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A B S T R A C T

Subtype-selective allosteric modulation of the M1 muscarinic acetylcholine (ACh) receptor (M1 mAChR) is an
attractive approach for the treatment of numerous disorders, including cognitive deficits. The discovery of
benzyl quinolone carboxylic acid, BQCA, a selective M1 mAChR positive allosteric modulator (PAM), spurred the
subsequent development of newer generation M1 PAMs representing diverse chemical scaffolds, different
pharmacodynamic properties and, in some instances, improved pharmacokinetics. Key exemplar molecules from
such efforts include PF-06767832 (N-((3R,4S)-3-hydroxytetrahydro-2H-pyran-4-yl)-5-methyl-4-(4-(thiazol-4-yl)
benzyl)pyridine-2-carboxamide), VU6004256 (4,6-difluoro-N-(1S,2S)-2-hydroxycyclohexyl-1-((6-(1-methyl-1H-
pyrazol-4-yl)pyridine-3-yl)methyl)-1H-indole-3-carboxamide) and MIPS1780 (3-(2-hydroxycyclohexyl)-6-(2-
((4-(1-methyl-1H-pyrazol-4-yl)-benzyl)oxy)phenyl)pyrimidin-4(3H)-one). Given these diverse scaffolds and
pharmacodynamics, the current study combined pharmacological analysis and site-directed mutagenesis to
explore the potential binding site and function of newer M1 mAChR PAMs relative to BQCA. Interestingly, the
mechanism of action of the novel PAMs was consistent with a common model of allostery, as previously de-
scribed for BQCA. Key residues involved in the activity of BQCA, including Y179 in the second extracellular loop
(ECL) and W4007.35 in transmembrane domain (TM) 7, were critical for the activity of all PAMs tested. Overall,
our data indicate that structurally distinct PAMs share a similar binding site with BQCA, specifically, an ex-
tracellular allosteric site defined by residues in TM2, TM7 and ECL2. These findings provide valuable insights
into the structural basis underlying modulator binding, cooperativity and signaling at the M1 mAChR, which is
essential for the rational design of PAMs with tailored pharmacological properties.

1. Introduction

Muscarinic acetylcholine receptors (mAChRs) are members of the
Class A G protein-coupled receptor (GPCR) family [1] involved in
central and peripheral biology [2]. Five mAChR subtypes (M1-M5), have
been identified; M1, M3 and M5 mAChRs preferentially couple to Gq/11

proteins; M2 and M4 mAChRs preferentially couple to Gi/o proteins [3].

Of note, the M1 mAChRs are highly expressed in forebrain regions,
including the cerebral cortex, hippocampus and striatum [4]. Trans-
genic M1 mAChR studies implicated roles for this receptor in neuronal
excitability, locomotor activity and learning and memory [Reviewed in
[5]]. Therefore, selective activation of the M1 mAChR has emerged as
an approach for the treatment of cognitive deficits associated with
disorders such as Alzheimer’s disease (AD) and schizophrenia [6,7].
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This is of particular relevance due to limitations associated with current
cognition-enhancing agents [8]. For instance, loss of cholinergic neu-
rons is a hallmark of AD [9,10] and inhibitors of acetylcholinesterase
remain the primary treatment for disease symptoms [11] yet are asso-
ciated with substantial adverse effects [12]. Unfortunately, drug dis-
covery efforts aimed at developing directly acting M1 mAChR agonists
have been unsuccessful. The best clinical example is the M1/M4-pre-
ferring agonist xanomeline, which proved beneficial in improving
cognitive function and psychotic symptoms in AD and schizophrenia
[13], but was not further developed due to off-target gastrointestinal
adverse effects from interaction with other mAChRs [14].

An alternative approach to developing subtype-selective drugs is
through targeting topographically distinct allosteric sites [15,16]. In
this regard, the discovery of benzyl quinolone carboxylic acid (BQCA;
1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid), a
selective M1 positive allosteric modulator (PAM) was a major devel-
opment for the field [17], leading to additional M1 mAChR PAMs.
However, BQCA has a low affinity for the M1 mAChR [18], and was
associated with liabilities that precluded further development, such as
poor brain penetration and solubility, and high plasma protein binding
[19]. The work with BQCA also highlighted complexities associated
with design of allosteric modulators as potential therapeutics. In

