# Plant Diversity 40 (2018) 41-44

Contents lists available at ScienceDirect

# **Plant Diversity**



journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/

http://journal.kib.ac.cn



# Development and characterization of 43 microsatellite markers for the critically endangered primrose *Primula reinii* using MiSeq sequencing



Masaya Yamamoto<sup>a, \*</sup>, Yoshihiro Handa<sup>b</sup>, Hiroki Aihara<sup>b</sup>, Hiroaki Setoguchi<sup>a</sup>

<sup>a</sup> Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu, Sakyo-ku, Kyoto 606-8501, Japan
<sup>b</sup> FASMAC Co., Ltd., 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan

### ARTICLE INFO

Article history: Received 23 March 2017 Received in revised form 3 September 2017 Accepted 6 September 2017 Available online 14 September 2017

(Editor: Xun Gong)

Keywords: Microsatellites Polymorphism MiSeq Critically endangered plant Primula reinii

# ABSTRACT

*Primula reinii* (Primulaceae), a perennial herb belonging to the *Primula* section *Reinii*, occurs on wet, shaded rocky cliffs in the mountains of Japan. This threatened species comprises four varieties; these plants are very localized and rare in the wild. In this study, 43 microsatellite markers were developed using MiSeq sequencing to facilitate conservation genetics of these critically endangered primroses. We developed novel microsatellite markers for three varieties of *P. reinii*, and tested its polymorphism and genetic diversity using natural populations. These novel markers displayed relatively high polymorphism; the number of alleles and expected heterozygosities ranged from 2 to 6 (mean = 3.2) and 0.13 to 0.82 (mean = 0.45), respectively. All loci were in Hardy–Weinberg equilibrium. These microsatellite markers will be powerful tools to assess *P. reinii* genetic diversity and develop effective conservation and management strategies.

Copyright © 2017 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

# 1. Introduction

*Primula reinii* Franch. et Sav., a perennial herb belonging to the *Primula* section *Reinii*, occurs on wet shaded rocky cliffs in the mountains of Japan (Richards, 2003). The species comprises four narrow endemic varieties (Fig. 1, Yamazaki, 1993): *P. reinii* var. *reinii*, *P. reinii* var. *myogiensis* Hara, *P. reinii* var. *kitadakensis* (Hara) Ohwi, and *P. reinii* var. *rhodotricha* (Nakai et Maek.) Yamaz. In addition, *P. reinii* var. *okamotoi* (Koidz.) Murata., which is found on the Kii Peninsula, is a synonym of var. *reinii* (Fig. 1). However, molecular phylogenic analyses using both chloroplast and nuclear DNA have shown distinct sequence divergence between vars. *reinii* and *okamotoi* (Yamamoto et al., 2017b).

*P. reinii* is the most attractive representative in sect. *Reinii* because these primrose plants have a small number of relatively large flowers just above their very dwarf emerging foliage (Richards, 2003). Furthermore, these plants, which are threatened species, are very localized and rare in the wild. Based on their rarity, and reductions in the numbers of individuals and populations, due to anthropogenic activities, all four varieties of *P. reinii* are listed on

\* Corresponding author. *E-mail address:* yamamoto.masaya.73m@st.kyoto-u.ac.jp (M. Yamamoto). Peer review under responsibility of Editorial Office of Plant Diversity. the latest Japanese Red List (Ministry of the Environment, 2017), and are assigned to the 'Critically Endangered' (vars. *rhodotricha* and *myogiensis*) or 'Vulnerable' (vars. *reinii* and *kitadakensis*) categories. Despite the need for conservation, little is known of the life history, reproductive system, or vegetative characteristics of these plants.

