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In brief

In this study, we developed an automatic

and fast sleeping stage and arousal/

apnea detection tool, by adapting a U-net

architecture with a convolutional neural

network that is suitable for processing

temporal information and makes

sequence-to-sequence annotations. Our

model is tested on different modalities

and is consistently achieving excellent

performance, which is comparable with

human experts. Our tool provides an

alternative to assist human experts in

detecting pathological sleeping patterns

in the study of clinical patients.
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THE BIGGER PICTURE Sleep quality is one of the top public health concerns. Disturbance during sleep will
affect peoples’ daily executive functions. In addition, some pathological sleeping conditions, such as
arousal and apnea, are closely associated with severe health conditions such as cardiovascular diseases.
Traditional sleeping surveillance requires laborious human effort while maintaining a limited reproducibility.
In this study, we present a fast automatic sleep annotation deep learning model with excellent perfor-
mances. Ourmodel can annotate sleeping stages aswell as sleeping arousal/apnea at the same time, which
provides insight for clinical diagnosis of sleeping patients.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Sleep disorders affect the quality of life, and the clinical diagnosis of sleep disorders is a time-consuming and
tedious process requiring recording and annotating polysomnographic records. In this work, we developed
an auto-annotation algorithm based on polysomnographic records and a deep learning architecture that pre-
dicts sleep stages at the millisecond level. The model improves the efficiency of the polysomnographic re-
cord annotation process by automatically annotating each record within 3.8 s of computation time and
with high accuracy. Disease-related sleep stages, such as arousal and apnea, can also be identified by
this model, which further expands the physiological insights that the model can potentially provide. Finally,
we explored the applicability of the model to data collected from a different modality to demonstrate the
robustness of the model.
INTRODUCTION have some ambiguities that require individual interpretation, the
Sleep disorders, which are prevalent in the general population,

are growing threats to people’s quality of life.1 Besides their

own negative impacts, some of the sleep disordersmay be asso-

ciated with other complex conditions, such as cardiovascular

and metabolic disorders,2 weakened immune system,3 and

neurologic diseases.4 The primary dataset for identifying sleep

disorders is whole-night polysomnography (PSG), which mea-

sures multiple physiology signals including EEG (brain waves),

ECG (heart rhythm), EOG (eye movement), EMG (muscle move-

ment), airflow, etc.5 However, annotating the PSG records with

sleep stages, which is crucial for disease diagnosis, is a tedious

process. The annotation of an 8-h PSG record may require 2 h

of repetitive work of a human expert.6 Besides, because the

sleep-stage scoring manuals, for example, the widely used

American Academy of Sleep Medicine (AASM) scoring manual,
This is an open access article under the CC BY-N
scoring results demonstrate ahigh variability amongwell-trained,

experienced technologists.7,8 Therefore, the development of

computational approaches that could improve the speed and

reliability of the sleep-scoring process is of great importance.

Despite a variety of machine learning and deep learning algo-

rithms developed for sleep-stage scoring, auto-annotation of

PSG records is still not widely accepted for clinical use.6 Several

open-ended questions are still challenging the field. The first one

is that most automatic sleep-scoring algorithms are trained on

the PSG records of healthy individuals, and therefore applying

these algorithms to patients with sleep disorders often fails.6 A

possible reason for this is that patients with sleep disorders usu-

ally experience disease-related events such as arousal and ap-

nea, which the models trained on healthy individuals are not

exposed to. Most sleep-scoring models are only focused on

the prediction of rapid eye movement (REM) and non-rapid eye
Patterns 3, 100371, January 14, 2022 ª 2021 The Author(s). 1
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Figure 1. Overview of the experimental design

