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Abstract

Original Article

Introduction

Breast cancer (BC) is one of the most severe and frightening 
diseases that strike women of all ages, impacting one in every 
three women with the condition and having the second‑highest 
death rate after skin cancers.[1] It is common knowledge that 
BCs only occur in women, yet male BC is uncommon but 
not unheard of, accounting for 1% of all cancer diagnoses in 
males globally.[2] Even though women over 50 are more likely 
to have BC, people under 40 can also acquire it.[3] Young 
patients are uncommon in affluent nations, but in areas such 
as Africa and the Middle East, the rate of young BC patients 
can approach 20%, which is relatively high.[4] The etiology of 
BC can be hereditary or environmental, and these variables 
contribute to the onset and recurrence of this potentially fatal 
disease.[5] While proper diagnosis and early therapy can cure 
BC, 30% of patients have a 10‑year survival rate.[6] BC can 
take many different forms. Ductal carcinoma is a noninvasive 
or preinvasive form of BC that begins in the milk dust and 

does not move to the surrounding breast tissue. Invasive 
lobular cancer (ILC) and invasive ductal cancer (IDC) are the 
two types of invasive BC. Other specific forms of BC include 
angiosarcoma, phyllodes tumor, Paget’s disease of the breast, 
inflammatory BC, and triple‑negative BC.[7] ILC is BC that is 
the second most invasive, contributing to 5%–15% of BC.[8‑11] 
This cancer is hormonally estrogen and progesterone receptor. 
The receptor is positive estrogen receptor (ER)/progesterone 
receptor and negative human epidermal growth factor receptor 
2 (HER2).[12,13] These tumors are ill‑defined margins with larger 
shapes[13,14] and metastatic patterns with gastrointestinal and 
peritoneal site movement.[15‑17]

Introduction: Although positron emission tomography/computed tomography (PET/CT) is a common tool for measuring breast cancer (BC), 
subtypes are not automatically classified by it. Therefore, the purpose of this research is to use an artificial neural network (ANN) to evaluate 
the clinical subtypes of BC based on the value of the tumor marker. Materials and Methods: In our nuclear medical facility, 122 BC 
patients  (training and testing) had 18F‑fluoro‑D‑glucose  (18F‑FDG) PET/CT to identify the various subtypes of the disease. 18F‑FDG‑18 
injections were administered to the patients before the scanning process. We carried out the scan according to protocol. Based on the tumor 
marker value, the ANN’s output layer uses the Softmax function with cross‑entropy loss to detect different subtypes of BC. Results: With 
an accuracy of 95.77%, the result illustrates the ANN model for K‑fold cross‑validation. The mean values of specificity and sensitivity were 
0.955 and 0.958, respectively. The area under the curve on average was 0.985. Conclusion: Subtypes of BC may be categorized using the 
suggested approach. The PET/CT may be updated to diagnose BC subtypes using the appropriate tumor maker value when the suggested 
model is clinically implemented.
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The spread of cancer through the lymphovascular system, 
histologic grade, the condition of specific hormone receptors, 
overexpression of ERBB2  (HER2 or HER2/neu), and the 
patient’s menopausal status are all critical variables in the 
prognosis of BC, and therapy varies depending on these 
aspects.[18] The stage at which metastases in lymph nodes (LNs) 
originated is also an essential determinant, with axillary nodal 
metastases being the most relevant for prognostic reasons.[6,18] 
The most important factor for better treatment and a higher 
survival rate is early detection of the malignancy inside the 
patient’s body, which can be accomplished by performing a 
variety of medical tests and techniques on the patients, such 
as nuclear imaging, mammography, biopsy, ultrasound, and 
so on.[19]

The size and grade of the tumor, the patient’s endocrine 
(hormonal) receptor (ER) and HER2 status, the involvement 
of the axillary LNs, and metastatic dissemination are among 
the factors that affect BC therapy and prognoses. The 
degree of axillary LN metastasis is thought to be the most 
accurate indicator of BC survival among these variables.[20] 
Determining the patient’s axillary nodal status before therapy 
is important since it can influence management choices. 
Sentinel LN biopsy, axillary LN dissection, and pathological 
evaluation of aspiration cytology are considered the “gold 
standard” for identifying axillary LN involvement; yet, these 
are invasive techniques. On the other hand, various research 
groups[21‑25] have described the usefulness of noninvasive 
2‑deoxy‑2‑18F‑fluoro‑D‑glucose positron emission 
tomography/computed tomography  (2‑18F‑FDG‑PET/CT) 
for the diagnosis of axillary LN metastasis in patients with 
BC. One of these groups was able to achieve a relatively 
low pooled sensitivity value of 60% and a very high pooled 
specificity value of 97%.[26] Recent artificial intelligence (AI) 
technologies are worth considering to help doctors employing 
2‑18F‑FDG‑PET/CT diagnose axillary LN metastases more 
accurately. Medical image analysis has made extensive 
use of deep‑learning methods, which are based on deep 
convolutional neural networks,[27] such as 2‑18F‑FDG‑PET/
CT.[28]