Recent ecological and genetic studies have examined P. reinii var. rhodotricha, a typical species in sect. Reinii that faces a risk of extinction (Yamamoto et al., 2013, 2017a). Yamamoto et al. (2017a) reported molecular evidence of population depletion of the critically endangered primrose using 11 microsatellite markers that were originally developed for Primula sieboldii E. Morren. Furthermore, they also revealed a relationship between genetic diversity and the population sizes of Reinii species, and suggested that a purge of recessive detrimental genes to increase homozygosity could prevent additional genetic degradation in their wild habitat (Yamamoto et al., 2017a). However, only six microsatellite loci were used in that study to assess the genetic diversity of these species. Therefore, additional highly polymorphic molecular markers are required to investigate genetic status more reliably and to conduct effective conservation activities for P. reinii. Even in var. rhodotricha, additional microsatellite markers are needed to measure the degree of inbreeding and inbreeding depression (e.g., pedigree analysis) to improve their low fertility (approximately 5% in fruition,

http://dx.doi.org/10.1016/j.pld.2017.09.003

<sup>2468-2659/</sup>Copyright © 2017 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



Fig. 1. Presumed range of Primula sect. Reinii species. Black arrows indicate the populations sampled.

Yamamoto et al., 2017a). In this study, we isolated and characterized 43 genomic microsatellite markers for *P. reinii*, which will be powerful tools aiding assessment of their genetic diversity.

# 2. Materials and methods

To develop useful microsatellite markers for P. reinii, which comprises several narrow endemic taxa, genomic DNA from three varieties (vars. reinii, okamotoi, and rhodotricha) was extracted from leaf tissues collected from each population (Fig. 1) using a modified CTAB protocol (Doyle, 1990). Each genomic DNA sample was used for library preparation with the KAPA HyperPlus Kit (Kapa Biosystems, Wilmington, MA, USA). Sequencing analyses was performed on the MiSeg Benchtop Sequencer (Illumina, San Diego, CA, USA) using a 2  $\times$  250-bp read length for each DNA sample. Raw reads of each sample were quality trimmed (Q > 20) using Sickle (https://github.com/najoshi/sickle). High-quality reads from the three samples, vars. reinii, okamotoi, and rhodotricha, were assembled, using Velvet (Zerbino and Birney, 2008), into 246,887, 313,719, and 285,839 contigs, respectively. Potential microsatellite regions with at least five repeats were detected in each assembled draft genome sequence using QDD ver. 2.1 (Meglécz et al., 2010). QDD was the most versatile software for estimating microsatellites based on next generation sequencing datasets in our pipeline. In total, 505, 732, and 562 microsatellite markers were predicted for each taxon, of which 73, 70, and 65 markers were selected as candidate microsatellite markers for vars. reinii. okamotoi. and rhodotricha, respectively. Primers were designed automatically using the Primer3 algorithm (Rozen and Skaletsky, 2000) implemented in QDD. Due possibly to low coverage (attributed to the large genome size of these plants), as well as lineage divergence among taxa (Yamamoto et al., 2017b), common microsatellite regions were not found in this study.

To assess amplification and polymorphism at all 208 candidate microsatellite loci, additional leaf tissues from 32 individuals were collected from a natural population for each taxon. PCR amplifications were conducted in 10- $\mu$ L reaction mixtures containing 1.0  $\mu$ L of DNA solution (0.1 ng/ $\mu$ L), 0.20  $\mu$ L of each primer (10  $\mu$ mol/L), 2.0  $\mu$ L of 5  $\times$  PCR buffer, 0.80  $\mu$ L of dNTP mixture (each 2.5 mM), 0.20  $\mu$ L of PrimeSTAR GXL polymerase (0.25 U; Takara Bio, Kusatsu, Shiga, Japan), and 5.6  $\mu$ L distilled water. Each forward primer was labeled using FAM, VIC, NED, and/or PET. Amplifications consisted

of an initial denaturation at 98 °C for 5 min, 39 amplification cycles using a touchdown protocol of 98 °C for 30 s, annealing for 30 s, 68 °C for 40 s, and a final extension at 68 °C for 2 min. The annealing temperatures were 63, 62, and 61 °C for 9 cycles and 59, 58, and 53 °C for 30 cycles. Fragment analysis was performed using the 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA). For each locus, the number of alleles (N<sub>A</sub>), expected heterozygosity (H<sub>E</sub>), inbreeding coefficient (F<sub>IS</sub>), and deviations from Hardy–Weinberg equilibrium were calculated using Arlequin 3.5 (Excoffier and Lischer, 2010).