Diverse data collected from PhysioNet and SHHS were fed into the U-net, which segregates the time-series records into different sleep stages.
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movement (NREM) stages. Ideally, an algorithm should also take

arousal and apnea and all stages into consideration. Secondly,

since the sleep-scoring manual is based on 30-s epochs,

many algorithms are using 30-s epochs as input andmake a pre-

diction on these 30-s chunks.9–12 However, it is not very accurate

to view sleep stages as distinct entities, but they should be grad-

ually transiting from one to another.13

In this work, we present a deep learning algorithm which auto-

annotates the PSG records into seven categories, including five

sleep stages (wake, N1, N2, N3, REM) and two pathological an-

notations (arousal, apnea), at the millisecond scale. We

improved on the two questions mentioned above in two ways:

firstly, we combined the prediction of sleep arousal and apnea

with the prediction of basic sleep stages (wake, REM, NREM),

which would be helpful to gain disease-related insights. The

model was trained and tested separately on both PhysioNet da-

taset provided by the 2018 PhysioNet Challenge14 and Sleep

Heart Health Study visit 1 (SHHS-1) dataset provided by the

National Sleep Research Resource (NSRR). Both datasets

include a mix of healthy individuals and individuals with sleep

disorders, making the resulting model applicable for the seg-

mentation of disease-related records. Secondly, full-length

sleep records are used as inputs and the U-net architecture is

used to integrate information at different resolutions. The model

achieves an annotation speed of 3.8 s for each record (on Nvidia

Titan RTX) and a high accuracy (0.9826–0.8913 AUROC [area

under the receiver operating characteristic curve]).

RESULTS

In this work, we developed a deep convolutional neural network

model that can predict sleep stages based on overnight physio-

logical measurements (Figure 1). The model was first developed

and tested using the PhysioNet dataset (Table S1), and then vali-

dated using the SHHS-1 dataset (Table S2). To integrate both

short-range and long-range information and produce predictions

for each millisecond, our model adapted the U-net structure that

takes the entire record as input. The model’s performance was

evaluatedby theAUROC, theareaunder theprecision-recall curve

(AUPRC), precision, sensitivity, specificity, accuracy, and F1

score based on confusion matrix. Finally, we applied the models

to predict the sleep patterns on the PhysioNet dataset and the

SHHS-1 dataset and showed generalizability of the model.
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Characteristics of the human-annotated PhysioNet
dataset
The model was first developed using the datasets provided by

the 2018 PhysioNet Challenge,14 which is made up of 994 hu-

man-annotated polysomnography records. Each record con-

sists of 13 physiology measurement channels, including 6 EEG

channels collected using the International 10/20 system (F3-

M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1), 1 ECG channel, 1

EOG channel (left eye activity), 3 EMG channels (abdominal,

chest, chin movement), 1 channel for the measurement of oxy-

gen saturation (SaO2), and 1 channel for the measurement of

airflow.14 All the signals are sampled at 200Hz and aremeasured

in microvolts.14 The median record length is 7.7 h, with a stan-

dard deviation of 0.66 (Figure S1). The recordsweremanually an-

notated by clinical staff according to the AASM manual for the

scoring of sleep.14 A total of seven types of sleep status annota-

tions, including five sleep stages (wakefulness, NREM stages 1,

2, 3, REM) that are annotated by 30-s contiguous intervals, and

two pathological symptoms that interrupt the sleep, arousal, and

apnea.14 NREM stage 2 (N2) and wakefulness exist with higher

percentages while undefined and arousal have lower percent-

ages (Figure S2). Detailed information about this dataset,

including patient characteristics and annotation methods, can

be found in supplementary materials (Tables S1 and S2).

Deep learning integrates information at different scales
and enables localization
The model was adapted from the classic U-net architecture.

Original U-net architecture was designed for 2D image segmen-

tation.15 We made two modifications: first, by alternating binary

segmentation to multiple channels of output for different stages.

Specifically, for each sleep stage, we have one channel repre-

senting it, with 1 representing that the time point falls into this

particular sleep stage, and 0 otherwise. Secondly, we modified

the 2D convolutional neural network to 1D convolutional neural

network. Specifically, the convolution kernels are set up to 1D

kernels (nX1), and the max pool layer is set up to pull along the

longitudinal direction. The network consists of an encoder part

and a decoder part. Each step in the encoder is made up of

two convolutional layers and one downsampling layer, while

each step in the decoder includes one upsampling layer and

two deconvolutional layers. The high-resolution information

from the encoding steps is duplicated and concatenated to the



Figure 2. Model illustration

The model is made up of an encoder part that ex-

tracts information and a decoder part that extracts

the information into sleep stages, including a total of

53 convolutional layers. Different activation func-

tions are used for final output for sleeping stage,

arousal, and apnea annotation.
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corresponding decoding steps, allowing the precise localization

of prediction results and capturing of the objects at different res-

olutions15 (Figure 2). In addition, in contrast to previous models

for sleep-stage annotation that typically use 30-s fragments as

input, we used the entire record as input. In this way, both

short-range and long-range information is considered, which im-

proves the performance of the model.16 A total of 11 steps in the

encoder part and 11 steps in the decoder part are used,

including a total of 47 convolutional layers, 11maxpooling layers,

and 11 upsampling layers. Padded convolutional layers are used

to keep the output the same length as the input.