general, such challenges are two-fold. The first relates to understanding
of the molecular properties associated with allosteric drugs, including
affinity, cooperativity with the orthosteric agonist (positive or nega-
tive), and whether the allosteric ligand possesses intrinsic signaling
efficacy; the interplay between these properties is only starting to be
appreciated, and varies depending on the target and disease [20]. The
second major challenge for discovery programs is optimizing physico-
chemical/pharmacokinetic properties of candidate molecules to ensure
appropriate target coverage when/where required, while minimizing
off-target activity. A key development in this regard is the identification
of new allosteric scaffolds with which to target GPCRs. For instance,
Pfizer recently disclosed a novel M1 mAChR ‘PAM-agonist’, PF-
06767832, with promising physiochemical and pharmacokinetic
properties. However, PF-06767832 exhibited seizure liability, and
cardiovascular and gastrointestinal side-effects, indicating that M1

mAChR over-activation may directly contribute to adverse events [21].
A more recent study using PAMs with reduced intrinsic allosteric ago-
nist activity also noted adverse effects [22]. This may reflect defi-
ciencies in our understanding of the ‘optimal’ degree of positive co-
operativity required for specific disease intervention [18,23]. An
alternative selective M1 PAM-agonist, VU6004256, reversed cognitive
deficits in a mouse model, indicative of preclinical efficacy [24]. The
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B 

Fig. 1. Mutations and ligands investigated in the current study. (A) A snake diagram of the hM1 mAChR highlighting the mutated residues and (B) chemical
structures of the M1 positive allosteric modulators used in the current study.
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chemotype and molecular pharmacology of this M1 PAM-agonist is si-
milar to PF-06764427, yet they display different in vivo activities [25].
Our recent structure-activity studies also led to discovery of another
series of M1 mAChR PAMs [26], with a key exemplar being MIPS1780
(compound 29 in [26]).

However, despite the increasing availability of a range of novel M1

mAChR PAM scaffolds with different molecular and functional prop-
erties, the extent to which their differential activities are driven from
interaction with a common allosteric binding pocket, or from alter-
native regions is not known. Previously, we utilized mutagenesis to
reveal that BQCA binds to a “common” allosteric mAChR binding site,
located in an extracellular vestibule defined by residues predominantly
in TM2, TM7 and ECL2 [27]. However, there is also pharmacological
evidence that the mAChRs possess at least a second allosteric site
[28–30]. Thus, the aim of the current study was to apply a combination
of analytical pharmacology and site-directed mutagenesis (Fig. 1A) to
explore the potential binding site and function of novel selective M1

mAChR PAMs with diverse scaffolds, PF-06767832, VU6004256 and
MIPS1780, in comparison to the first-generation BQCA (Fig. 1B). Our
results provide evidence that these ligands act solely as modulators of
ACh affinity, not efficacy, and may bind to a similar binding pocket at
the M1 mAChR and exert their effects with subtle differences, but lar-
gely consistent, with those of BQCA. This provides valuable insight into
the structural basis underlying allosteric ligand binding and function at
the M1 mAChR.

2. Materials and methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine
serum (FBS) were purchased from Invitrogen (Carlsbad, CA) and
ThermoTrace (Melbourne, Australia), respectively. Hygromycin B was
purchased from Roche (Mannheim, Germany). IP-One assay kit and
reagents were purchased from Cisbio (Codolet, France). [3H]N-me-
thylscopolamine ([3H]NMS); specific activity, 75 Ci/mmol) and Ultima
gold and MicroScint scintillation liquid were purchased from
PerkinElmer Life Sciences (Boston, MA). BQCA and MIPS1780 were
synthesized in-house at the Monash Institute of Pharmaceutical
Sciences as described previously [26,31]. VU6004256 was synthesized
in-house at Vanderbilt University as described previously [25]. All

other chemicals were purchased from Sigma Aldrich (St. Louis, MO), or
as otherwise stated below. FlpIn Chinese Hamster Ovary (CHO) cells
stably expressing the wild type (WT) or mutant c-myc hM1 mAChRs
(passage numbers 8–25) were generated as described previously [32],
and maintained in DMEM supplemented with 5% FBS, 16mM HEPES
and 600 μg/ml hygromycin B at 37 °C in humidified atmosphere con-
taining 5% CO2.

2.2. Whole cell radioligand binding assays

Saturation binding assays were performed to estimate the expres-
sion levels and equilibrium dissociation constant of the radioligand
(KD). FlpIn CHO cells stably expressing the WT or mutant c-myc hM1

