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Abstract

Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a
central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population
genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the
SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a
striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated
with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs
associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets
related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial
distribution of variation in humans.
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Introduction

Climatic factors like temperature and humidity play an

important role in determining species distributions and they likely

influence phenotypic variation of populations over geographic

space. Several eco-physiological ‘‘rules’’ have been proposed to

predict variation in body size, pigmentation and body dimensions

as functions of climate or geography [1–3]. Many subsequent

studies showed support for Bergmann’s and Allen’s rules both

within (e.g. [4–7] and among species (e.g., [8–11]. Additional

evidence for observed gradients in other phenotypes over space as

well as observed correlations between phenotypes and ecological

factors led Julian Huxley to define the term ‘‘cline’’ to refer to ‘‘a

gradation in measurable characters’’ [12]. Huxley stressed the

importance of distinguishing between phenotypic variation with a

genetic basis and variation resulting simply from phenotypic

plasticity.

Since human populations occupy a wide variety of environ-

ments with respect to climate, selective pressures are expected to

vary greatly across geographic regions. Adaptations to spatially

varying selective pressures are evident in the geographic

distributions of many traits. For example, significant correlations

exist between body mass and temperature [13–14], consistent with

Bergmann’s and Allen’s Rules. Furthermore, there is evidence that

human metabolism has been shaped by adaptations to cold stress

from studies of arctic populations, which exhibit elevated basal

metabolic rates compared to non-indigenous populations [15].

Like body mass, variation in skin pigmentation is strongly

correlated with climate and geography, i.e. distance from the

equator and solar radiation [16–17]. Lighter pigmentation is likely

to be adaptive in high latitudes, in part, because UV light is

needed to penetrate the skin to produce vitamin D [16–19], which

is necessary for calcium absorption and bone growth.

For these ecoclines to be evolutionarily relevant, they must have

a genetic basis. Several studies have examined the distributions of

genetic variants in candidate genes for traits that vary with climate.

Latitudinal clines of allele frequencies have been observed for

several protein polymorphisms in humans (e.g. [20–21]). Further-

more, candidate gene approaches in humans as well as several

other species support roles for selection at genetic variants that

underlie phenotypic variation. For example, in humans, candidate

gene studies have yielded evidence that variants involved in

sodium homeostasis and energy metabolism are correlated with

latitude and climate [22–24]. In addition to individual candidate

genes, strong correlations between allele frequency and climate

variables were found at high-density tagging SNPs in a set of 82
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genes within the network associated with common metabolic

disorders; in this study, the enrichment was assessed relative to a

limited set of control SNPs [25]. In Drosophila melanogaster, variants

involved in circadian rhythms, aging and energy metabolism are

correlated with climate (e.g. [26–30]), in Arabidopsis thaliana,

variants associated with flowering time are correlated with latitude

[31–33], and in pines several genes contain variation that is

correlated with temperature [34]. In addition, two recent studies

that assayed hundreds of transposable elements in Drosophila

melanogaster [35] and nearly 2000 SNPs in Pinus taeda [36] identified

loci with evidence of selection related to climate.

In addition to correlations between allele frequencies and

continuous climate variables, adaptations to different local

environments can be identified by contrasting allele frequencies

across populations classified based on categorical environmental

variables, analyzed in a dichotomous manner. Studies of

individual candidate genes have detected signals of correlation

between allele frequencies and diet or mode of subsistence [37–

38]. Recently, worldwide allele frequency data for SNPs on a

genome-wide genotyping platform were analyzed to test for

correlations between allele frequencies and categorical variables

for main dietary component, mode of subsistence and ecoregion

[39]. Though analyses of dichotomous variables are expected to

be less powerful than tests of variables over a continuous range,

this study found significant evidence at the genome-wide level

for adaptations to a diet rich in roots and tubers, a foraging

subsistence as well as polar, dry, and humid temperate

ecoregions.

When assessing evidence for an ecocline, it is crucial to control

for population history, which can pose several challenges for

accurately assessing whether a correlation between a genetic

variant and latitude or climate is due to natural selection [40]. For

example, if migration patterns correspond closely with variation in

a particular climate variable, the correlations between neutral

alleles and that climate variable may be high even if selection has

not acted on the locus. Conversely, if the effects of selection are

subtle relative to the effects of population structure on allele

frequencies, significance of correlations may be underestimated if

population history is not taken into account. Using information

about the background levels of variation in the genome, the

relationships among populations can be modeled and the signal

due to population structure can be taken into account.

Here, we use the same allele frequency data analyzed in

Hancock et al (2010) [39] to test for adaptations to continuous

climate variables at the genome-wide level and to identify genetic

loci that underlie these adaptations. While several genome-wide

scans for selection have been conducted in humans [41–47], only

two used information about the environment to detect signatures

of selection on a genome scale [39,48]. However, these previous

studies used less informative variables compared to those used

here. Hancock et al. (2010) used dichotomous variables for the

analysis and Fumagalli et al. (2010) used highly ascertained virus

diversity data collected on a country-wide scale. Because the

climate variables used here are continuous and are collected over a

local scale, these analyses are expected to result in a more precise

detection of selection signals. Further, since the continuous climate

variables are only partially correlated with diet, subsistence and

ecoregion, the present analysis detects new selection signals

compared to those reported in Hancock et al (2010) [39] and

those from other genome scans for selection. Importantly, while

the adaptations to diet, subsistence and ecoregion tended to

coincide with susceptibility SNPs for metabolic diseases and traits,

the signals identified in this study show a different pattern, with a

prominent role for pigmentation and immune response pheno-

types. Therefore, through our approach, the impact of different

selective pressures can be examined by testing for different (even if

not completely independent) environmental variables.

Results

We analyzed genome-wide SNP data for 5 human populations

genotyped by the Di Rienzo lab (Vasekela !Kung sampled in

South Africa, lowland Amhara from Ethiopia, Naukan Yup’ik and

Maritime Chukchee from Siberia, and Australian Aborigines Text

S1) to complement publicly available data for the same SNPs in 52

Human Genome Diversity Project panel (HGDP) populations [49]

and 4 HapMap Phase III populations (Luhya, Maasai, Tuscans

and Gujarati) (www.hapmap.org). The 5 populations we geno-

typed are especially valuable because they expand information in

Africa and Oceania where HGDP population coverage is low and

they extend the range of environments to cover more extreme

arctic climates. For each of the 61 populations, we gathered

environmental data for nine continuous climate variables, chosen

to capture those aspects of climatic variation that have a strong

impact on human physiology (Figure 1). We note that these

climate variables are meant as simple proxies for selective

pressures that are likely more complex. Furthermore, the observed

associations with particular climate variables may reflect selection

for unrelated, but correlated, environmental pressures.

We assessed the evidence for a correlation between the allele

frequency of each SNP and each environmental variable using a

Bayesian linear model method that controls for the covariance of allele

frequencies between populations due to population history and

accounts for differences in sample sizes among populations [50]. Using

a large set of randomly chosen SNPs, we estimated a covariance

matrix of allele frequencies across populations. This covariance matrix

forms the basis of the null model for the transformed allele frequencies

at a SNP to be tested. Under the alternative model, this null model is

augmented by a linear effect of an environmental variable.