Data partition and augmentation
For this study, the 994 annotated data are divided into a training

set with 795 records (80%) and a test set with 199 records (20%).

Among the 795 records in the training set, 636 records (80%) are

used for model training and 159 records (20%) are used for

model validation. Training loss and validation loss are monitored

to prevent overfitting. In addition, to simulate the randomnoise of

the data, we randomly modified the input signal with a random

factor between 0.95 and 1.05.16

Model performance and visualization
Wedeveloped themodel using the 12 channels, excluding SaO2,

as the addition of this channel precludes convergence. To eval-

uate the model performance, we used 5-fold cross-validation by

holding out 20% of the patients as the test set. We trained a total

of five models and the mean outputs of these five models were

used as the final output for each test record. AUROC, AUPRC,

accuracy, sensitivity, specificity, precision, and F1 score are

used as evaluation metrics, and each time point is used as one

example in evaluation (Figure 3). The mean AUC scores for

each stage range from 0.8913 (arousal) to 0.9826; the mean

AUPRC scores for each stage range from 0.4121 (arousal) to

0.9183 (REM) (Figure 3A), as the values of AUPRC will largely

depend on the fraction of each category in the entire time course.

Figure 3B shows the confusion matrix of apnea and arousal pre-

diction, as well as the prediction for five sleeping stages, where

the sensitivity of sleeping stage prediction ranges from 54.37%

(N1) to 92.13% (REM). For the model’s speed, the average

time taken to make predictions and evaluate one record was

only 3.8 s (Figure S3), which is a huge improvement on the speed

of human annotation. Instead of generating an overall prediction

label for a 30-s chunk as in most of the conventional prediction

models, a prediction label is generated for each data point,

which increases the resolution of prediction results. To visualize
the prediction results, we displayed a pre-

diction example on an example record

tr05-1452 (Figure 4). Figure 4A shows the

original 12-channel polysomnography
signal of this record. Figures 4B and 4C show the gold standard

and prediction of arousal/apnea and the five sleeping stages,

respectively. From these two figures, we can see that the sleep

stages are dynamically changing between light and deep sleep

stages during the course of sleep, forming several cycles. Fig-

ure 4D shows the full evaluation matrices of the prediction per-

formance on this record. These visualizations would be helpful

for clinicians to easily understand the model output and assess

the model performance on a single record.

Model validation on SHHS data
To validate the model, we used the SHHS-1 dataset from NSRR.

Of note, the channels of this study cannot be directly mapped to

the PhysioNet study, and for the couple that domatch, they were

collated in different modalities.

This dataset provided PSG records of 5,793 participants

(healthy or with various kinds of sleep problems). There are 16

channels including 2 EEG channels (C4-A1, C3-A2), 1 ECGchan-

nel, 2 EOG channels (left and right eye activities), 2 EMG chan-

nels (lower chinmovement), 2 channels for airflow, and 1 channel

for each of the following items: oxygen saturation, heart rate, po-

sition, light, sound, and oximetry. All channels were sampled at a

frequency of 125 Hz. The two EEG-driven grounds were placed

on C3 and C4, and paired with nodes on A1 and A2. The ECG no-

des were placed 3–5 cm below the middle of the right and left

collar bones, in spaces between rib bones; the two EOG nodes

were placed 1 cm out and 1 cm down from the outer corner from

the right and left eyes, on the bony ridge, and two EMG nodes

were placed on the lower chin, separated by 1 cm.17 The anno-

tations of the records are summarized into six stages including

wake, sleep stages 1, 2, 3, 4, REM, where stages 3 and 4 are

combined as deep sleep stage;17 arousal and apnea during

sleep are also annotated in parallel alongside the sleep stages.

We randomly selected 1,000 records from the 6,441 records in

the SHHS-1 dataset, which is comparable with the 994 records

in the PhysioNet dataset. The mean length of these 1,000 re-

cords is 8.4 h, with a standard deviation of 0.61 (Figure S4).