#### 3. Results and discussion

Of 208 candidate microsatellite markers, 98 (47%), 71 (34%), and 39 (19%) were di-, tri-, and tetranucleotides, respectively. The most common di- and trinucleotide repeats were  $(AG)_n$  (25%) and  $(TTA)_n$  (13%), respectively. No common motif was found among the tetranucleotide repeats. The motifs  $(AG)_n$ ,  $(CT)_n$ ,  $(TC)_n$ , and  $(AT)_n$  accounted for 35% of the 208 candidate microsatellite markers.

Of the 208 candidate primer pairs tested, a total of 43 loci were amplified, displayed a clear polymorphism, and were in Hardy–Weinberg equilibrium (p > 0.05). All sequences were deposited in GenBank/DDBJ/EMBL (Table 1). The 19 loci developed for *P. reinii* var. *reinii* displayed relatively high polymorphism; the average values for  $N_A$ ,  $H_E$ , and  $F_{IS}$  were 4.16, 0.56, and 0.05, respectively. Meanwhile, the 10 loci for var. *rhodotricha* showed relatively low polymorphism, with values of 2.60, 0.39, and 0.08 for  $N_A$ ,  $H_E$ , and  $F_{IS}$ , respectively. Similarly, the 14 loci for var. *okamotoi* showed low polymorphism, with average values for  $N_A$ ,  $H_E$ , and  $F_{IS}$ , and 0.03, respectively.

The genetic status of var. *rhodotricha* determined using our newly developed microsatellite markers was nearly identical to that determined using previously established markers (Yamamoto et al., 2017a), whereas our results for var. *reinii* and *okamotoi* indicated a relatively lower genetic diversity than that in a previous study using only six loci (estimated  $H_E$  of 0.620 and 0.412 for vars. *reinii* and *okamotoi*, respectively) (Yamamoto et al., 2017a). Therefore, our results imply that the genetic diversities of vars. *reinii* and *okamotoi* were overestimated in the previous study, possibly due to an insufficient number of loci.

In this study, we isolated 1799 microsatellite loci from *P. reinii* and its relatives. A total of 208 primer pairs were used for wild

| able 1                                                                                                    |    |
|-----------------------------------------------------------------------------------------------------------|----|
| Primer specifications for the 43 polymorphic microsatellite markers developed for P. reinii in this study | Ι. |
|                                                                                                           | _  |