At each SNP tested the method yields a Bayes factor (BF) as a

measure of the support for the alternative model relative to the null

model, in which the transformed population allele frequency

distribution is dependent on population structure alone. In other

words, the method asks whether selective pressures correlated with a

Author Summary

Classical studies that examined the global distributions of
human physiological traits such as pigmentation, basal
metabolic rate, and body shape and size suggested that
natural selection related to climate has been important
during recent human evolutionary history. We scanned the
human genome using data for about 650,000 variants in
61 worldwide populations to look for correlations between
allele frequencies and 9 climate variables and found
evidence for adaptations to climate at the genome-wide
level. In addition, we detected compelling signals for
individual SNPs involved in pigmentation and immune
response, as well as for pathways related to UV radiation,
infection and immunity, and cancer. A particularly
appealing aspect of this approach is that we identify a
set of candidate advantageous SNPs associated with
specific biological hypotheses, which will be useful for
follow-up testing. We developed an online resource to
browse the results of our data analyses, allowing
researchers to quickly assess evidence for selection in a
particular genomic region and to compare it across several
studies.

Adaptations to Climate-Mediated Selection
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climate variable have shaped spatial patterns of allele frequencies

above and beyond the effect of population structure (as captured by

the covariance matrix). As shown in Text S1, the population

covariance matrices of the null model recover similar population

clusters as those observed using other methods (e.g., STRUCTURE

[49–52]) suggesting that our method captures the broad patterns of

human population structure. It should be noted that the SNPs on

the Illumina chip represent a biased subset of human diversity and

this bias may affect measures of population differentiation [53].

However, while this may distort our estimate of the covariance

matrix, it reflects the effect of population structure for the SNPs that

we are testing, thus providing the correct adjustment for our test.

Although several SNPs had very large BFs with climate variables

and might be considered ‘‘genome-wide significant’’ using general

assumptions (see Methods, Text S2), BFs can be substantially

inflated due to potential imperfections in the null model. Therefore,

we used the BF only as a descriptive statistic to represent the

strength of a correlation between each SNP and climate variable. In

subsequent analyses, we ranked the SNPs based on their BFs to

calculate a transformed rank statistic, with higher BFs correspond-

ing to lower ranks (this transformed rank statistic is sometimes

referred to as an ‘empirical p-value’). To account for possible

differences in the distributions of the BFs across SNPs with different

mean allele frequencies and ascertained using different schemes, we

binned SNPs by global allele frequency and ascertainment panel (for

a total of 30 separate bins). For each climate variable, each SNP was

ranked relative only to the SNPs in the same bin; as a consequence,

the lowest possible rank is in the order of 1025.

We summarized the rank statistics for each SNP by calculating

the minimum rank across all nine climate variables. To test for

evidence of selection on the climate variables overall, we then

calculated the proportion of SNPs likely to be enriched for

functional effects (referred to as test SNPs) relative to the

proportion of SNPs likely to be neutrally evolving (referred to as

neutral SNPs) in the lower tail of the minimum rank distribution.

In the absence of selection, equal proportions of these two classes

of SNPs are expected to lie in the extreme tail of the BF

distribution for any given cutoff. Conversely, if a higher portion of

the test SNPs were targeted by selection than the neutral SNPs, an

enrichment of test SNPs in the lower tail of the minimum rank

distribution is expected. Conducting the analysis on the minimum

rank statistic allowed us to assess the evidence of selection from the

nine climate variables, overall. We also asked which of the

individual climate variables were responsible for the signals we

observed. For this analysis, we calculated the rank statistic for each

SNP and each individual climate variable and, as in the previous

analyses, we looked for an enrichment of large BFs among test

compared to neutral SNPs. Finally, for individual SNPs that are

discussed below, we quote the BF and the empirical rank specific

to their ascertainment and mean frequency bin.

Genic and nonsynonymous SNPs are enriched for signals
of adaptations to climate

As shown in Table 1, there is an enrichment of test SNPs with

large BFs relative to neutral SNPs; that is, the ratios of the

proportions of both genic and nonsynonymous (NS) SNPs to the

Figure 1. Climate variables used for the analysis. (A) Maps show the distributions of summer and winter climate variables: maximum summer
temperature, minimum winter temperature and solar radiation, precipitation rate and relative humidity in the summer and winter. (B) A heatmap
shows the absolute values of Spearman rank correlation coefficients between pairs of climate variables.
doi:10.1371/journal.pgen.1001375.g001
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proportion of non-genic SNPs are significantly greater than 1

across three tail cutoffs (0.5%, 0.1% and 0.05%) of the minimum

rank statistic distribution. Furthermore, the enrichment of genic

and NS SNPs becomes progressively greater in the more extreme

parts of the tail. Consistent with the fact that a larger fraction of

NS SNPs compared to genic SNPs have functional effects, there is

a greater enrichment of NS SNPs compared to genic SNPs in the

tails of the distribution. These patterns suggest that the tail of the

BF distribution contains true targets of positive selection. We next

asked which individual variables were responsible for the

enrichment of genic and NS SNPs observed in Table 1. As shown

in Table 2, several individual climate variables exhibited strong

signals, including latitude, solar radiation, relative humidity and

temperature.

Figure 2A and 2B and Figure S1 show the patterns of allele

frequency variation across populations for the SNPs with the

strongest signals with each climate variable. We found that strong

correlations at individual SNPs can result in diverse types of

patterns. For example, while some signals appear to be driven by

subtle, but consistent, changes in allele frequencies across regions

(Figure 3A, 3B, 3E), others appear to be driven by only a subset of

the regions (Figure 3F).

Among the strongest signals are several NS SNPs in genes that

may play roles in heat and cold tolerance and in disease resistance.

A SNP in keratin 77 (KRT77) (rs3782489), a gene that is

specifically expressed in the ducts of eccrine sweat glands, is

strongly correlated with summer solar radiation (log10BF = 9.12,

rank statistic = 2.461025), suggesting that this SNP may influence

temperature homeostasis through sweating (Figure 3A). A SNP

(rs2075756) in TRIP6 has strong signals with absolute latitude

(log10BF = 9.47, rank statistic = 1.461024) and minimum winter

temperature (log10BF = 11.6, rank statistic = 4.061024)

(Figure 3B). TRIP6 interacts with LPA and thyroid hormones,

proteins known to play a role in energy metabolism and basal

metabolic rate [54], and implicated in the immune response to

bacterial pathogens [55] and tumor invasiveness [56].

The plots in Figure 2A and 2B and Figure 3A, 3B, 3E show that

the signals detected by our method consist of correlations between

allele frequencies and climate variables that occur in parallel in

multiple geographic regions, even though the slope of the

correlation and the average allele frequency may vary across

regions. These patterns indicate that human population structure

can strongly influence the distribution of allele frequency of

variants targeted by spatially-varying selective pressures. Further-

more, these patterns are reminiscent of the independent latitudinal

clines observed in different hemispheres at the Adh locus in

populations of Drosophila melanogaster [57]; these inverse clines

are often considered the hallmark of climate-related selective

pressures.

Correlations with climate within geographically-
restricted population subsets

Several recent studies have shown that convergent evolution

underlies similarities in some phenotypes, e.g., skin pigmentation

[58–59] and lactase persistence [60], across geographically

separated populations, implying that similar environmental

pressures can select different beneficial alleles in different

populations. Therefore, SNPs selected in a geographically

restricted subset of populations may be missed in the above

analysis of worldwide populations. To improve our power of

detecting this class of SNPs, we conducted the climate analysis

within two population subsets: the populations in Africa and

Western Eurasia (AWE), including the Middle East and West Asia,

and the populations in Africa, East Asia and Oceania (AEA) (Text

S3). These population subsets are suggested as natural groupings

by previous work on both genome-wide and putatively selected

loci in the HGDP [43,52]. Plots of the strongest signals for each

climate variable in the AEA and AWE subsets exhibit patterns that

are indeed restricted to the specific regions included in each

analysis (Figure 2C, 2D, Figures S2, S3, S4,).