mAChRs were plated at the density of 25,000 per well of 96-well white
clear bottom Isoplates (PerkinElmer Life Sciences, Boston, MA), and
grown overnight at 37 °C. The following day, cells were washed twice
with Phosphate Buffer Saline (PBS), and incubated with 0.03–10 nM
[3H]NMS in a final volume of 100 µl buffer (20mM HEPES, 100mM
NaCl, 10mM MgCl2, pH 7.4) for 4 h at room temperature. For binding
interaction assays, cells were incubated with increasing concentrations
of ACh in the presence or absence of increasing concentrations of PAMs,
and [3H]NMS (0.3 nM for the WT, F772.56I, Y179ECL2A, W4007.35A, and
0.6 nM for Y822.61A M1 mAChRs) in a final volume of 100 µl. Atropine
at the final concentration of 100 µM was used to determine non-specific
binding. The assays were terminated by rapid removal of the radi-
oligand, and two washes with 100 µl/well ice-cold 0.9% NaCl buffer.
Radioactivity was determined by addition of 100 µl/well MicroScint
scintillation liquid (PerkinElmer Life Sciences, Boston, MA), and
counting in a MicroBeta plate reader (PerkinElmer Life Sciences,
Boston, MA).

2.3. IP-one accumulation assays

The IP-One assay kit (Cisbio) was used for the direct quantitative
measurement of myo-Inositol 1 phosphate (IP1). Cells were seeded at
25,000 per well into 96-well transparent cell culture plates and in-
cubated overnight at 37 °C. The following day, cells were pre-incubated
with IP1 stimulation buffer (1 mM CaCl2, 0.5 mM MgCl2, 4.2 mM KCl,
146mM NaCl, 5.5mM D-Glucose, 10mM HEPES and 50mM LiCl, pH
7.4) for 1 h before stimulation with ACh in the presence or absence of
increasing concentrations of PAMs in IP1 stimulation buffer for 1 h at

Fig. 2. BQCA, PF-06767832, VU6004256 or
MIPS1780 display high positive cooperativity with
the endogenous agonist ACh and negative co-
operativity with the antagonist [3H]NMS at the M1

mAChR. Inhibition of [3H]NMS (0.3 nM) binding by
ACh in the presence of increasing concentrations of
BQCA (A), PF-06767832 (B), VU6004256 (C) or
MIPS1780 (D). Data points represent the
mean+S.E.M. of four experiments performed in
duplicate. The curves were generated by fitting the
data to an allosteric ternary complex model (Eq. (1)).
Binding parameter estimates from these experiments
are listed in Table 1.
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37 °C, 5% CO2. Cells were then lysed with IP1 lysis buffer (50mM
HEPES pH 7.0, 15mM KF, 1.5% V/V Triton-X-100, 3% V/V FBS, 0.2%
W/V BSA), and IP1 levels were measured by incubation of cell lysates
with FRET reagents (the cryptate-labeled anti-IP1 antibody and the d2-
labeled IP1 analogue) for 1 h at 37 °C. The emission signals were mea-
sured at 590 and 665 nm after excitation at 340 nm, using the Envision
plate reader (PerkinElmer Life Sciences, Boston, MA). Signals were
expressed as the FRET ratio: F = (fluorescence665 nm/fluores-
cence590 nm)× 104, and normalized to the response to maximal ACh
concentration (100 µM).

2.4. Receptor alkylation assays

Cells were pre-treated with vehicle or the irreversible orthosteric
alkylating agent, phenoxybenzamine (PBZ) for 30min at 37 °C, 5% CO2

to reduce functional receptor availability, followed by three extensive
washes with PBS. IP1 accumulation assays were then performed as
described above.

2.5. Flow cytometric detection of cell surface receptor expression

Cells were harvested with PBS supplemented with 2mM EDTA, and
transferred to a 96-well v-bottomed plate. Cells were then centrifuged
at 350g for 3min at 4 °C and resuspended in 100 µl of blocking buffer
(1× HBSS, 5% BSA, 20mM HEPES, pH 7.4). After 30min incubation on
ice, cells were incubated with mouse monoclonal 9E10 antibody (pre-
pared in-house) targeted to the c-myc epitope tag at 5 µg/ml in assay
buffer (1× HBSS, 0.1% BSA, 20mM HEPES, pH 7.4) for 90min on ice.
Cells were then washed twice with assay buffer and incubated with a
secondary goat anti-mouse IgG antibody conjugated to Alexa Fluor 647
(1 µg/ml, Molecular Probes, Invitrogen) for 60min on ice. Following
two washes, cells were resuspended in assay buffer containing 1 µM
Sytox blue (Thermo Fisher Scientific). The fluorescence signal was
quantified using a FACSCanto II flow cytometer (BD Biosciences).