18F‑FDG PET/CT may be the essential tool for the early 
identification of stage III BC.[29] It is the instrument for 
detecting the sensitivity and specificity of breast carcinoma 
as recurrent.[30] It is also the baseline for diagnosis, prognosis, 

and treatment for BC with optimal nodal staging.[31,32] It 
provided false‑positive findings for malignancies or benign.[33] 
The malignant or synchronous tumor was detected for lesion 
detection using 18F‑FDG PET/CT.[34,35] Based on 18F‑FDG 
PET/CT, an artificial neural network (ANN) was employed for 
predicting pulmonary lesions[36] and head‑and‑neck cancer.[37] 
A deep learning model was also used to detect LNs of lung 
cancer using 18F‑FDG PET/CT.[38]

ANN may also be employed to differentiate between benign 
and malignant tumors based on the quantity of FDG absorption 
by tumor cells in a PET/CT. This software may be used 
to pinpoint a breast tumor’s precise location, whether it is 
malignant or not, and how much it has spread around the area 
since it employs features based on neural connections and can 
readily turn a set of detailed data into a simple output. ANN 
application in nuclear imaging with 18F‑FDG PET/CT for BC 
allows for the precise identification of malignant cells, which 
aids in the diagnosis of BC and optimal treatment planning 
with accuracy. As a result, the aim of this work is to evaluate 
the clinical subtypes of BC based on an ANN on the value of 
tumor markers.

Materials and Methods

One hundred and forty‑two patients participated in the study, 
including training and testing with K‑fold cross‑validation. 
The Institutional Review Board authorized the requirement 
for formal IRB approval, and the parents provided written 
informed consent for the scientific use of the data. There 
were no significant differences for patient characteristics. The 
characteristics are given in Table 1. Table 1 shows the mean age, 
height, weight, blood glucose, injected amount of 18F‑FDG, 
and tumor marker. Table 1 also demonstrates the histological 
subtypes, including IDC, ILC, and other subtypes. The whole 
procedure is shown in Figure 1. Table 1 shows the baseline 
for patients, including age, height, weight, blood glucose, 
injected amount of 18F‑FDG, tumor maker, and histological 
subtypes. The median age, size, weight, blood glucose, injected 
amount of 18F‑FDG, and tumor markers are 50 (26–73) years, 
151  (134–170) cm, 64  (35–148) kg, 6 (3.6–12.4) mmol/L, 
4.97 (2.89–8.84) mCi, and 21.35 (1.3–283) U/ml, respectively. 
The histological subtypes are IDC  (119), ILC  (14), and 
others  (9). Table  2 indicates the case processing summary 
for the ANN, including 142  samples  (training: 98, testing: 

Table 1: Baseline characteristics for patients

Characteristics Median (range, 
minimum–maximum)

Histological subtypes

IDC ILC Others
Age (years) 50 (26–73) 119 14 9
Height (cm) 151 (134–170)
Weight (kg) 64 (35–148)
Blood glucose (mmol/L) 6 (3.6–12.4)
Injected amount of 18F‑FDG (mCi) 4.97 (2.89–8.84)
Tumor marker (CA‑15‑3, U/mL) 21.35 (1.3–283)
ILC: Invasive lobular cancer, IDC: Invasive ductal cancer, 18F‑FDG: 18F‑fluorodeoxyglucose
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44), where 69.0% for the training dataset and 31.0% for the 
testing dataset.

Before the PET/CT scans with 18F‑FDG, every patient had 
fasted for a minimum of 6  h. One hour before to PET/CT 
scans, 4.07 MBq/kg of 18F‑FDG was intravenously given once 
a blood glucose level of <150 mg/dL was confirmed. Using a 
specialized PET/CT scanner, all 18F‑FDG scans were carried 
out in a supine posture from the base of the cranium to the 
proximal thigh  (Philips Healthcare, Cleveland, OH, USA). 
For attenuation correction and anatomical data, a CT scan with 
no contrast enhancement was carried out at 100 mA and 120 

kVp. Using three‑dimensional acquisition mode, a PET scan 
was conducted for 5–7 positions for 1½ min each bed position. 
Using time‑of‑flight reconstruction and point‑spread‑function 
modeling, PET images were reconstructed with attenuation 
correction (2 iterations and 21 subsets). All PET/CT quantitative 
analyses were carried out by two nuclear medicine doctors with 
5 and 12 years of expertise in PET/CT imaging, respectively. 
Every 18F‑fluoride PET/CT picture was quantitatively evaluated 
to identify BC. PET/CT picture quantification was done using 
Metavol® software.[39] The maximal standardized uptake value 
for primary BC was ascertained. Figure 2 shows BC.