Despite the smaller number of populations in each subset

compared to the worldwide set, we find a significant enrichment

overall for genic SNPs with strong correlations with climate

relative to nongenic SNPs in all population subsets (Table 1). We

found stronger evidence for selection in the AWE compared to the

AEA population subset (even though the numbers of populations

in the two subsets are similar). Several individual variables showed

strong enrichment for genic and/or NS SNPs; the most striking

were for the AWE population subset with relative humidity and

solar radiation (Table S1).

There are several interesting genic and NS SNPs with strong

signals in either the AEA or the AWE population subset. For

example, several SNPs in the CORIN gene region (rs4558836,

rs6447571, rs17601068) have strong signals with latitude and

minimum winter temperature (log10BF = 21.9, 28.7 and 20.8 and

rank statistics of 2.061025, 3.161025, and 2.161025 with

minimum temperature) in the AEA subset, but do not have strong

signals with any climate variable in the AWE subset (Figure 3C).

This gene has an important role in cardiovascular health because

it encodes a protein that activates the precursor of natriuretic

peptide, which in turn regulates blood volume and pressure. In

addition, variation in CORIN may play a role in pigmentation;

CORIN is an upstream regulator of agouti and variation in the

gene in mice affects coloration (H. Hoekstra, personal communi-

cation). Three NS SNPs in the toll-like receptor gene cluster (TLR1

N248S, TLR6 S249P and TLR10 N241H) are strongly correlated

with winter solar radiation in the AWE subset, but not in the AEA

subset (log10BF = 9.0, 4.4, 10.2, and rank statistics = 3.061025,

2.961025, 3.661025). At TLR6 N249S (rs5743810), which is

associated with variation in resistance to malaria, the allele that

confers resistance occurs at high frequency in Africa and Asia and

lower frequency in European populations (Figure 3D). Population

differentiation between European and South West Asian popula-

tions as measured by FST is also extremely high for this SNP [44].

Concordance of signals between the population subset
and the worldwide analyses

The majority of strong signals are specific to each population

subset and do not overlap with those found in the worldwide

Table 1. Proportions of genic and nonsynonymous SNPs
relative to the proportion of non-genic SNPs in the tail of the
minimum rank distribution.

Variable
category

Population
set Genic:Nongenic NS:Nongenic

tail cutoff tail cutoff

0.05 0.01 0.005 0.05 0.01 0.005

Climate Worldwide 1.08*** 1.14*** 1.18*** 1.25* 1.58*** 1.63**

AWE 1.06*** 1.12*** 1.12** 1.17** 1.37** 1.61*

AEA 1.03 1.09** 1.17*** 1.06 1.23 1.20

Symbols *, ** and *** denote support from .95%, .97.5% and .99% of
bootstrap replicate, respectively.
doi:10.1371/journal.pgen.1001375.t001
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analysis, suggesting that either the true selection pressures are

more localized than our climate variable proxies or that many

variants have undergone convergent evolution. However, there is

also a strong enrichment of overlapping signals between each

subset and the worldwide analysis compared to the overlap

expected by chance (Figure 4, Text S3). Moreover, the minimum

ranks in the AWE and AEA population subsets are weakly

correlated (Spearman’s rho = 0.19), while the correlation for each

population subset and the worldwide analysis was substantially

higher (Spearman’s rho = 0.42 for AWE versus worldwide and

Spearman’s rho = 0.33 for AEA versus worldwide). These results

indicate that some of the geographically restricted signals may be

strong enough to be detected in both the subset and the worldwide

analyses.

Comparison to other studies of ecoclines
The analyses performed here are similar to a previous in-depth

study of the energy metabolism pathway [25], but they also differ

in several important respects. Specifically, the present study

includes more populations (62 versus 54), has lower SNP density

per gene, does not apply a minor allele frequency cutoff and uses a

much larger number of SNPs as controls. In the previous study, we

asked whether genes involved in energy metabolism as a group

showed evidence of selection while in this study we test for

evidence of selection at the genome-wide level. The inclusion of

additional populations should increase the power to detect

evidence of selection on this pathway, while the decreased SNP

density and lack of a minor allele frequency cutoff should decrease

power. It is hard to predict how the results are affected by the

different set of control SNPs, although the larger number of

control SNPs here is expected to result in a more accurate

assessment of the relative strength of the signal.

To understand the effects of these differences, we compared the

results from the two studies. First, we asked whether strong

correlations with climate were enriched in the same energy

metabolism gene set relative to other genic SNPs (using the same

tail cutoffs we used for the tests of genic and NS SNP enrichment).

We did not find a significant enrichment of signal for this gene set

in this analysis (Table S2). To better understand what caused the

difference, we conducted several additional analyses. We analyzed

only the data for the subset of 52 populations that were included in

both analyses, with and without the SNPs that were genotyped in

Hancock et al (2008) [25]. There was no significant enrichment of

signal for the energy metabolism gene set when only the Illumina

650Y SNPs were included; however, there was a significant

enrichment of signal for several variables when the SNPs

genotyped in Hancock 2008 were included, even though here

the enrichment was assessed compared to a much larger set of

genome-wide control SNPs [25] (Table S2). This suggests that the

most important difference between this study and the previous one

was the density of SNPs genotyped.

We also asked how our results compared to those from a recent

analysis using the same populations and data, but different

environmental variables (i.e. dichotomous variables that summa-

rized information about ecoregion, diet and subsistence). We

found significant, but weak correlations between the results from

this analysis and the previous one (Pearson’s correlation

coefficients range from 20.001 (between average maximum

temperature in the summer and a horticultural subsistence pattern)

to 0.3 (between relative humidity in the summer and dry

ecoregion)) and that the majority of the strongest signals differed

across tests (Figures S5 and S6). We also compared our results to

the top 30 regions identified in a scan for correlations between

SNP allele frequency and virus diversity [48], but did not find any

overlap in the extreme tail. The strongest climate transformed

rank statistic for any variable with virus diversity was 0.002 for a

SNP (rs4852988) in Annexin IV with solar radiation in the

summer. This gene is involved in the NF-kappaB signaling

pathway [61] and is implicated in renal and ovarian clear cell

carcinoma [62–64].

Overlap with results from GWAS
Results of genome-wide association studies with diseases and

other complex traits offer an opportunity to connect signals of

selection with SNPs influencing specific traits and diseases. To this

end, we identified a subset of SNPs with extremely large BFs for

climate variables that were also strongly associated with traits

based on the results of 106 GWAS (Table 3). Among the SNPs

that were strongly correlated with climate, several are implicated

in pigmentation and autoimmune disease. Signals with pigmen-

tation appear to be driven mainly by patterns in the AWE subset,

possibly reflecting the fact that most GWAS studies were

Table 2. Proportions of genic and nonsynonymous SNPs relative to the proportion of non-genic SNPs in the tails of the individual
variable distributions.