| Locus                | Primor soquence (E + 2)                                     | Popost matif         | Sizo ror   | NĪ | U              | E                      | Accession       |
|----------------------|-------------------------------------------------------------|----------------------|------------|----|----------------|------------------------|-----------------|
| LOCUS                | Primer sequence $(5' \rightarrow 3')$                       | kepeat motif         | Size range | NA | H <sub>E</sub> | <i>F</i> <sub>IS</sub> | Accession no.   |
| For Primula<br>Pre_2 | reinii var. reinii<br>F: TGGCAAATGGGAGCTTAGCA               | (TA) <sub>9</sub>    | 228-236    | 5  | 0.756          | 0.198                  | LC217340        |
| Dre C                | R: GAGGTTGTTTACGTGCCGTG                                     |                      | 146 159    | 4  | 0.004          | 0.000                  | 1 ( ) 1 7 ) 4 1 |
| Pre_5                | R: CAGACAAATTATAATCAGCTCACCG                                | $(CI)_{12}$          | 146-158    | 4  | 0.604          | 0.068                  | LC21/341        |
| Pre_7                | F: TGACATTTGCATAATTGTTAATTTGGA                              | (TC) <sub>11</sub>   | 144-160    | 5  | 0.699          | 0.240                  | LC217342        |
| Pre_9                | F: GGCAACCAAACAAACTCCTATAGT                                 | (GA) <sub>11</sub>   | 202-212    | 3  | 0.693          | -0.173                 | LC217343        |
| Pre 10               | R: TCCTGAGCGTTTACCAAACTCA                                   | (AC)                 | 149-165    | 5  | 0.696          | -0.033                 | 10217344        |
| 110_10               | R: ATCATTTGGCTTTCTACAGCTTT                                  | (//0)]]              | 145 105    | 5  | 0.050          | -0.055                 | 20217544        |
| Pre_18               | F: TTGGACTTTGCGCTCATAAGC<br>R: CTTGTTCTCTTCAACCCTTTGCT      | (TC) <sub>10</sub>   | 200-210    | 6  | 0.825          | 0.129                  | LC217345        |
| Pre_28               | F: AGCCTTGCAGGAAGATCAAGAA                                   | (AG) <sub>9</sub>    | 253-263    | 4  | 0.398          | -0.020                 | LC217346        |
| Pre_31               | F: ACGGCATGAATTTGAAGAATTGGA                                 | (GA) <sub>9</sub>    | 277-290    | 3  | 0.305          | 0.179                  | LC217347        |
| Pre_33               | R: CGGCGGATATTCAATAGGAGCT<br>F: TGAGGGACGCCATTGCTTAT        | (AG) <sub>9</sub>    | 170-188    | 4  | 0.756          | -0.033                 | LC217348        |
| D 00                 | R: CCATTACTTGCTCTGTTCGCT                                    |                      | 140 150    | _  | 0.015          | 0.000                  |                 |
| Pre_36               | F: CTAGCGAGCGAACACAATGC<br>R: ATTGAGACTGATGGCGGGAC          | (CA) <sub>9</sub>    | 142-152    | 5  | 0.815          | -0.008                 | LC217349        |
| Pre_38               | F: AGGCTTTCAACTGAACATAACGG                                  | (AG) <sub>9</sub>    | 218-226    | 6  | 0.540          | -0.041                 | LC217350        |
| Pre_40               | F: AGTACCTGTAGTGGAGAGGG                                     | (AG) <sub>9</sub>    | 202-212    | 5  | 0.687          | -0.047                 | LC217351        |
| Pre 43               | R: CCCATTAGGTTAACATTCACGGT<br>F: GGCATTACCTTAAAGTAAGAGGGT   | (GA) <sub>9</sub>    | 304-308    | 3  | 0.392          | 0.433                  | LC217352        |
| Due 47               | R: GGCATTACCTTAAAGTAAGAGGGT                                 | (177)                | 204 200    | 2  | 0.071          | 0.000                  | 10017050        |
| Pre_47               | R: CACTCTGCTGTGAGAGCTGCT                                    | (AII) <sub>8</sub>   | 284-290    | 3  | 0.371          | -0.262                 | LC21/353        |
| Pre_51               | F: CCCTGTAATCTACCTCCACGG                                    | (TAT) <sub>7</sub>   | 152-158    | 3  | 0.595          | -0.154                 | LC217354        |
| Pre_52               | F: TTGCAGGGCAAGTGAACTCA                                     | (CAG) <sub>7</sub>   | 242-272    | 5  | 0.567          | -0.047                 | LC217355        |
| Pre_57               | R: GGCTGAGAAGGAGCAGTTGA<br>F: TGGCTGTTTGTGGAATTAGCT         | (TCT) <sub>7</sub>   | 143-152    | 4  | 0.409          | 0.211                  | LC217356        |
| -<br>Due 61          | R: GTTTGAGTGAGAGGGGGGCTCT                                   |                      | 200 270    | 4  | 0.400          | 0.1.40                 | 1 (2) 1 7 2 5 7 |