ANN model is described in Figure 3. Three layers make up the 
model: input, hidden, and output. The input and output layers 
are linked to the neurons. The input layer included age, height, 
weight, blood glucose, injection amount, and tumor marker. 
To minimize the loss function, the output layers employed the 
Softmax activation function with cross‑entropy. The label of 
the output layer was IDC, ILC, and other subtypes. The model 
was specified with synaptic weight >0 and synaptic weight <0. 
The values of the learning rate, momentum, interval offset, 
and interval center were, in order, 0.4, 0, 0.9, and 0.5. The 
epoch had a maximum value of 100. K‑fold cross‑validation 
was used to divide the data into training and testing sets. The 
loss function, which is cross‑entropy loss, is described below:

The cross‑entropy:

( )l = -  log  
m

i i
i= j

y p∑ � (1)

where l defines the loss and { }0,1iy ∈  describes the category. 
To determine the prediction confidence pi, m denotes the 
number of types.[40,41]

Figure 1: The illustration for estimating histological subtypes for breast 
cancer using an artificial neural network based on the value of the 
tumor maker. 18F‑FDG: 18F‑fluoro‑D‑glucose, PET/CT: Positron emission 
tomography/computed tomography, ANN: Artificial neural network

Table 2: Summary for cases to build up the artificial 
neural network model

Case processing summary

Sample n (%)
Training 98 (69.0)
Testing 44 (31.0)
Total 142 (100.0)

Figure 2: 18F‑fluorodeoxyglucose positron emission tomography/computed tomography for breast cancer. (a) PET/CT fusion image (axial section). 
The blue arrow indicates breast cancer (upper left). (b) CT image in Axial section (Upper Right). (c) PET image in Axial Section (lower left). (d) PET 
image in coronal section (Lower Right)

a b
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The Softmax function is:

1

i

i

x

i x
j=

eP =
e∑

� (2)

where xi is the feature for the ith category. The Softmax 
activation function can be distributed for the normalized 
categorical distribution. The highest value is highlighted, 
and other matters are super impressed due to the exponential 
function.[41,42]

The output value for IDC, ILC, and other subtypes is shown 
in Supplementary Figures  1‑3, respectively. The Softmax 
activation function provides discounts between 0 and 1, and the 
sum will be 1. It will maintain the order, rank, and sequence. 
Nearly 1 will have the highest likelihood, and 0 will have 
the lowest possibility. The desired and model output is in the 
following:

IDC, for instance, is the input. The logits for the quantity of 
injected activity were 7.39 mCi, 5.56 mCi, and 3.45 mCi, in that 
order. We discovered that the output probabilities are 0.85, 0.13, 
and 0.02, respectively, using the Softmax activation function in the 
output layer. The intended output for Class IDC is (1, 0, 0), which 
we quantify using the cross‑entropy; nevertheless, Supplementary 
Figure 1 shows that the model output is (0.85, 0.13, 0.02).

ILC, for instance, is the input. Similarly, the logits for the 
quantity of injected activity were 7.39 mCi, 5.56 mCi, 
and 3.45 mCi, correspondingly. We determined the output 
probabilities to be 0.85, 0.13, and 0.02, respectively, using the 
Softmax activation function in the output layer. For Class ILC, 
we measure the desired output (0, 1, 0) using the cross‑entropy; 
however, Supplementary Figure 2 shows that the model output 
is (0.85, 0.13, 0.02).

Other subtypes are an example of the input. Similarly, the 
logits for the quantity of injected activity were 7.39 mCi, 5.56 
mCi, and 3.45 mCi, correspondingly. The output probabilities 
that resulted from using the Softmax activation function in the 
output layer were 0.85, 0.13, and 0.02, in that order. For the 
other subtypes, we measured the intended output {0,0,1} using 
the cross entropy; however, Supplementary Figure 3 shows 
that the model output is (0.85, 0.13, 0.02).