Season Variable genic:non-genic NS:non-genic

tail cut-off: tail cut-off:

0.05 0.01 0.005 0.05 0.01 0.005

Latitude 1.07 *** 1.14*** 1.19*** 1.19*** 1.60*** 1.56***

summer Maximum Temperature 1.02 1.06 1.13** 1.17** 1.33** 1.56***

Precipitation Rate 1.00 1.02 1.02 1.03 1.14 1.24

Relative Humidity 1.05** 1.20*** 1.22*** 1.06 1.21 1.40*

Solar Radiation 1.05*** 1.15*** 1.16*** 1.17** 1.35** 1.48**

winter Minimum Temperature 1.04* 1.04 1.05 1.24*** 1.37** 1.75***

Precipitation Rate 1.04 1.12*** 1.17*** 1.10 1.23* 1.36

Relative Humidity 1.07*** 1.13*** 1.14*** 1.24*** 1.20 1.24

Solar Radiation 1.09*** 1.08* 1.13* 1.26*** 1.45*** 1.24

Symbols *, ** and *** denote support from .95%, .97.5% and .99% of bootstrap replicate, respectively.
doi:10.1371/journal.pgen.1001375.t002
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conducted in European populations (Figure S7). Figure S7 shows

variation in allele frequencies versus solar radiation for two SNPs

that are strongly associated with pigmentation in the AWE

population subset: a SNP in SLC45A2 (rs28777) (log10BF = 10.4,

rank statistic = 4.261025) that is associated with hair color and a

SNP in OCA2 (rs1667394) (log10BF = 8.3, rank statis-

tic = 5.061025) that is associated with eye and hair color. In

addition, consistent with the notion that pathogens exerted

powerful selective pressures on humans [65], we observed strong

signals of selection for several variants that are associated with

diseases of the immune response. Specifically, these signals

include: for the worldwide analysis, SNPs in or near PCDH18

(Figure 4A), PTGER4 and CD40 (Figure 3E, 3F) that are

implicated in systemic lupus erythematosus (SLE), Crohn’s disease

and multiple sclerosis, and for the population subset analyses,

SNPs in or near HLA-DQ1, CD40, HLA-C, IL13 and UBASH3A

that are associated with SLE, celiac disease, multiple sclerosis,

psoriasis and type 1 diabetes showed signals.

Enrichment of signal in sets of genes
To learn about the biological pathways that were targeted by

selection, we asked whether there is an enrichment of signal for

particular sets of genes using three classifications: genes associated

with major disease classes, genes in canonical pathways, and genes

that are up or down-regulated in response to chemical or genetic

perturbations. Because proportionally more genic than non-genic

SNPs have strong correlations with climate variables, an enrichment

of signals for SNPs in a particular gene set relative to non-genic

SNPs may simply reflect the global genic enrichment. Therefore, in

this analysis, we tested whether the proportion of genic SNPs from a

given set was greater than the proportion of genic SNPs from other

genes not in that set, within the tail of the rank statistic distribution.

In the disease class analysis, the strongest signals were with

cardiovascular and immune diseases (Table 4). Overall, the disease

classes showed a much greater concentration of signals compared to

the other two classifications. Of the 14 disease classes tested, 7 (50%)

showed signals in at least one analysis. This was remarkable

compared to the proportions observed for either the canonical

pathways (0.025%) or chemical and genetic perturbations (0.033%).

This difference might be explained by the fact that genes in

canonical pathways and differentially expressed sets, while biolog-

ically important, may not contain segregating functional variation.

Several of the signals for canonical pathways and differentially

expressed gene sets are also worth noting (Table 5 and Table S3).

Two long-standing hypotheses [16,66] state that solar radiation and

temperature have been important selective forces among human

populations, and these hypotheses have gained population genetic

support from several previous studies [22,24–25,44,58–59]. Ac-

cordingly, we find an enrichment of strong correlations with climate

variables for gene sets that are differentially regulated in response to

UV radiation and genes that are central in the differentiation of

brown adipocytes, a tissue that plays an important role in cold

tolerance through non-shivering thermogenesis. Consistent with our

findings in the GWAS overlap analysis and in the disease class

analysis, we identified several gene sets that are related to immunity

and inflammation. Interestingly, we also identified a large number

of climate signals in genes related to breast, prostate and colon

cancer, three types of cancers with significant disparities among US

populations [67]. Given the observed links between cancer and

inflammation [68], one potential explanation for this finding is that

genetic variation that enhances the immune response to pathogens

may result in increased susceptibility to cancer.

Discussion

Here, we presented the results of a genome-wide scan for

evidence of positive selection in response to climatic variation.

Climate is known to influence the distribution of human pathogens

[69]. Accordingly, many of our signals coincide with SNPs

associated with diseases of the immune response in GWAS studies.

Therefore, it is likely that our analysis detects the action of selective

pressures that are due to climate or are broadly mediated by

climate. In this study, we carefully controlled for the effects of

population history in two ways. First, we used a null model for the

covariance of allele frequencies across populations, estimated

based on genome-wide SNP data. Second, we assessed the

evidence for selection in terms of a transformed rank statistic; in

other words, we used genomic controls to detect SNPs with the

strongest genome-wide signals of selection. Unlike haplotype and

frequency spectrum based approaches to detect selection, our

method does not assume a model in which a new variant was

driven quickly to high frequency in the population. Indeed, many

of our strongest findings are for alleles that exhibit correlations

between allele frequency and climate variables in parallel in

multiple continental regions, suggesting that selection acted on

standing alleles with a broad geographic distribution. It has been

argued that selection on standing variation played an important

role in the adaptive evolution of complex traits in humans [70–71];

therefore, the signals that we detected may help elucidate the

genetic architecture of common phenotypes with complex patterns

of inheritance. As expected based on the use of climate variables to

detect the impact of selection, the strongest signals in our analysis

tend to differ from SNPs that show extreme patterns in FST or

haplotype homozygosity-based analyses. When we compared our

results to the results of a global FST analysis for the AWE and AEA

subsets, we found only a slight excess of overlap in the 5% tail

compared to that expected by chance (1.36 and 1.11 fold) and no

excess of overlap with the results from an analysis using the

integrated haplotype score (iHS) [72] (see Hancock et al. [70] for a

more extensive discussion). In addition, we find little overlap

between the signals found in this analysis, which uses climate

variables, and those found, in the same data, for environmental

variables related to diet, subsistence and ecoregion [39] or with the

strongest signals from a study that examined virus diversity [48].

Figure 2. Mean-centered allele frequency plotted against population for SNPs with the strongest signals (transformed rank statistic
,1025). The variables shown are: (A) winter solar radiation in the worldwide analysis, (B) summer precipitation rate in the worldwide analysis, and
winter solar radiation in (C) the AWE population subset and (D) the AEA population subset. Since the particular patterns that result in strong
correlations in the worldwide analysis are diverse, SNPs for these variables were split into two clusters using the results of an eigen analysis of the
matrix of SNPs and populations. SNPs were assigned to clusters based on the eigenvector term for the eigenvector corresponding to the first
eigenvalue [91]. Mean-centered allele frequencies were computed by subtracting the mean allele frequency across populations. SNPs with rank
statistics less than 1025 are included in the plots. Population names and means are colored based on membership in one of five major geographical
regions (sub-Saharan Africa, Western Eurasia, East Asia, Oceania, and the Americas) and ordered, within each region, so that the climate variable
values increase from left to right across the x-axis. Alleles are polarized based on the signs of the Spearman correlations with the climate variable.
Each gray dot represents an individual SNP and fitted lines (obtained using the lm function in R) for each region are shown in color. The ranges of the
climate variable values across each geographic region are shown above the horizontal axis.
doi:10.1371/journal.pgen.1001375.g002
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Climate is known to have an important impact on animal

physiology and fitness, as a result of both direct and indirect

effects. Direct effects include heat and cold stress, dehydration

stress, and stress resulting from too much or too little UV

radiation. For example, variation in temperature and relative

humidity can result in cold or heat stress, i.e. a deviation from the

relatively narrow range of body temperatures that is optimal for

the coordination of molecular and cellular processes. Likewise,

variation in exposure to solar radiation influences vitamin D

production in the skin [18] and the breakdown of folate [73], both

with important consequences for human health [74]. Protracted

exposure to extreme temperatures, as it occurs during heat waves,

results in heat exhaustion and heat stroke, and is associated with

increased mortality in the elderly and in children [75]; likewise,

heat stress has an important influence on birth weight [76] and, as

a consequence, on infant mortality. Variation in human

morphology, including body size and shape, follows from basic

thermoregulatory principles, to dissipate or conserve body heat in

different climates. Metabolic adaptations are also observed in

populations living in cold climates [77]. Moreover, extensive

variation in heat and cold tolerance is reported across populations

living in different climates (reviewed in Beall and Steegman [78]).