| Pre_61               | R: TTGTGTACCGTACCGCAGAG                                     | $(11C)_{6}$          | 266-278    | 4  | 0.489          | 0.148                  | LC21/35/        |
| Pre_73               | F: ACGGATCTTTGTGAGGAAGGAG<br>R: TCCGTCTGTCTGAATTTAGGGT      | (TATG) <sub>5</sub>  | 140-148    | 2  | 0.125          | -0.034                 | LC217358        |
| For P. reinii        | var. okamotoi                                               |                      |            |    |                |                        |                 |
| Pok_6                | F: TGGTTCACAATTCACAACCCA                                    | (AG) <sub>11</sub>   | 160-162    | 2  | 0.474          | 0.116                  | LC217359        |
| Pok_8                | F: AAGGCAGTTGAGTCCCTTTCT                                    | (CT) <sub>11</sub>   | 308-312    | 2  | 0.495          | 0.088                  | LC217360        |
| Pok 11               | R: TGCGAACAAGATCTAAGGATGT<br>F: TGAAGGATAAGTTAGTAATTTGTGCCA | (CT)11               | 192-210    | 2  | 0.354          | 0.123                  | LC217361        |
| D-1-15               | R: ACTCCGTATTATTACCTGAACAAGT                                | ((74))               | 206 212    | -  | 0.407          | 0.200                  | 10217302        |
| POK_15               | R: TGTTTGGGCCAATTGTACTACG                                   | (1A) <sub>10</sub>   | 206-212    | 2  | 0.497          | -0.368                 | LC21/362        |
| Pok_24               | F: ACACCATCATTCGGTTTAGTACCT                                 | (GA) <sub>10</sub>   | 151-157    | 2  | 0.382          | -0.122                 | LC217363        |
| Pok_25               | F: GGTGTTCCATGAGACCAGAACA                                   | (GA) <sub>10</sub>   | 155-161    | 3  | 0.325          | 0.181                  | LC217364        |
| Pok_27               | R: TGGTCTCTGGTTGCTAAGGC<br>F: ATCCGTCTCGCATCGTCTTC          | (CT) <sub>10</sub>   | 156-160    | 2  | 0.542          | 0.135                  | LC217365        |
| Dok 21               | R: TAGAGGCGCCATTGAAGGTC                                     |                      | 164-176    | 2  | 0 155          | 0.072                  | 10217266        |
| PUK_51               | R: CCACTAGCTCTGCAGTTCTGA                                    | (AG1) <sub>9</sub>   | 104-170    | 2  | 0.155          | -0.075                 | LC217300        |
| Pok_32               | F: CGAAACAATATTACCCGACCGG<br>R: CGCTCTTCTGCCTACTCAACA       | (CCA) <sub>8</sub>   | 159-162    | 2  | 0.222          | -0.125                 | LC217367        |
| Pok_39               | F: CATCAAGATGCCACCAAGGG                                     | (GAA) <sub>7</sub>   | 283-286    | 2  | 0.235          | 0.432                  | LC217368        |
| Pok_40               | K: CETTICCETAGTICIGGCCC<br>F: GCAAGCAATGAGACGAGTAACT        | (TCA) <sub>7</sub>   | 277-286    | 3  | 0.194          | 0.288                  | LC217369        |
| Pok 15               | R: TACGTGAGGCGCTTTGTGAA                                     | $(\mathbf{TTA})_{-}$ | 167-171    | 2  | 0.487          | 0.079                  | 10217370        |
| 1 UK_45              | R: GCTGACAAGGCTCAACTGGA                                     | (111)0               | 107 171    | 2  | 0.407          | 0.073                  | 1021/3/0        |
| Pok_58               | F: GCCTTGTGAAACGCCGTTAA<br>R· ACAATCCCAGCTGAAAGATCCT        | (ATAC) <sub>5</sub>  | 162-170    | 2  | 0.131          | -0.056                 | LC217371        |
| Pok_60               | F: TGCCAGGTGTATTATCCGACG                                    | (TTTA) <sub>5</sub>  | 189-201    | 2  | 0.354          | -0.267                 | LC217372        |
| For <i>P</i> rainii  | K: ALLAGALIAACACAAACCGGA                                    |                      |            |    |                |                        |                 |
| Prh_1                | F: AAACGTAGGCAGGAGCAACA                                     | (AT) <sub>12</sub>   | 254-256    | 4  | 0.514          | 0.089                  | LC217373        |
| Drb F                | R: TATGAGCGGTGGACTTAGGGT                                    | (AC)                 | 107 100    | 2  | 0.575          | 0.070                  | 10010074        |
| PTII_D               | r. GCCGAAAGIGACAAAIGAAAGC<br>R: TCATGGCCAGATTCTTGTTGC       | (AG) <sub>11</sub>   | 137-163    | 3  | 0.575          | 0.076                  | LC21/3/4        |