Compared with the PhysioNet dataset, the SHHS-1 dataset

has a lower average percentage of ‘‘N1’’ stage, while having a

higher average percentage of ‘‘apnea’’ and ‘‘wake’’ stages (Fig-

ure S5). The 1,000 records are randomly divided into a training

set with 800 records (80%) and a test set with 200 records

(20%). The eight channels that overlap between the SHHS-1

dataset and Fox dataset were used to develop the model,

including ‘‘SaO2,’’ ‘‘H.R.,’’ ‘‘ECG,’’ ‘‘THOR RES,’’ ‘‘ABDO

RES,’’ ‘‘POSITION,’’ ‘‘LIGHT,’’ and ‘‘OX stat.’’ A total of five
Patterns 3, 100371, January 14, 2022 3
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Figure 3. Model performance of each sleep

annotation on the PhysioNet dataset (199

test samples in total)

(A) Model performances evaluated by: accuracy,

AUPRC, AUROC, F1, precision, sensitivity, and

specificity. The average performances of all sam-

ples in the test sets for each label are marked in the

figures. Baselines of AUROC and AUPRC are

marked by red dashed lines. The violin plot indicates

the model’s performance on the test set.

(B) Confusion matrix of each sleep annotation of

model predictions of all samples in the test set for

PhysioNet dataset.
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models were trained, and the average result of the five models

was considered as the final result. The performance of themodel

on annotating the sleep stages of the SHHS-1 test set is similar

to the model developed using 12-channel PhysioNet data, with

an AUROC of 0.8584 (N1)–0.9721 (REM) and AUPRC of 0.2218

(N1)–0.9223 (wake) (Figure S6). To further explore the generosity

of ourmodel, we also tried 1:1 training/testing set splits formodel

training and validation for SHHS-1. Themodel maintained robust

prediction performances with decreased training sets and

increased unseen testing sets, achieving 0.9651 (wake)–

0.8200(N1) AUROC, 0.9102 (wake)–0.1610 (N1) AUPRC, and

95.68% (arousal)–72.6% (N2) accuracy (Figure S8).

Comparison of a full polysomnography model with EEG
as input
While our sleeping stage annotation model is based on the full

polysomnography, there are also many previous sleeping stage

annotation studies based on EEG signals only.18–20 Therefore,

we also carried out the sleep-stage prediction task with our

model input with EEG signals only. The performance of using

EEG signals only for PhysioNet and SHHS dataset prediction is

shown in Figures S9 and S10.
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We noticed for PhysioNet dataset, when

using the 6 EEG channels as input, the per-

formance of the 5 sleeping stages (N1, N2,

N3, REM, and wake) is on a par with using

all 12 channels (0.9808 (REM)–0.9069 (N1)

AUROC), while the arousal and apnea pre-

diction performance decreased noticeably

(0.8327 and 0.8541 AUROC). This is prob-

ably because the sleeping stages are de-

noted based on EEG signals solely, while

apnea and arousal status also involves

others, such as body movement. For the

SHHS-1 dataset, using the two EEG sig-

nals only did not achieve satisfactory per-

formances (about the random baseline),

probably due to a lack of information.

DISCUSSION

In this work, we developed a sleep-stage

auto-annotation algorithm for PSG re-

cords, which can annotate the record into

five sleep stages (wake, stage 1, 2, 3,

REM) and two pathological stages (arousal

and apnea) at a speed of 3.8 s per record
and with high accuracy (AUC = 0.9826–0.8913). The use of

U-net architecture improved the performance of the model,

and including the disease-related stages (arousal and apnea)

provides more insights than basic models.

Previous sleeping stage annotation models have always

employedrecurrentneural networks, longshort-termmemorynet-

works (LSTM), andconvolution neural networks (CNN)12,18,21–26 to

process continuous temporal signals. Our model in this study,

which is U-net architecture from CNN, achieved the state of the

art prediction performances compared with previous works,

including XSleepNet,21 RCNN,25 and the CNN/LSTM ensemble

model27 on the sameSHHSorPhysioNet dataset (Table S3),while

being able to generate multiple outputs at the same time from a

single network, including five sleep-stage prediction and annota-

tions for apnea and arousal. U-net was first invented for and

achieved excellent performance in biomedical image segmenta-

tion tasks.15 In U-net, the copy and crop of previous layers during

upsampling helps retain the original information from the input

image, therefore improving the precision of localization when

mapping the segments back to the original input.