2.6. Data analysis

All data were analysed using GraphPad Prism 7 (San Diego, CA).
Inhibition binding data between ACh and the radioligand antagonist,
[3H]NMS, were analysed according to a one-site binding model [33].
Binding interaction studies between orthosteric agonists and allosteric
modulators were fitted to the following allosteric ternary complex
model [23] (Eq. (1)):

=
+ ⎡⎣ ⎤⎦⎡⎣

+ + + ⎤⎦′ +

Y B [D]

[D] 1α
α

max
K K
[B] K

[I]
K

[B]
K

[I][B]
K K

D B
B I B I B (1)

where Bmax is the total number of receptors, [D], [B] and [I] denote the
concentrations of radioligand, allosteric ligand, and orthosteric ligand,
respectively, and KD, KB and KI represent their respective equilibrium
dissociation constants. α′ and α are the cooperativity factors between
the allosteric ligand and radioligand or orthosteric ligand, respectively.
Values of α or α′ > 1 denote positive cooperativity, values between 0
and 1 denote negative cooperativity, and a value of 1 indicates neutral
cooperativity.

To estimate intrinsic efficacy of ACh in IP1 accumulation assays at
the WT or mutant M1 mAChRs, the following operational model of
agonism [34] (Eq. (2)) was used:

= + −
+ +

Y
τ

Basal (E Basal)
1 ((K [A])/ [A])

m

A (2)

where Em is the maximal possible system response and Basal is the
response in the absence of agonist. [A] denotes the concentration of
ligand, and KA represents its equilibrium dissociation constants. τ de-
notes the intrinsic efficacy of the ligand, which incorporates the total
receptor density and the efficiency of stimulus-response coupling.

Functional interaction studies between orthosteric agonists and al-
losteric modulators in IP1 assays were analysed using the following
operational model of allosterism and agonism [35] (Eq. (3)):

= +
− + +

+ + + +
E

αβ τ
αβ τ

Basal
(E Basal)([A](K [B]) [B]EC )

EC (K [B]) ([A](K [B]) [B]EC )
m B B 50

50 B B B 50 (3)

where Em is the maximal possible system response, and Basal is the
response in the absence of agonist. KB is the equilibrium dissociation
constant of allosteric ligand, and EC50 is the concentration of orthos-
teric agonist required to achieve half maximal response. [A] and [B]
denote concentrations of orthosteric and allosteric ligands, respectively.
α and β denote allosteric effects on orthosteric ligand binding affinity
and efficacy, respectively, and τB denotes the efficacy of allosteric li-
gand. This model assumes that ACh is a full agonist at the receptor in
both the absence/presence of modulator and/or there is no efficacy
modulation (i.e., β=1). As shown in the Results, both of these as-
sumptions were met depending on the experimental protocol, and thus
the β parameter was constrained to 1.

All affinity, efficacy and cooperativity values were estimated as

Table 1
Binding parameters for the interaction between ACh and M1 PAMs, BQCA, PF-
06767832, VU6004256 or MIPS1780, at the WT and mutant M1 mAChRs.
Values represent the mean ± S.E.M. of four experiments performed in dupli-
cate, and were estimated from binding interaction studies using an allosteric
ternary complex model (Eq. (1)). The pKA of [3H]NMS was constrained to the
values listed in Table 3. ND, not determined.

PAMs pKB
a Logα (α)NMS

b Logα (α)AChc

BQCA WT 5.78 ± 0.05 −1.07 ± 0.10
(0.06)

1.32 ± 0.11
(13.5)

F772.56I 5.82 ± 0.06 −0.90 ± 0.07
(0.08)

1.31 ± 0.12
(13.5)

Y822.61A 5.76 ± 0.06 −0.84 ± 0.06
(0.11)

1.58 ± 0.11
(30.2)

Y179ECL2A ND ND ND
W4007.35A ND ND ND

PF-06767832 WT 6.51 ± 0.03 −1.05 ± 0.06
(0.06)

1.40 ± 0.08
(16.2)

F772.56I 6.38 ± 0.07 −1.02 ± 0.12
(0.06)

1.83 ± 0.14*

(44.7)
Y822.61A 5.61 ± 0.12* −0.16 ± 0.02

(0.62)
1.53 ± 0.11
(30.9)

Y179ECL2A ND ND ND
W4007.35A ND ND ND

VU6004256 WT 6.32 ± 0.03 = −2 1.40 ± 0.09
(15.5)

F772.56I 6.38 ± 0.03 = −2 1.45 ± 0.10
(14.1)

Y822.61A 5.65 ± 0.19* −0.09 ± 0.03
(0.76)

1.08 ± 0.13
(11.2)

Y179ECL2A ND ND ND
W4007.35A ND ND ND

MIPS1780 WT 6.18 ± 0.03 = −2 1.60 ± 0.08
(25.7)

F772.56I 6.18 ± 0.03 = −2 1.60 ± 0.09
(25.7)

Y822.61A 5.00 ± 0.24* −0.16 ± 0.06
(0.69)

1.66 ± 0.19
(45.7)