Climate can also affect human physiology indirectly through its

effects on the environment that humans live in. Among these

effects, perhaps the most important one from the evolutionary

standpoint is the role of climate in shaping the geographic

distribution of human pathogens, with variation in precipitation

rate being the best predictor of pathogen species diversity [69].

Although there is extensive evidence for phenotypic adaptations to

different climates, the extent to which this variation is the result of

genetic adaptations rather than developmental plasticity and

acclimatization is unclear. Although it was previously shown that

genetic adaptations to different climates had occurred in the gene

network underlying common metabolic disorders [25], these

results provide strong evidence for a wide variety of genetic

adaptations to different climates at the genome-wide level.

Moreover, the gene set analyses point to biological pathways, e.g.,

genes up or down-regulated in response to UV radiation and genes

up-regulated in brown pre-adipocytes during differentiation, that

are consistent with the impact of UV and cold stress on human

physiology and evolutionary fitness. Furthermore, we find evidence

for selection on loci involved in temperature homeostasis and

immune response, based on overlap between individual signals of

selection due to climate and loci associated with phenotypes in

GWAS studies. Finally, it should be emphasized that some of the

signals identified in this survey may be due to selective pressures that

are correlated with climate variables, but are not due to either the

direct or indirect effects of climate. This may be a specific concern

for the population subset analyses where we test for parallel

ecoclines across a smaller set of geographic regions.

GWAS have helped to clarify the genetic underpinnings of many

disease phenotypes, but there are still many outstanding questions.

Most human genes appear to be under strong purifying selection

[79–80]. However, a sizable fraction of disease risk variants seem to

be present at appreciable frequencies. Therefore, it has been

hypothesized that these disease risk variants are either selectively

neutral or that they have been acted on by positive selection [81].

Here, we reported evidence for selection at several individual SNPs

identified by GWAS, on sets of genes implicated in cardiovascular

and immune diseases, and on sets of differentially genes in response

to chemical and genetic perturbations. Common themes that

emerged from these disparate analyses are that genes and variants

implicated in pigmentation and response to UV radiation, immune

response, autoimmune disease and cancer are among those with the

strongest signals of selection. In some of these cases, other factors

that are influenced by and therefore correlated with climate (e.g.

pathogen distribution or diet) are likely to be responsible for the

observed signal. This is especially likely to be the case for variants

implicated in immune response because pathogen distributions are

influenced by climate [69]. Therefore, our results complement

previous analyses that assess evidence for correlations with diet [39]

and viral diversity [48]. However, since available measures of

Figure 3. Global variation in allele frequencies for SNPs with strong signals with climate. Two NS SNPs from the worldwide analysis: (A) A
SNP (rs3782489) in keratin 77 (KRT77), is strongly correlated with summer solar radiation, and (B) a SNP (rs2075756) in the thyroid receptor interacting
protein (TRIP6) is strongly correlated with absolute latitude. Two SNPs from the population subset analysis: (C) A SNP (rs4558836) in CORIN has a
signal in the AEA population subset with winter minimum temperature, but not in the AWE subset, and (D) a NS SNP (rs5743810) in TLR6 has a signal
in the AWE population subset with winter solar radiation, but not in the AEA subset. Two SNPs that are associated with autoimmune disease from
GWAS: (E) A SNP (rs2313132) upstream of PCDH18 that is associated with SLE is strongly correlated with summer solar radiation, and (F) a SNP
(rs6074022) upstream of CD40 that is associated with multiple sclerosis is strongly correlated with minimum winter temperature. For each plot, gray
points represent individual SNPs and colored lines represent fitted lines (obtained using the lm function in R) for each region. The ranges of the
climate variable values for each region are shown at the bottom of the corresponding segment of the plot.
doi:10.1371/journal.pgen.1001375.g003

Figure 4. Venn diagrams showing the overlap between lower tails of rank statistics from the worldwide analysis and each
population subset analysis. The Venn diagram on the right shows the overlap expected between the results of the worldwide analysis and a set
of randomly drawn SNPs.
doi:10.1371/journal.pgen.1001375.g004
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climate-correlated pathogens or diet are incomplete and possibly

inaccurate, using a climate proxy may afford as much or even

greater power to detect signals of selection.

Our results suggest that many loci that appear to be under

selection due to climate may yield both positive and negative

effects on fitness, and may therefore fit an antagonistic pleiotropy

model [82]. According to this model, the negative pleiotropic

effects of alleles that confer a fitness advantage early in life may

contribute to the prevalence of diseases and disorders that tend to

occur later in life. The selection signals that are related to

immunity, in particular, may implicate variants evolving under a

model of antagonistic pleiotropy. In these cases, the positive fitness

effects of pathogen resistance may outweigh negative consequenc-

es of inflammatory processes, such as autoimmune disorders and

cancer. For example, we found very strong evidence of selection

for eight GWAS SNPs implicated in autoimmune disorders. In

these cases, it is likely that the selective pressure was pathogen

resistance, and that the autoimmune disorder is a pleiotropic

consequence of the resistance allele. In addition, we identified an

extremely strong signature of selection for TLR6 P249S

(rs5743810). The haplotype containing this SNP was previously

found to show evidence of positive selection [44,83] and is

implicated in both malaria resistance and prostate cancer risk.

Further, we found evidence for a concentration of signals of

selection in gene sets implicated in cancer and immune function/

inflammation from the disease class and expression gene set

analysis. One especially interesting signal is for genes up-regulated

by NF-kappa-B, because this transcriptional response is likely to

mediate the association between inflammation and tumor

Table 3. SNPs with the strongest signals of selection among those associated with phenotypic traits in GWAS.

Trait category
Strongest disease
or trait association Ref SNP ID Most significant climate correlation Nearby genes

Pop Set Variable log10BF
Rank
Statistic

Pigmentation
and tanning

Hair Color rs12913832 WW Summer Maximum Temperature 7.06 2.0861025 HERC2

Hair Color rs12913832 WW Summer Relative Humidity 8.11 2.0861025 HERC2

Hair Color rs28777 AWE Winter Solar Radiation 10.4 4.2261025 SLC45A2

Hair Color rs28777 WW Winter Relative Humidity 4.26 3.2961024 SLC45A2

Eye Color rs1667394 AWE Winter Solar Radiation 8.33 4.9961025 OCA2

Hair Color rs1667394 AWE Winter Solar Radiation 8.33 4.9961025 OCA2

Tanning rs35391 WW Summer Relative Humidity 7.27 6.8161025 SLC45A2

Tanning rs35391 AWE Winter Solar Radiation 6.63 3.5061024 SLC45A2

Immune and
Autoimmune

Multiple sclerosis rs6074022 AEA Summer Precipitation Rate 6.98 4.0061024 CD40

Multiple sclerosis rs6074022 WW Winter Minimum Temperature 11.1 2.4061024 CD40

SLE rs2313132 WW Summer Solar Radiation 2.05 4.5261024 PCDH18

SLE rs2187668 AWE Summer Relative Humidity 8.25 1.8261025 HLA-DQA1

Celiac Disease rs2187668 AWE Summer Relative Humidity 8.25 1.8261025 HLA-DQA1

Crohn’s disease rs4613763 WW Summer Relative Humidity 2.19 2.2661024 PTGER4

Psoriasis rs10484554 AEA Summer Precipitation Rate 7.23 1.8061024 HLA-C

AIDS progression rs10484554 AEA Summer Precipitation Rate 7.23 1.8061024 HLA-C

Height Height rs185819 AEA Summer Maximum Temperature 5.55 4.7961024 TNXB (HLA class III)

Cardiovascular Stroke rs10486776 AWE Winter Solar Radiation 2.3 2.9461024 MEOX2

Factor VII rs10488360 AWE Summer Precipitation Rate 6.76 2.0661024 SDK1

Other Bone Mineral Density (Hip) rs10490823 AWE Winter Solar Radiation 5.53 4.5461024 CTNNB1

Other Testicular germ cell tumor rs210138 AEA Summer Precipitation Rate 8.14 1.5061024 BAK1

This table contains SNPs with an empirical rank less than 561024 and a GWAS p-value of less than 161025.
doi:10.1371/journal.pgen.1001375.t003

Table 4. Disease classes enriched in the 1% and 5% tails of
the minimum rank distribution.