A major roadblock that impedes the clinical use of sleep-stage

auto-annotation models is that datasets collected by different



Figure 4. Example of prediction on one sam-

ple (tr05-1452) in PhysioNet dataset

(A) Original signal with 13 channels as input.

(B) Gold standard versus prediction for the

‘‘arousal’’ and ‘‘apnea’’ sleep status annotations.

(C) Hypnography of the gold standard versus pre-

diction for five sleeping stages annotations.

(D) The prediction performances by seven metrics

(AUROC, AUPRC, sensitivity, specificity, precision,

accuracy, and F1) on eight different labels,

respectively.
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devices sometimes significantly differ from each other, therefore

the model performs less satisfying when the training data and

test data come from different sources. Nevertheless, we found

that the modification of the U-net structure is applicable sepa-

rately to data collected based on drastically different modalities.

We noticed a major limitation of our multi-class sleep-stage

annotation model is the severely imbalanced data distribution

in sleep stages, represented by an overall lower prediction accu-

racy of N1 stage in both the PhysioNet and SHHS-1 datasets.

One reason could be that there is a tradeoff between achieving

the overall lowest validation loss versus the lowest loss on each

class, respectively. Therefore the classification accuracy for N1

could be compromised by other more dominant sleeping stages

during training, such as wake, REM, and especially ‘‘N2,’’ which

occupied about half of the sleeping cycle (over 40% for both

PhysioNet and SHHS-1). In addition, we observed that a large

portion of N1 were misclassified as N2 from the confusion matrix

in all classification experiments, leading to a lower sensitivity of

N1 detection (Figures 3B, S6B, and S8B). A lower detection

sensitivity of N1was also consistently observed in other previous

machine-leaning sleep-stage annotation studies.22,24,25 During

human sleep, the N1 stage is usually very short (1–5 min) and
the transition between N1 to N2 is fast,5

which probably contributes to the

increasing difficulty to capture the exact

boundary between N1 and N2, especially

for human experts. As previously reported

in another study, human experts achieved

only 46% precision and 48% recall in N1

annotation,22 while our model achieved

51.18% precision and 67.31% recall.

Therefore, the ‘‘gold standard,’’ or human

annotation for N1 stage may not be truly

the ground truth, bringing a challenge to

predicting a perfect score. As a matter of

fact, contrary to the N1 stage, the REM

stage of sleep, while also only taking up

one-eighth of total sleep cycle, as charac-

terized by increasing brain activity and

eye movement, achieved an astoundingly

excellent accuracy by our model (0.9826

average AUC), probably due to the much

more accurate and consistent ground truth

annotation by human experts.

Finally, since the technical setup of poly-

somnography is complex, sleep moni-
toring can only be carried out in a lab setting. To facilitate the

setup of convenient home monitoring systems, essential signals

for sleep staging should be identified. Future work should

explore the ways to improvemodel performance in the situations

where the test data and training data are from different sources,

and the minimum signals required for accurate sleep-stage

scoring.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Yuanfang Guan

(gyuanfan@umich.edu).

Materials availability

This paper analyzes existing, publicly available data. The PhysioNet and SHHS

datasets can be accessed from the 2018 PhysioNet Challenge website

(https://physionet.org/physiobank/database/challenge/2018/) and the Sleep

Heart Health Study website (https://sleepdata.org/datasets/shhs).

Data and code availability

All original code has been deposited at Github under https://github.com/

GuanLab/Sleep-Stage-Auto-annotation and is publicly available as of the

date of publication.
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Overview of datasets and models

Two datasets were used in this paper: the PhysioNet dataset from the 2018

PhysioNet Challenge14 and the SHHS-1 dataset from NSRR. For the Physio-

Net dataset, 41.8% of the patients visited the sleep laboratory for diagnostic

reasons, and 58.2% visited for CPAP, according to the data descriptions

from the data provider. The SHHS study includes 27.2% participants from

the Atherosclerosis Risk in Communities Study (ARIC), 21.0% from the Cardio-

vascular Health Study (CHS), 15.5% from the Framingham Heart Study (FHS),

9.3% participants from the Strong Heart Study (SHS), 15.5% from the New

York Hypertension Cohorts, and 14.0% from the Tucson Epidemiologic Study

of Airways Obstructive Diseases and the Health and Environment Study. The

datasets were used in two training processes and four prediction processes.