Y179ECL2A ND ND ND
W4007.35A ND ND ND

a Negative logarithm of the allosteric modulator equilibrium dissociation
constant.

b Logarithm of binding cooperativity between [3H]NMS and each modulator.
Where determined as the preferred model by F-test, logαNMS was constrained to
−2, consistent with high negative cooperativity between the two ligands.

c Logarithm of binding cooperativity between ACh and each modulator.
* Significantly different compared to WT, p < 0.05, one-way ANOVA with

Dunnett’s post-hoc test.
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logarithms [36], and where appropriate, were compared using unpaired
Student’s t-test or one-way analysis of variance (ANOVA) with Dun-
nett’s multiple comparison test. A p value < 0.05 was considered sta-
tistically significant.

3. Results

3.1. Novel PAMs behave according to a two-state model of allostery at the
M1 mAChR

Equilibrium [3H]NMS binding interaction studies between ACh and
increasing concentrations of BQCA, PF-06767832, VU6004256 or
MIPS1780 were performed at the M1 mAChR to determine the affinity
(KB) of each PAM and their binding cooperativity (α) with the en-
dogenous agonist ACh or the radiolabelled antagonist [3H]NMS, using
an allosteric ternary complex model (Eq. (1)). As shown in Fig. 2, all
PAMs displayed high negative cooperativity with the radioligand, but
strong positive cooperativity with ACh (Table 1). Consistent with the
results of previous studies [21,22,26], PF-06767832, VU6004256 and
MIPS1780 have higher affinities at the M1 mAChR compared to BQCA
(Table 1). However, the affinity of BQCA in our study is higher than
previously reported values [18,27,31,37] for this compound. This could
be due to different experimental conditions including radiolabelled
antagonist used, membrane vs. whole cell binding-based assays, in-
cubation time and temperature.

3.2. Novel PAMs modulate ACh affinity at the M1 mAChR

The effects of each modulator on ACh-stimulated IP1 accumulation
were then investigated. BQCA, PF-06767832, VU6004256 or MIPS1780

Fig. 3. BQCA, PF-06767832, VU6004256 or
MIPS1780, modulate the affinity but not efficacy of
ACh at the M1 mAChR. Modulation of ACh-stimu-
lated IP1 accumulation by BQCA (A, E), PF-06767832
(B, F), VU6004256 (C, G) or MIPS1780 (D, H)
without PBZ (left panels) or with PBZ (10 µM) pre-
treatment (right panels) in CHO-hM1 cells. Data
points represent the mean+ S.E.M. of at least four
experiments performed in duplicate. The vehicle-
treated curves for ACh under non-alkylation condi-
tions in panels E – H are from a global fit to a three-
parameter logistic equation, whereas all other curves
in the same panels (under alkylated conditions), as
well as the curves in panels A–D, were globally fitted
to an operational model of allosterism (Eq. (2)).
Functional cooperativity (logαβ) estimates from
these experiments are listed in Table 2.

Table 2
Functional cooperativity (logαβ) estimates for the interactions between ACh
and M1 PAMs in IP1 accumulation assays with or without pre-treatment with
PBZ in CHO-hM1 cells. The values were estimated by fitting the data to an
operational model of allosterism (Eq. (3)), and represent the mean ± S.E.M. of
at least four experiments performed in duplicate. The pKB of each modulator
was constrained to the values listed in Table 1. The β parameter was con-
strained to 1 to indicate lack of efficacy modulation. Logα β values were not
significantly different between non-alkylated and alkylated experiments
(p > 0.05, unpaired Student’s t-test, degree of freedom 6).

PAM Logαβ (αβ)

Non-alkylated Alkylated with PBZ

BQCA 1.34 ± 0.10 (22) 1.79 ± 0.11 (62)
PF-06767832 1.92 ± 0.11 (83) 2.16 ± 0.11 (144)
VU6004256 1.78 ± 0.18 (60) 1.96 ± 0.22 (91)
MIPS1780 1.77 ± 0.14 (59) 2.07 ± 0.13 (117)
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robustly enhanced the response to ACh, as indicated by a leftward shift
in the ACh concentration response curve, while also stimulating IP1
accumulation in their own right (Fig. 3A–D), indicating that they each
act as M1 mAChR PAM-agonists in our cell line. The functional co-
operativity values (αβ) for PF-06767832, VU6004256 or MIPS1780
with ACh were higher than that of BQCA (Table 2). Because ACh was a
full agonist in the absence or presence of each PAM, it was unclear
whether the allosteric enhancement of ACh potency was due to effects
on orthosteric agonist affinity, intrinsic efficacy, or both. Thus, to dif-
ferentiate these possibilities, IP1 interaction studies between ACh and
each modulator were also performed under alkylation conditions with
PBZ to reduce levels of receptor reserve (Fig. 3E–H). Concentration-
response curves to ACh were first generated under pre-treatment of
CHO-hM1 cells with vehicle or increasing concentrations of PBZ for
30min (followed by extensive washout) to determine the concentration
of PBZ required to reduce receptor availability by approx. 50% for ACh
(data not shown). Pre-treatment with 10 µM PBZ reduced the potency
and maximal response to ACh in IP1 accumulation assays to the level of
a partial agonist. This provided a substantial window to unmask any
additional effects of the PAMs on ACh maximal response. However, as
noted (Fig. 3E–H), BQCA, PF-06767832, VU6004256 or MIPS1780 in-
creased the potency of ACh with no effect on the maximal agonist re-
sponse, and with αβ values similar to those obtained without PBZ pre-
treatment (Table 2). Collectively, these findings indicate that the PAMs
exert their allosteric modulatory effects on agonist affinity rather than
efficacy (i.e., β=1).