Variable
Geographic
Region Disease Class

SNPs in gene set:
other genic SNPs

tail
cutoff:

0.05 0.01 0.005

Climate Worldwide Cardiovascular 1.27*** 1.45* 1.69*

AWE Cancer 1.24** 1.54*** 1.76**

Cardiovascular 1.39*** 1.49*** 1.50*

Immune 1.33*** 1.58*** 1.85***

Infection 1.32* 1.65** 2.19**

AEA Cardiovascular 1.25** 1.69** 2.05***

Immune 1.14* 1.51* 1.88**

Symbols *, ** and *** denote support from .95%, .97.5% and .99% of
bootstrap replicate, respectively.
doi:10.1371/journal.pgen.1001375.t004
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progression [68,84]. Taken together, these results suggest that

positive selection acted on variants that enhance the immune and

inflammatory response to pathogens, but that also increase risk for

disease phenotypes such as autoimmune diseases and cancer.

The results of this genome scan not only increase our

understanding of the genetic landscape of adaptation across the

human genome, but they may also have a more practical value. For

example, they can be used to select candidate genes for common

disease risk and to generate specific testable hypotheses regarding

the functions of specific genes and variants. While the results of

genome-wide scans for association with diseases and other traits are

accumulating at a rapid pace, interpretation of these results is often

ambiguous because the power to detect all common variants that

are important in the etiology of the phenotype is incomplete. This is

especially true in the case of complex traits, where variants at many

loci may contribute to the phenotype, each with a small effect. By

combining the evidence from GWAS with evidence of selection, it

may be possible to separate true causative regions from the

background noise inherent in genome-wide screens for association.

To facilitate this, all of our empirical rank statistics are publically

available. Moreover, results of selection scans that detect evidence

for spatially-varying selection may be especially relevant to diseases

that show substantial differences in prevalence across ethnic groups

(e.g., sodium-sensitive hypertension, type 2 diabetes, prostate

cancer, osteoporosis). In the future, this approach could be extended

by including additional populations and aspects of the environment

to gain a more complete understanding of how natural selection has

shaped variation across the genome in worldwide populations.

Furthermore, whereas we relied on linkage disequilibrium between

(potentially un-genotyped) adaptive variants and genotyped SNPs,

whole genome re-sequencing data should give a more complete

picture of the variation that underlies adaptation.

Methods

Populations included in the analysis
We used data from 61 worldwide human populations (Text S1),

including 938 unrelated individuals from 52 Human Genome

Diversity Project panel populations previously genotyped by Li

et al. [49], 4 HapMap phase 3 populations, including 71 Luhya of

Table 5. A subset of the strongest results for chemical and genetic perturbations.

Related Trait/
Disease Pop Set Description

SNPs in gene set:
other genic SNPs

cutoff:

0.05 0.01 0.005

Response to
UV radiation

AEA Down-regulated at 6 hours following treatment of WS1 human
skin fibroblasts with UVC at a low dose (10 J/m‘2)

2.37** 4.56*** 4.58*

AEA Down-regulated at any time-point following treatment of
both XPB/CS and XPB/TTD fibroblasts with 3 J/m‘2 UVC

1.22* 1.57** 1.65*

AEA Down-regulated at 8 hours following treatment of XPB/CS fibroblasts with 3 J/m‘2 UVC 1.18*** 1.43** 1.63***

AEA Down-regulated at any time-point following treatment
of XPB/CS fibroblasts with 3 J/m‘2 UVC

1.16** 1.41** 1.57***

Thermo-
regulation

AEA Up-regulated in brown preadipocytes from Irs1-knockout mice,
which display severe defects in adipocyte differentiation

1.43** 1.60* 2.07*

Cancer/Cell
proliferation

WW Down-regulated with stable, ectopic overexpression
of BRCA1 in human prostate cancer cell lines

2.01*** 3.24*** 4.31**

WW Genes concomitantly modulated by activated Notch1
in mouse and human primary keratinocytes

1.40* 1.90* 2.50**

WW Genes up-regulated in kras knockdown vs control in a human cell line 1.46*** 2.08*** 2.74***

AEA Genes up-regulated in kras knockdown vs control in a human cell line 1.34*** 2.11*** 2.24***

AEA Gene set that can be used to differentiate BRCA1-linked and BRCA2-linked breast cancers 1.48** 2.45** 3.49**

AEA Up-regulated by butyrate at 24 hrs in SW260 colon carcinoma cells 1.61** 2.30** 2.88**

AWE Up-regulated by sulindac at 48 hrs in SW260 colon carcinoma cells 1.45** 2.10* 2.52*

AWE Genes up-regulated by NF-kappa B 1.30* 1.96* 2.37**

AWE Down-regulated in cells undergoing IL-3-dependent proliferative self-renewal 1.54*** 2.47*** 2.74***

AWE Up-regulated in human dermal (foreskin) microvascular endothelial
cells that were stimulated to proliferate with prolonged EGF treatment

1.81** 2.88** 5.34***

Infection/Immunity AWE Genes up-regulated by NF-kappa B 1.30* 1.96* 2.37**

AEA Down-regulated in fibroblasts following infection with human cytomegalovirus 2.20* 3.59* 6.03**

AEA Genes down-reglated in peripheral blood lymphocytes (PBLs) of
immunosuppressed patients with a well functioning kidney transplant

1.84*** 3.37** 5.10**

AWE Down-regulated in cells undergoing IL-3-dependent proliferative self-renewal 1.54*** 2.47*** 2.74***

AWE Up-regulated in human dermal (foreskin) microvascular endothelial cells
that were stimulated to proliferate with prolonged EGF treatment

1.81** 2.88** 5.34***

AWE Genes up-regulated in peripheral blood lymphocytes (PBLs) of stable,
immunosuppressed patients with a well functioning kidney transplant

1.74*** 2.29*** 2.58**

doi:10.1371/journal.pgen.1001375.t005
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Webuye, Kenya, 61 Maasai of Kinyawa, Kenya, 77 Tuscans in

Italy, and 79 Gujarati Indians from the Gujarat Province, India,

but collected in Houston, Texas and 5 populations genotyped by

our group. Individuals genotyped by our group include 22

Vasakela !Kung from Angola, but whose samples were collected

in Schmidtsdrift, South Africa, 22 Amhara residing at low altitude

in northern Ethiopia, 22 Naukan Yup’ik and 22 Maritime

Chukchee from Siberia and 8 Australian Aborigines from the

European Collection of Cell Cultures. Although some of the five

populations genotyped in our lab show some evidence of recent

admixture (data not shown), they are included because they extend

the geographic range of our analysis to regions that have no

coverage in current collections of population samples. Moreover,

despite the evidence for admixture, these populations still cluster as

expected based on genetic affinities of populations (Text S1).