The Transport Reporting of Multivariable Prediction Model for 
Individual Prognosis Or Diagnosis indicates that[43] there is no 
recommended random selection for the prediction model for 
training and validation data for minor cases. The input feature 
for preprocessing was normalized. Using the original search 
engine, Wrapper was the subset evaluator that was applied to 
obtain the best feature section for the model of subtypes for 
BC through Waikato Environment for Knowledge Analysis.

Statistical techniques
An ANN system was created using IBM Crop., Armonk, 
New York, USA’s SPSS software (Version 21.0). GraphPad 
Prism 8 was used for the attributes of tumor subtypes. P values 
were deemed statistically significant if they were < 0.05.

Results

Table 3 shows the ANN models, including input, hidden, and 
output layers. The out layer provided the subtypes such as IDC, 
ILC, and other subtypes using cross‑entropy function with 
Softmax activation function [Figure 3]. Figure 3 indicates the 
significant level for the attributes of BC subtypes (a) IDC, (b) 

Figure 3: Artificial neural networks for obtaining subtypes (invasive ductal 
cancer, invasive lobular cancer, and others) used the sigmoid function as 
a hidden layer and output layer with the Softmax function. ILC: Invasive 
lobular cancer, IDC: Invasive ductal cancer

Table 3: Details of the parameters for the input, hidden, 
and output layers

Network information
Input layer

Covariates
1 Age
2 Height (cm)
3 Weight (kg)
4 Blood glucose
5 Injected amount
6 Tumor marker

Number of unitsa 6
Rescaling method for covariates Standardized

Hidden layer (s)
Number of hidden layers 2
Number of units in hidden layer 1a 5
Number of units in hidden layer 2a 4
Activation function Sigmoid

Output layer
Dependent variables

1 Class
Number of units 3
Activation function Softmax
Error function Cross‑entropy

aExcluding the bias unit
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ILC, and  (c) others. The attributes of blood glucose and 
injected amount are nonsignificant to each other. In contrast, 
the attributes of tumor marker is significant with blood glucose 
and injected amount for subtypes IDC, ILC, and others, 
respectively [Figure 4].

Table 4 demonstrates the confusion matrix for the ANN model 
of BC subtypes. The diagonal element indicates the number of 
correct subtypes for IDC (119), ILC (10), and others (7), and 
also the no diagonal part present for the noncorrect number 
of subtypes, respectively, to count the accuracy of the model. 
The ANN model with an accuracy of 95.77% for K‑fold 
cross‑validation is shown in Supplementary Table  1. The 
corresponding averages for specificity and sensitivity were 
0.889 and 0.958. The area under the curve (AUC) on average 
was 0.985. Figure 4 describes the attributes of the subtypes of 
the tumor. The tumor marker was higher than all other attributes 
where the injected amount was lower. Figure 5 indicates the 
receiver operating characteristic curve, demonstrating that the 

AUC values are 0.9872, 0.9637, and 0.995 for IDC, ILC, and 
other subtypes, respectively.

Discussion

The use of 18F‑FDG PET/CT for prognostic and therapeutic 
purposes has been demonstrated for early BC diagnosis.[44‑46] 
Groheux et al.[47] demonstrated the subtypes of BC for early 
detection based on the pathology response. Usmani et al.[48] 

Figure 5: The receiver operating characteristic curve for invasive ductal cancer, invasive lobular cancer, and other subtypes of breast cancer. AUC: 
Area under the curve, ILC: Invasive lobular cancer, IDC: Invasive ductal cancer

Table 4: Confusion matrix used artificial neural network 
for obtaining subtypes

Confusion matrix

a b c Classified as
119 0 0 a=IDC
3 10 1 b=ILC
0 2 7 c=Others
ILC: Invasive lobular cancer, IDC: Invasive ductal cancer

Figure 4: (a) The expression for the value of attributes for invasive ductal cancer, (b) The expression for the value of attributes for invasive lobular 
cancer, and (c) The expression for the value of attributes for other subtypes. The significance (P < 0.05) is indicated by the asterisk. ILC: Invasive 
lobular cancer, IDC: Invasive ductal cancer

cba
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find out the evaluation and answer of breast lymphoma. Taralli 
et  al.[49] proposed that good outcomes were obtained when 
an ANN was used to predict nodal involvement in nonsmall 
cell lung cancer preoperatively using 18F‑FDG‑PT/CT. Luo 
et  al.[36]  suggested an ANN model for solitary pulmonary 
lesions, demonstrating the AUC was 83.3%, 86.7%, and 
86.0% for three models that indicated the ability of the model 
to measure the improvement of diagnostic accuracy. The 
accuracy measurement for BC diagnosis demonstrating an 
AI‑based deep learning model was widespread and included 
18F‑FDG‑PET/CT.[27,28] Li et al.[50] showed that the AI‑based 
deep learning model to evaluate the LN metastasis using the 
improvements in accuracy, sensitivity, and specificity with 
18F‑FDG PET/CT was 64.2%, 99.5%, and 0.5%, respectively. 
Inaki et al.[51] provided an ANN model for the diagnosis of 
bone scan index for BC patients using 18F‑FDG PET/CT. 
Lung, breast, head‑and‑neck, and cervical cancers may all 
be detected and diagnosed with AI. Machine learning can 
differentiate tumors, segmentation, staging, and assessment 
response, but the routine‑based AI for cancer diagnosis with 
radiomics is limited.