3.3. Effects of amino acid substitutions on receptor expression and affinity
of orthosteric ligands at the M1 mAChR

The similar mechanism of action observed in aforementioned ex-
periments for the M1 PAMs suggest that PF-06767832, VU6004256 and
MIPS1780 may bind to a similar binding site as that occupied by BQCA.
To further investigate this, and to identify key amino acid residues that
govern the binding affinity, efficacy and cooperativity of the novel M1

PAMs with ACh, we adopted a structure–function approach. Five key
amino acid residues from distinct locations at the M1 mAChR, F772.56,
Y822.61 in TM2, Y179 in ECL2, Y3816.51 in TM6 and W4007.35 in TM7
(residues are numbered using the Ballesteros-Weinstein numbering
system [38]), previously reported to be involved in the binding of or-
thosteric, allosteric or bitopic ligands at the M1 mAChR, were selected
[17,27,32,39,40].

Whole cell [3H]NMS saturation binding assays were first performed
to determine the equilibrium dissociation constant of the radiolabelled
antagonist (KD) and the cell surface receptor expression (Bmax) of the
mutant M1 mAChRs relative to WT (302549 ± 32197 sites/cell). No
[3H]NMS binding was observed at Y3816.51A (data not shown), there-
fore, together with the lack of detectable ACh response in functional
assays, this mutation was excluded from subsequent experiments. The
affinity of [3H]NMS was unchanged at F772.56I, Y822.61A, Y179ECL2A or
W4007.35A, however, all the mutations caused a significant reduction in
the levels of receptor expression (Table 3). Flow cytometry of antibody
binding to the c-myc epitope was also performed to detect im-
munolabeled cell surface-expressed receptors. The estimated normal-
ized values from saturation binding assays agreed well with the nor-
malized values obtained from flow cytometry experiments (Table 3).
The affinity of ACh (KI) was estimated from [3H]NMS inhibition
binding assays using a one-site binding model, and was unaltered at
F772.56I or Y179ECL2A, mutant receptors, whereas it was significantly
reduced at Y822.61A or W4007.35A mutant receptors compared with the
WT value (Table 3), consistent with our previous observations [31,32].

3.4. Effects of amino acid substitutions on the binding of PAMs at the M1

mAChR

Equilibrium binding interaction studies were then performed to
determine the effects of mutations on the affinity and binding co-
operativity of M1 PAMs with ACh. At the Y179ECL2A or W4007.35A
mutants, the modulatory effects of BQCA, PF-06767832, VU6004256 or
MIPS1780 on ACh inhibition of [3H]NMS binding were completely
abolished, and hence, their affinity and their binding cooperativity with
ACh could not be estimated (Table 1 and Fig. 4), indicating a vital role
of these two residues that is common to the actions of all PAM che-
motypes tested.

F772.56 was previously reported to be important for the binding and
agonist activity of bitopic ligands i.e., extended hybrid molecules that
concomitantly engage both orthosteric and allosteric sites [32,39,40].
As shown in Table 1 and Fig. 5A–D, the F772.56I mutation did not alter
the affinity of the PAMs when compared with WT. The binding co-
operativity between ACh and the PAMs was also unchanged, with the
exception of PF-06767832, which displayed a significant, albeit small,
increase in cooperativity with ACh at this mutation (Table 1). Collec-
tively, these data suggest that a bitopic mechanism of action is unlikely
for these compounds although the residue at position 2.56 may play
some role in the transmission of cooperativity depending on the nature
of the interacting ligands. Interestingly, at Y822.61A, the affinities of PF-
06767832, VU6004256 or MIPS1780, but not BQCA, were significantly
reduced (Fig. 5E–H), suggesting that the PAMs may be adopting slightly
different binding poses within a shared pocket. Furthermore, while the
binding cooperativity with [3H]NMS of PF-06767832, VU6004256 or
MIPS1780, but not BQCA, was abolished at Y822.61A, the binding co-
operativity values between ACh and the PAMs were not different from
the WT values (Table 1).