(continued on next page)

44

| Table 1 (continued ) |                                                           |                     |            |                |             |                 |               |  |  |
|----------------------|-----------------------------------------------------------|---------------------|------------|----------------|-------------|-----------------|---------------|--|--|
| Locus                | Primer sequence $(5' \rightarrow 3')$                     | Repeat motif        | Size range | N <sub>A</sub> | $H_{\rm E}$ | F <sub>IS</sub> | Accession no. |  |  |
| Prh_6                | F: ACGCAACGGCAAACTTCTTT<br>R: ACAGGGACCAAATTGAAACTATTG    | (CT) <sub>11</sub>  | 165–167    | 2              | 0.146       | -0.068          | LC217375      |  |  |
| Prh_17               | F: GAGGGTGTATCTGAAGATTACTCT<br>R: TCGGATTGGGTTAAATTCTGGGT | (CT) <sub>10</sub>  | 212-218    | 2              | 0.418       | -0.078          | LC217376      |  |  |
| Prh_22               | F: AGGCGGGTGTGATAAACCG<br>R: GGGACCTGTTTGAGTAGAGGC        | (AG) <sub>10</sub>  | 254-256    | 2              | 0.253       | -0.151          | LC217377      |  |  |
| Prh_30               | F: GAGCCAGGTCATCAACACCC<br>R: TGGATTATTCACGCTGTGAGTGA     | (CCA) <sub>7</sub>  | 220-229    | 2              | 0.275       | 0.296           | LC217378      |  |  |
| Prh_35               | F: TGGTCTGAGGATCAACTGCG<br>R: CACGAATTCCCAGAGGCGAA        | (GAT) <sub>6</sub>  | 158-167    | 3              | 0.468       | -0.002          | LC217379      |  |  |
| Prh_46               | F: GGCCGATCCACATATTCATCA<br>R: CCAACTCGGTTTGATCCAGT       | (GAA) <sub>6</sub>  | 253-259    | 2              | 0.490       | 0.107           | LC217380      |  |  |
| Prh_60               | F: CGTTGATCTACTGTTTCGGCAG<br>R: TCGATTGGCACACGTATGGA      | (TGTA) <sub>5</sub> | 130–154    | 3              | 0.352       | 0.337           | LC217381      |  |  |
| Prh_64               | F: TGGGTGAAGAATTGGAGAAACT<br>R: CCCTCGGTCCAGCTTAAAGC      | (TTTG) <sub>5</sub> | 261-270    | 3              | 0.454       | 0.243           | LC217382      |  |  |

 $N_{\rm A}$ , number of alleles;  $H_{\rm E}$ , expected heterozygosity;  $F_{\rm IS}$ , inbreeding coefficient.

populations of these critically endangered plants, and 43 microsatellite markers were used to assess the genetic diversity of critically endangered primroses and develop effective conservation and management strategies.

# Acknowledgments

This research was financially and technically supported by FASMAC Co., Ltd. (Kanagawa, Japan) and The Environment Research and Technology Development Fund (#4-1403).

We are grateful to Chichibu Taiheiyo Cement Co. and Ryoko Lime Industry Co., Ltd. for their help with sample collection.

#### References

Doyle, J.J., 1990. Isolation of plant DNA from fresh tissue. Focus 12, 13-15.

Excoffier, L., Lischer, H.E., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567.

- Meglécz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., Martin, J.F., 2010. QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26, 403-404.
- Ministry of the Environment, 2017. The Japanese red lists 2017. Available from: URL: http://www.env.go.jp/press/files/jp/105449.pdf

Richards, A.J., 2003. Primula. Batsford, London.

- Rozen, S., Skaletsky, H., 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365-386.
- Yamamoto, M., Yasui, M., Setoguchi, H., Kurata, K., 2013, Conservation of an endangered perennial herb, Primula reinii var. rhodotricha. J. Nat. Restor. Conserv. 6, 23-29 (Japanese with English summary).

Yamamoto, M., Kurata, K., Setoguchi, H., 2017a. Conservation genetics of an ex situ population of *Primula reinii* var. *rhodotricha*, an endangered primrose endemic to Japan on a limestone mountain. Conserv. Genet. http://dx.doi.org/10.1007/ s10592-017-0966-2 (in press).

Yamamoto, M., Ohtani, M., Kurata, K., Setoguchi, H., 2017b. Contrasting evolutionary processes during Quaternary climatic changes and historical orogenies: a case study of the Japanese endemic primroses Primula sect. Reinii. Ann. Bot. http:// dx.doi.org/10.1093/aob/mcx108 (in press). Yamazaki, T., 1993. Primulaceae. In: Iwatsuki, K., Yamazaki, T., Bufford, D.E., Ohba, H.

(Eds.), Flora of Japan, vol. 3a. Kodansya, Tokyo, pp. 87–95. Zerbino, D.R., Birney, E., 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Resour. 18, 821-829.