A pilot study has been conducted to identify tissue signatures 
with sensitivity and specificity using 18F‑FD in PT/CT, 
demonstrating that AI can recognize the lesion of breast cancer 
based on deep learning.[52] Li et al.[50] proposed an AI‑based 
model for diagnosing using 18F‑FDG‑PT/CT for axillary 
LN metastasis in BC, describing a sensitivity of 64.2% and 
specificity of 99.5% where the clinical result was better than 
the result of AI‑based diagnosis. Still, AI belongs to a positive 
impact on the accuracy of diagnosis.

Dihge et al.[53] proposed an ANN model for predicting nodal 
status for BC. Sepandi et al.[54] suggested an AAN model for 
the recommendation of predictive biopsy value for assessment 
of the diagnosis, exhibiting an AUC of 0.955, sensitivity of 
0.82, and specificity of 0.90. A model was proposed for ANN 
based on ultrasound imaging in BC, described with an accuracy 
of 92.4%.[55]

Early cancer detection has been focused on the literate based 
on the ANN model with image processing.[56] A deep learning 
model for BC was proposed by Jia et al.; it showed an AUC of 
0.99, sensitivity of 96.32%, and specificity of 89.59%.[57] Ren 
et al. presented a CNN‑based model that uses 18F‑FDG‑PET/
CT to detect BC metastasis for T1‑W magnetic resonance 
imaging  (MRI), T2‑W MRI, dynamic contrast‑enhanced 
MRI, T1‑W  + T2W MRI, and dynamic contrast-enhanced 
DECE‑T2‑W MRI. They showed that the accuracy ranged 
from 86.08% to 88.50% and the AUC was between 0.804 and 
0.882.[58] In our study, the ANN model yielded a sensitivity of 
0.958 and a specificity of 0.889, respectively. Its AUC was 
0.985. The AUC values were 0.9872, 0.9637, and 0.985 for 
IDC, ILC, and other subtypes.

In spite of the success of this research, some things could be 
improved. First, we need to follow up with the patients. We 
use only data from our institute, not other institutes. It needs 

to check data from other institutions for diversity. Second, the 
sample size was small. Third, it is difficult to go into detail 
about the integration and relationship between the unknown 
variables even if the accuracy was higher. Finally, our proposed 
model and clinicians’ merit would be considered to be practiced 
clinically if we investigate a large dataset with other machine 
learning models.

Conclusion

This conclusion is supported by the research’s findings and 
the information at hand. For training and testing, the accuracy, 
sensitivity, and specificity were better. The suggested method 
can identify if a breast tumor belongs to the IDC, ILC, or 
another subtype. After the recommended method is put into 
practice clinically, it might build an 18F‑FDG PET/CT to 
identify the subtypes based on the characteristics of the tumor 
using the ANN model.
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Supplemental Figure 2: Based on the output label, invasive lobular cancer, the artificial neural network’s output values in the output layers use the 
cross‑entropy and Softmax functions. ILC: Invasive lobular cancer, IDC: Invasive ductal cancer, ANN: Artificial neural network

Supplemental Figure 1: Based on the output label invasive ductal cancer, the artificial neural network’s output values are calculated using the 
cross‑entropy and Softmax functions in the output layers. ILC: Invasive lobular cancer, IDC: Invasive ductal cancer, ANN: Artificial neural network

Supplemental Figure 3: Based on the output label and other subtypes, the artificial neural network’s output values are determined by utilizing the 
cross‑entropy and Softmax functions in the output layers. ILC: Invasive lobular cancer, IDC: Invasive ductal cancer, ANN: Artificial neural network



Supplemental Table  1: An overview of the stratified 
cross‑validation artificial neural network model
Correctly classified instances, n (%) 136 (95.77)
Incorrectly classified instances, n (%) 6 (4.23)
Kappa statistic 0.8424
Mean absolute error 0.0533
Root mean squared error 0.1711
Relative absolute error (%) 27.27
Root relative squared error (%) 55.54
Total number of instances 142