3.5. Effects of amino acid substitutions on signaling properties of PAMs at
the M1 mAChR

We next determined the effects of selected mutations on the potency
(pEC50) and efficacy (τA) of ACh at each mutant receptor in parallel to
the WT M1 mAChR in IP1 accumulation assays. To account for the effect
of varying receptor expression levels of the different constructs on the
efficacy of ACh, the estimated τA values were corrected for receptor
expression relative to the WT M1 mAChR Bmax value. As shown in
Table 4, while all mutations reduced ACh potency, when corrected for
expression relative to WT, the estimated operational efficacy of the
cognate agonist was significantly increased at the Y822.61A and the
W4007.35A mutants, indicating an important role of these residues in
the transmission of signaling efficacy. In contrast, efficacy was

Table 3
Levels of expression of the mutant M1 mAChRs relative to WT in whole cell
saturation binding assays and flow cytometric analysis, and equilibrium in-
hibition binding parameters for [3H]NMS and ACh at the WT and mutant M1

mAChRs. Values represent the mean ± S.E.M. of four experiments performed
in duplicate.

Receptor expressiona pKA
b pKI

c

[3H]NMS binding Flow cytometry

WT 9.63 ± 0.14 5.38 ± 0.03
F772.56I 69.2 ± 7.9* 62.0 ± 5.2* 9.65 ± 0.17 5.41 ± 0.02
Y822.61A 40.0 ± 7.6* 38.9 ± 2.6* 9.28 ± 0.08 5.03 ± 0.05*

Y179ECL2A 57.8 ± 11* 57.4 ± 6.0* 9.57 ± 0.18 5.23 ± 0.04
W4007.35A 22.1 ± 5.6* 27.0 ± 1.9* 9.80 ± 0.17 4.85 ± 0.05*

a Values represent the percentage of expression relative to the WT receptor
expression. Normalised data were not significantly different between estimates
of cell surface expression from saturation binding versus flow cytometry of
fluorescent antibody labelling of epitope tagged receptors. p > 0.05, unpaired
Student’s t-test, degree of freedom 6.

b Negative logarithm of the [3H]NMS equilibrium dissociation constant.
c Negative logarithm of ACh equilibrium dissociation constant.
* Significantly different compared to WT, p < 0.05, one-way ANOVA with

Dunnett’s post-hoc test.
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unchanged at the F772.56I or Y179ECL2A mutant receptors.
Finally, the effects of mutations on the efficacy (τB) of the PAMs and

their functional cooperativity with ACh were investigated in IP1 inter-
action experiments. The estimated τB values were corrected for receptor
expression of mutant receptors relative to the WT M1 mAChR Bmax

value. At the WT M1 mAChR, BQCA, PF-06767832, VU6004256 or
MIPS1780 behaved as PAM-agonists (Table 5 and Fig. 3A–D). The
Y179ECL2A or W4007.35A mutations resulted in a loss of ACh potentia-
tion by all PAMs tested (Fig. 6), in agreement with the binding ex-
periments, again highlighting a common and critical role for these re-
sidues irrespective of the PAM scaffold. The functional efficacy of
BQCA, PF-06767832 or MIPS1780 was increased, whereas the efficacy
of VU6004256 was unchanged at the F772.56I mutation. However, their

cooperativities with ACh were not different at this construct compared
to the WT M1 mAChR (Table 5 and Fig. 7A–D). As with the inter-
pretation of the binding interaction studies (Table 1), the modest effects
of this mutation argue against a bitopic mechanism of action for the
novel chemotypes. At the Y822.61A construct, the functional co-
operativity values of PAMs with ACh were similar to the WT values.
Interestingly, this mutation had differential effects on the efficacy of the
PAMs, causing a significant decrease in VU6004256 efficacy while in-
creasing the efficacy of BQCA or MIPS1780, and not altering PF-
06767832 efficacy relative to WT (Table 5 and Fig. 7E–H).