Finally, the inclusion of admixed groups is expected to dampen the

signal of local adaptation based on allele frequency differences, in

general, and therefore should not lead to an increase in the false

positive rate.

SNP data collection
Illumina Infinium HumanHap 650Y genotype data for HGDP

panel were obtained from Li et al. [49]. Additional populations

were genotyped using the same type of genotyping chips at UCLA

Southern California Genotyping Consortium Facility. HapMap

phase 3 draft 1 (released 09/24/2009) genotype data were

obtained from the HapMap Consortium website (http://www.

hapmap.org/). Total numbers of SNPs and number of genic, non-

genic and nonsynonymous SNPs included in the final analysis are

shown in Table S4.

Climate variables
Climate data were obtained for each population based on the

coordinates of the locations where the samples were collected,

except for the Vasakela !Kung and the Gujarati, who had recently

relocated. For these populations, we used approximate coordinates

of their homelands. The individuals who were sampled from the

!Kung population were known to have recently relocated to

Schmidtsdrift, South Africa from the Angola/Namibia border,

and the Gujarati are originally from Gujarat, India. We selected

climate variables separately for the summer and winter seasons

from the NCEP/NCAR database [85] and obtained values for

each variable by averaging over the three-month periods.

Variables included in the final analyses were summer and winter

precipitation rate, relative humidity, solar radiation, summer

maximum temperature and winter minimum temperature. We

also included latitude in this analysis. Global distributions of

variables and correlations among variables are shown in Figure 1.

Correlations between allele frequencies and climate
variables

To calculate correlations between SNP allele frequencies and

climate variables, we used a Bayesian linear model method that

controls for population history by incorporating a covariance

matrix of populations and that accounts for differences in sample

size among populations [50]. This method yields a Bayes factor

(BF) that is a measure of the weight of the evidence for a model in

which an environmental variable has an effect on the distribution

of the variant relative to a model in which the environmental

variable has no effect on the distribution of the variant. In the case

where the null model (i.e., the covariance matrix of populations)

fully accounts for population structure, a suitable cutoff for

genome-wide significance of a SNP-climate log10BF is 6.36, which,

under general assumptions, is equivalent to a genome wide

significant p-value of 8.561029, or a p-value of 5% divided by

650,000 tests across 9 climate variables [86–87]. However, our

null model, while flexible, necessarily makes simplifying assump-

tions, e.g., we approximate the correlated levels of genetic drift

across populations by a multivariate normal distribution. Since we

cannot expect the null model to account fully for the effects of

population structure, we emphasize that we cannot take the BFs

themselves at face value, nor can they be directly compared across

climate variables. Therefore, we took a conservative approach and

conducted subsequent analyses by comparing each SNP to the

empirical distribution. To this end, for each SNP and each

environmental variable, we calculated a transformed rank statistic

(sometimes referred to as an ‘‘empirical p-value’’) that was scaled

to be between 0 and 1 (with 0 and 1 corresponding to the highest

and lowest BF, respectively).

The Illumina genotyping array contains SNPs that were chosen

to be tagging SNPs; in addition, they were subjected to

ascertainment schemes that differ across the three major subsets

of SNPs on the array [88]. To account for differences in

ascertainment across SNP subsets within the array, we performed

all analyses (including the estimation of the covariance matrix for

the null model) separately in each subset. In addition, to account

for allele frequency differences, the SNPs within each subset were

separated into 10 bins based on their derived allele frequency in

the global population sample. Within each bin and each SNP

subset, SNPs were ranked according to their BFs. Then, for each

SNP and environmental variable, we calculated the transformed

rank statistic. Due to the complexity of the ascertainment protocol,

we cannot rule out the possibility that some biases were not

completely corrected for in our analyses.

To reduce the number of tests while assessing the strength of the

evidence for selection with climate as a whole, we also calculated

the minimum of the transformed rank statistics across all variables

for each SNP. We used the rank and minimum rank statistics to

look for an enrichment of large BFs (low rank statistics) in one

group of SNPs compared to another.

Assessing the evidence for an excess of genic and
nonsynonymous SNPs in the tail of the distribution

To determine whether there was an excess of SNPs with strong

signals that are enriched for functional variation, we compared the

proportions of nonsynonymous (NS) and genic SNPs in the lower

tail of the rank statistic distribution to the proportion of non-genic

SNPs in this tail. Given the arbitrary nature of choosing a single

cutoff, we set three cutoffs (5%, 1% and 0.5%). In other words, we

looked at the top 5%, 1% and 0.5% of all BFs and asked whether

there is an enrichment of genic and NS SNPs for each tail cut-off.

A value of 1 represents no excess and a value greater than 1

represents an enrichment in the tail of the distribution. SNPs

below the cutoff are likely to cluster along the genome due to

linkage disequilibrium, thus reducing the number of independent

signals contributing to an observed enrichment. To account for

this possibility, we found the confidence interval for the

enrichment using a bootstrap approach. To this end, we separated

the genome into 500kb segments and then we bootstrap resampled

a number of segments equal to the length of the genome divided

by 500 kb. Just as we did for the observed data, for each of 1000

bootstrap replicates, we calculated the ratios of the relative

proportions of genic and NS SNPs to the proportion of non-genic

‘‘neutral’’ SNPs in the tail of the minimum rank distribution. In

this and other analyses described here, we considered an

enrichment significant (with a one-tailed test) if at least 95% of

the bootstrap replicates were enriched (e.g., had a ratio above 1).
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Population subset analysis
We calculated correlations between each SNP and each climate

variable for geographically defined subsets of populations using the

same Bayesian linear model method we used for the worldwide

populations. For these analyses, we re-estimated the covariance

matrices for each of the population subsets and for each SNP

ascertainment panel. We defined two population subsets. One

subset included the populations in sub-Saharan Africa as well as

the populations in the Middle East and Western Eurasia (AWE)

and the other included populations in sub-Saharan Africa and the

populations in East Asia and Oceania (AEA). Populations included

in each subset are shown in Text S3. We calculated rank statistics

and minimum rank statistics for the population subset BFs and

conducted all downstream analyses of enrichment for categories of

SNPs and gene sets using the same methods described for the

worldwide analysis. In addition, we found SNPs that had strong

signals in both GWAS and the climate analysis as described above.

Comparison to GWAS results
We downloaded the information in the Catalog of Published

Genome-Wide Association Studies [89] on July 14, 2009, which

lists reported SNP-trait associations with p-values less than

1tm1025. This database contained entries for 800 unique

autosomal SNPs found on the Illumina HumanHap650Y platform

and 61 traits. From this list of SNPs, we identified a set of SNPs

with extremely low rank statistics (less than 561024) for each of

the nine climate variables included in our analyses. Because most

GWAS are performed in populations of European ancestry, the

SNPs in the Illumina panel were binned based on the allele

frequency in Europeans rather than the global allele frequency.

Gene sets included in the analysis
Lists of genes implicated in major classes of disease were obtained

from the Genetic Association Database (http://www.ncbi.nlm.nih.

gov/dbGaP) [90]. This database contains information, mainly from

candidate gene studies, about variants that were previously associated

with specific diseases and classes of disease. We downloaded the entire

database and created 14 gene sets comprised of genes that contained

variants that were significantly associated with each disease class.

Disease classes included aging, cancer, cardiovascular, developmen-

tal, hematological, immune, infection, metabolic, neurological,

pharmacogenetic, psychiatric, renal, reproduction, and vision.

From the Molecular Signatures Database (http://www.

broadinstitute.org/gsea/msigdb), we obtained 438 sets of genes

involved in canonical pathways and 1168 sets of genes that were up

or down-regulated in response to chemical or genetic perturbations.