The PhysioNet dataset and the SHHS-1 dataset were used to train two sets

of deep learningmodels separately. To obtain more robust results, fivemodels

were trained for each set, and all the results generated were the average result

of the five models. Each of the two sets of models were used to predict the

sleep stages of two datasets separately.

Data partition

The 994 records from the PhysioNet dataset and the 1,000 randomly selected

records from the SHHS-1 dataset were randomly divided into two parts: 80%

of the records were used as the training set and 20% of the records were used

as the test set. Then the training set was further divided into a second training

set (80%) and a validation set (20%). The validation set was used to monitor

the model training process and prevent overfitting. In each training epoch,

the model was first trained using the records in the second training set, and

then the records in the validation set were provided to the model to calculate

a validation loss without changing model weights. We stopped training the

model before the validation loss rebounded to prevent overfitting.

Quantile normalization

To account for the technical differences when generating each record, we

normalized the records using quantile normalization.28,29 First, a reference re-

cord was generated by resizing every record in a dataset into the same length,

sorting each of them, and then averaging the sorted records. Then the highest

value in the target record was replaced by the highest value in the reference

record, the second highest value was replaced by the second highest record,

and so on. Finally, the target record would have the same values as the refer-

ence record, while the sequence of the values in the target record was pre-

served. Two reference records were generated, one using the PhysioNet data-

set and the other one using the SHHS-1 dataset. Before being fed into the

models trained by either of the datasets, all the input records were quantile

normalized for each channel using the corresponding reference record.

Loss function

The loss function used in this model is weighted cross-entropy loss. To under-

stand this loss function, we first introduce the cross-entropy loss function,

which is defined as:

Hðy; y^Þ =
XN

i =1
½ � yi 3 logyi

^ � ð1� yiÞ3 logð1�Þyi^ �;

where yi refers to the gold standard label at time point i, and yi
^

refers to the

predicted label at time point i. Note that this equation is used to calculate

loss for a single stage, for example, whether the sleep stage at a time point be-

longs to stage N1 (label = 1) or not (label = 0). To develop a loss function that

represents the model’s loss on all sleep annotations, we assigned different

weights for calculating the loss for the five sleeping stages, arousal and apnea

(0.18:0.6:0.22), to synchronize the converging process for all three tasks.

Arousal was assigned a larger weight because it converged slower than the

other two.

Model training

To fit the capacity of the GPU memory, we average-pooled the length of input

PhysioNet records to one-eighth of the original resolution and the SHHS-1 re-

cords to one-fifth of the original resolution. Specifically, for PhysioNet data, we

used the average value of every eight points as a new data point and, for

SHHS-1 data, we used the average value of every five points as a new data

point. The labels were one-hot encoded. Adam optimizer was used in the
6 Patterns 3, 100371, January 14, 2022
training process, with a learning rate of 0.0001. We monitored the training

loss and validation loss, and stopped training the model before the validation

loss rebounded to prevent overfitting. The model has multiple channels of

output representing different stages. The models trained by the PhysioNet da-

taset were trained for 40 epochs and the models trained by the SHHS-1 data-

set were trained for 50 epochs.

Model evaluation

The performance of the model was measured by the AUROC and the AUPRC.

In this work, the ROC curve is generated by plotting the true-positive rate (TPR)

against the false-positive rate (FPR) at 1,000 thresholds, and the precision-

recall curve is created by plotting the precision against the recall at 1,000

thresholds. TPR (recall), FPR, and precision are defined as below:

TPRðrecallÞ=True Positive=ðTrue Positive+False NegativeÞ
FPR=False Positive=ðFalse Positive+True NegativeÞ
Precision=True Positive=ðTrue Positive+ False PositiveÞ:

The AUCwas estimated by summing up the area of each rectangle bin. AUC

and AUPRC scores were calculated for each channel in each test record. The

average AUC and AUPRC score for each channel was calculated by averaging

scores from all the test records.
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