and MCD were visualized by light microscopy. The cells 
were fi xed in methanol, stained with Hemacolor reagents (Merck) as pre-
viously described (Blank et al., 2003), and photographed under a light 
 microscope (Eclipse TE 2000-5; Nikon) with a 20× NA 0.45 plain Fluor 
objective. All comparative images (treated vs. untreated samples) were 
 obtained under identical microscope and camera settings.

DNase treatment
Cells grown on coverslips were treated with DNase-I diluted in Tris-buffered 
saline (25 mM Tris-HCl, pH 7.5) containing 1% BSA and supplemented 
with 5 mM MgSO4 for 1 h at 23°C) as described previously (Barrett et al., 
2001). The cells were either directly processed for immunostaining or were 
processed after extraction of their cleaved DNA (with buffer containing 
20 mM Tris-HCl, pH 7.5, 0.25 M ammonium sulfate, and 0.2 mM MgCl2).

Preparation of protein extracts and immunoblotting
Total cell lysates were prepared using radioimmunoprecipitation buffer 
(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% IGEPAL, 0.1% SDS, and 
0.5% sodium deoxycholate) supplemented with a mixture of protease and 
phosphatase inhibitors. Nuclear and cytosolic extracts were obtained as 
previously described (Blank et al., 2003). In brief, cytosolic extracts were 
prepared using buffer A (10 mM Hepes, pH 7.9, 10 mM KCl, 1 mM EDTA, 
1 mM EGTA, and 1 mM DTT supplemented with a mixture of protease and 
phosphatase inhibitors and 0.6% NP-40). Nuclear extracts were prepared 
by the dissolution of nuclei in buffer C (20 mM Hepes, pH 7.9, 400 mM 
KCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, and a mixture of protease and 
phosphatase inhibitors) using vortex at 4°C for 45 min. Soluble chromatin 
fractions were subsequently prepared from the previous step by sonication 
(40% amplitude; three pulses at 20 s each on ice) in radioimmunoprecipi-
tation buffer. Protein content was calibrated using the bicinchoninic acid 
protein assay reagent kit (Pierce Chemical Co.). The samples were sub-
jected to standard Western blotting analysis. Immunoblots (polyvinylidene 
difl uoride) were visualized using enhanced chemiluminescence (Super-
Signal, Pierce Chemical Co.).

Phosphatase treatment
Reactions were performed on solubilized chromatin fractions in 1× PTase 
buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 0.1 mM EGTA, 2 mM 
DTT, and 0.01% Brij 35) supplemented with MnCl2 using 400 U λ-protein 
phosphatase (λ-PPase; New England Biolabs, Inc.) per 100 μg of extracted 
proteins at 30°C for 1 h and were stopped by supplementation to 50 mM 
EDTA. The extracts were analyzed directly by immunoblotting.

Biparametric fl ow cytometric analysis
Cells were analyzed by two-dimensional fl ow cytometry after costaining 
with an antibody against phosphorylated histone 3 (H3-p, a mitotic marker) 
and propidium iodide (PI) for DNA quantitation. In brief, cells were fi xed, 
permeabilized with 0.25% Triton X-100, incubated with the H3-p antibody, 
labeled with FITC-conjugated anti–rabbit IgG secondary antibody, treated 
with 5 μg/ml DNase-free RNase (37°C for 30 min), and stained with PI. 
Data were collected using FACSort fl ow cytometry (Becton Dickinson) with 
H3-p in the fi rst and PI in the second dimension (10,000 events/sample). 
Cell cycle gating and analysis were performed using WinMDI software.

Generation of mitosis-sequestered cells
Logarithmically growing cultures of HeLa cells were mitotically arrested 
by treatment with 0.1 μg/ml colcemid for 17 h as described previously 
(Duesbery et al., 1997), collected by shake-off, and subjected to Western 
blotting analysis. FACS analysis confi rmed that >90% of colcemid-treated 
cells were in M phase.

RNA interference
p53 was stably knocked down in U20S cells by expressing the appropriate 
shRNA in them using the pRETRO-SUPER retroviral vector (Brummelkamp 
et al., 2002). The sequence 5′-G A T C C C C G A C T C C A G T G G T A A T C T A C T T-
C A A G A G A G T A G A T T A C C A C T G  G A G T C T T T T T G G A A A -’3 was cloned in 
the vector using BglII and HindIII restriction sites.

ATM was knocked down in HeLa cells using a combination of two 
different shRNAs: ATM-I (7218), 5′-G A T C C C C C T G G T T A G C A G A A A C -
G T G C T T C A A G A G A G C A  C G T T T C T G C T A A C C A G T T T T T G G A A A -’3; and 
ATM-II (p480), 5′-G A T C C C C G A T A C C A G A T C C T T G G A G A T T C A A G A G  
A T C T C C A A G G A T C T G G T A T C T T T T T G G A A A -3′ (a gift from R. Agami, 
Netherlands Cancer Institute, Amsterdam, Netherlands).

Irrelevant shRNA against the lacZ operon was used as a control. 
Cells were infected with retroviral particles according to standard protocols 

Figure 7. Proposed mechanisms of premature mitosis and MCD in 
DNA-damaged cells.
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and subjected to selection with puromycin (for shp53 cells) or a combina-
tion of puromycin and hygromycin (for shATM cells).

Statistics
Data were analyzed using the two-tailed t test. P values of <0.05 were 
considered statistically signifi cant.

Online supplemental material
Fig. S1 shows that IR and NCS but not UV trigger the recruitment of con-
densin core subunits to damaged chromatin and the formation of UCC 
bodies. Fig. S2 shows that condensin recruitment and UCC develop in 
HeLa cells as a delayed cellular response to severe DNA damage. Fig. S3 
shows that ATM knockdown does not alter the rate of DSB-induced UCC. 
Fig. S4 shows that condensin and HP-1α strictly colocalize in normal mito-
sis but occupy different compartments in UCC bodies associated with 
 premature mitosis. Fig. S5 shows that the defective p53-mediated G2/M 
checkpoint is important for condensin recruitment, UCC, and MCD but is 
not the sole requirement. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200604022/DC1.
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