Gene set analysis
To determine whether there was an enrichment of signal for

each gene set, we compared the proportion of SNPs from a given

gene set to the proportion of all other genic SNPs in the tail of the

minimum rank distribution and of the transformed rank

distributions for the individual variables with the strongest genic

enrichment. To assess the significance for the findings, and to

ensure that the results were not driven by one or a few genomic

regions, we applied the same bootstrap approach described above.

Data access and availability
The results of these analyses will be made available through a

searchable online data base, dbCLINE (http://genapps.uchicago.

edu/dbcline), and linked to the HGDP Selection Browser (http://

hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP) to allow for the

comparison of selection signals from different types of analyses.

Supporting Information

Figure S1 Transformed allele frequency plotted against each of

seven climate variables for SNPs with the strongest signals in the

worldwide analysis. Since the particular patterns that result in

strong correlations in the worldwide analysis are diverse, SNPs for

these variables were split into two clusters using the results of an

eigen analysis of the matrix of SNPs and populations. SNPs were

assigned to clusters based on the eigenvector term for the

eigenvector corresponding to the first eigenvalue. Panels include:

(A) absolute latitude, (B) maximum summer temperature,

(C) minimum winter temperature, (D) winter precipitation rate,

(E) summer solar radiation, (F) summer relative humidity, and

(G) winter relative humidity. Transformed allele frequencies were

computed by subtracting the mean allele frequency across

populations. SNPs with rank statistics less than 1e-5 are included

in the plots. Population names and means are colored based on

membership in one of seven major geographical regions (sub-

Saharan Africa, Europe, Middle East, West Asia, East Asia,

Oceania, or the Americas) and ordered so that the climate variable

values increase from left to right across the x-axis. Each gray dot

represents an individual SNP and fitted lines for each region are

shown in color. The range of each climate variable across the

geographic region is shown in each section of the plot.

Found at: doi:10.1371/journal.pgen.1001375.s001 (6.30 MB TIF)

Figure S2 Transformed allele frequency plotted against each of

eight climate variables for SNPs with the strongest signatures of

selection in the AWE population subset. Panels include:

(A) absolute latitude, (B) maximum summer temperature,

(C) minimum winter temperature, (D) summer precipitation rate,

(E) winter precipitation rate, (F) summer solar radiation,

(G) summer relative humidity, and (H) winter relative humidity.

Transformed allele frequencies were computed by subtracting the

mean allele frequency across populations. SNPs with rank statistics

less than 1e-5 are included in the plots. Population names and

means are colored based on membership in one of seven major

geographical regions (sub-Saharan Africa, Europe, Middle East,

West Asia, East Asia, Oceania, or the Americas) and ordered so that

the climate variable values increase from left to right across the x-

axis. Each gray dot represents an individual SNP and fitted lines for

each region are shown in color. The range of each climate variable

across the geographic region is shown in each section of the plot.

Found at: doi:10.1371/journal.pgen.1001375.s002 (4.50 MB TIF)

Figure S3 Transformed allele frequency plotted against each of

eight climate variables for SNPs with the strongest signatures

of selection in the AEA population subset. Panels include:

(A) absolute latitude, (B) summer maximum temperature, (C)

winter minimum temperature, (D) summer precipitation rate, (E)

winter precipitation rate, (F) summer solar radiation, (G) summer

relative humidity, and (H) winter relative humidity. Transformed

allele frequencies were computed by subtracting the mean allele

frequency across populations. SNPs with rank statistics less than

1e-5 are included in the plots. Population names and means are

colored based on membership in one of seven major geographical

regions (sub-Saharan Africa, Europe, Middle East, West Asia, East

Asia, Oceania, or the Americas) and ordered so that the climate

variable values increase from left to right across the x-axis. Each

gray dot represents an individual SNP and fitted lines for each

region are shown in color. The range of each climate variable

across the geographic region is shown in each section of the plot.

Found at: doi:10.1371/journal.pgen.1001375.s003 (4.50 MB TIF)

Figure S4 Two SNPs implicated in pigmentation phenotypes

that have strong correlations with winter solar radiation in the
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AWE population subset. (A) rs1667394, a SNP in OCA2, and (B)

rs28777, a SNP in SLC45A2.

Found at: doi:10.1371/journal.pgen.1001375.s004 (3.00 MB TIF)

Figure S5 SNPs with transformed rank statistics less than 10-4

with any climate variable are listed in the figure. For each SNP,

the strength of the transformed rank statistic (TRS) with all climate

variables from this analysis as well as all ecoregion, diet and

subsistence variables from the previously published Hancock 2010

analysis are shown using color-coding. Red represents a TRS ,

1e-5, dark orange represents a TRS , 1e-4, orange represents a

TRS , 1e-3, dark yellow represents a TRS , 1e-2 and light

yellow represents a TRS , 1e-1. SNPs that were not analyzed in

the previous study are colored gray. All other SNP-environmental

variable combinations are colored white.

Found at: doi:10.1371/journal.pgen.1001375.s005 (0.43 MB EPS)

Figure S6 SNPs with transformed rank statistics less than 10-5

with any climate variable are listed in the figure. For each SNP,

the strength of the transformed rank statistic (TRS) with all climate

variables from this analysis as well as all ecoregion, diet and

subsistence variables from the previously published Hancock 2010

analysis are shown using color-coding. Red represents a TRS ,

1e-5, dark orange represents a TRS , 1e-4, orange represents a

TRS , 1e-3, dark yellow represents a TRS , 1e-2 and light

yellow represents a TRS , 1e-1. SNPs that were not analyzed in

the previous study are colored gray. All other SNP-environmental

variable combinations are colored white.

Found at: doi:10.1371/journal.pgen.1001375.s006 (0.18 MB EPS)

Figure S7 Signals for SNPs implicated in pigmentation and

tanning in the worldwide, AWE and AEA analyses.

Found at: doi:10.1371/journal.pgen.1001375.s007 (0.59 MB EPS)

Table S1 Proportion of genic relative to nongenic and

nonsynonymous relative to nongenic SNPs in the tails of the

minimum rank distribution for population subset analysis with

individual climate variables. Symbols *, ** and *** denote support

from .95%, .97.5% and .99% of bootstrap replicate,

respectively.

Found at: doi:10.1371/journal.pgen.1001375.s008 (0.02 MB

XLS)

Table S2 Reanalysis of enrichment of correlations with climate

for SNPs in an energy metabolism gene set (first published in

Hancock et al., 2008)[25] compared to other genic SNPs.

Found at: doi:10.1371/journal.pgen.1001375.s009 (0.03 MB

XLS)

Table S3 Canonical pathways and sets of genes differentially

expressed in response to chemical and genetic perturbations

enriched in the 1% and 5% tails of the minimum rank distribution.

Symbols *, ** and *** denote support from .95%, .97.5% and

.99% of bootstrap replicate, respectively.

Found at: doi:10.1371/journal.pgen.1001375.s010 (0.03 MB

XLS)

Table S4 Numbers of SNPs in each category (genic, NS, non-

genic) and in each population set.

Found at: doi:10.1371/journal.pgen.1001375.s011 (0.02 MB

XLS)

Text S1 Descriptive information about populations included in

this study.

Found at: doi:10.1371/journal.pgen.1001375.s012 (0.76 MB

DOC)

Text S2 Manhattan plots showing the log10 BFs for each

variable and for each population set.

Found at: doi:10.1371/journal.pgen.1001375.s013 (0.05 MB

DOCX)

Text S3 Descriptive information about population subsets and

comparison to worldwide sample.

Found at: doi:10.1371/journal.pgen.1001375.s014 (2.20 MB

DOC)
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