Fig. 4. The binding of M1 PAMs, BQCA, PF-06767832, VU6004256 or MIPS1780 is abolished at the Y179ECL2A or W4007.35A M1 mAChRs. Inhibition of [3H]NMS
(0.3 nM) binding by ACh in the presence of increasing concentrations of BQCA (A, E), PF-06767832 (B, F), VU6004256 (C, G) or MIPS1780 (D, H) at the Y179ECL2A
(left panels) or W4007.35A (right panels) mutations. Data points represent the mean+S.E.M. of four experiments performed in duplicate. The curves were generated
by fitting the data to an allosteric ternary complex model (Eq. (1)). Binding parameter estimates from these experiments are listed in Table 1.
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4. Discussion

Subtype selective allosteric modulation of M1 mAChRs has been
increasingly explored as a potential approach for the treatment of AD
and other cognitive deficit disorders [7,41]. The discovery of BQCA, a
highly selective M1 mAChR PAM [17] led to development of newer
classes of M1 PAMs with different pharmacological and pharmacoki-
netic properties, including PF-06767832 [21], VU6004256 [24] and
MIPS1780 [26]. Despite the distinct chemical scaffolds of these PAMs,
the current study provides strong support for a common mode of
binding to that seen with BQCA, and a similar mode of action whereby
cooperativity arises predominantly from modulation of ACh affinity.
This has implications for the discovery of novel M1 mAChR-targeting
PAMs with improved drug-like properties to facilitate translational
studies.

There is a substantial body of pharmacology data that supports the
existence of at least two allosteric sites on the mAChRs. By far the best
studied has been the so-called “common” allosteric binding site, located
in an extracellular vestibule above the orthosteric pocket and

predominantly comprised of residues in ECL2, TM2 and TM7 [42]. This
region is recognized by prototypical and well-studied negative allosteric
modulators (NAMs), such as gallamine and C7/3-phth [43], but also by
PAMs such as BQCA (M1) [27] and LY2033298 (M2 and M4;
[23,44,45]). The existence of this vestibular site has been more recently
validated directly through structural and computational studies of the
M1–M4 mAChRs [42,46–49]. In contrast, the location of the “second”
allosteric site that binds indolocarbazole and benzimidazole modulators
is currently unknown, although one study has suggested a potential
intracellular pocket [28,50,51].

To elaborate our understanding of novel M1 mAChR PAMs, we
adopted two complementary approaches to characterize the nature of
the allosteric action and likely binding mode of these compounds. The
first approach characterised affinity, relative efficacy and cooperativity
with orthosteric ligands using a combination of cell-based assays of M1

mAChR-mediated IP1 accumulation and radioligand binding. Moreover,
we extended this analysis to account for the contribution of receptor
reserve in the observed pharmacology. We have previously shown that
the irreversible receptor alkylating agent, PBZ, precludes the binding of

Fig. 5. Effects of F772.56I and Y822.61A mutations on
the binding affinity and cooperativity of M1 PAMs,
BQCA, PF-06767832, VU6004256 or MIPS1780, with
ACh at the M1 mAChR. Inhibition of [3H]NMS
binding by ACh in the presence of increasing con-
centrations of BQCA (A, E), PF-06767832 (B, F),
VU6004256 (C, G) or MIPS1780 (D, H) at the F772.56I
(left panels) or Y822.61A (right panels) mutations.
Assays were performed using KA concentrations of
[3H]NMS (0.3 nM and 0.6 nM for F772.56I and
Y822.61A, respectively). Data points represent the
mean+S.E.M. of four experiments performed in
duplicate. The curves were generated by fitting the
data to an allosteric ternary complex model (Eq. (1)).
Binding parameter estimates from these experiments
are listed in Table 1.
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ACh directly, or indirectly prevents the binding of PAMs to the allos-
teric site via high negative cooperativity [52]. In either instance, the net
effect is a reduction in receptor reserve such that the functional affinity
and relative efficacy of each agent as a direct activator of the M1

mAChR can be determined. Moreover, interaction studies between ACh
and each PAM under these same conditions, where ACh would be acting
as essentially a partial agonist, provided a powerful functional ap-
proach to directly determine whether the PAMs exert effects on agonist
affinity, intrinsic efficacy, or both as part of their allosteric mechanism

of action. Accordingly, three key outcomes were obtained from the
functional and binding experiments. First, each of the PAMs has the
potential to display intrinsic allosteric agonism (i.e., as PAM-agonists),
second, allosteric effects were mediated primarily through the en-
hancement of agonist binding affinity and, third, all modulators ex-
hibited high positive cooperativity with ACh but high negative co-
operativity with the antagonist, [3H]NMS. These observations mirror
those previously noted with BQCA and the related BQZ-12 (3-((1S,2S)-
2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)
methyl)benzo[h]quinazolin-4(3H)-one)), [18,31,52,53]. Collectively,
our findings suggest that PAMs acting via the “common” allosteric
pocket are likely to mimic the two-state mode of allosteric effect de-
scribed for BQCA [19,54]. The work also supports the importance of
understanding relative intrinsic agonism of modulators, as the observed
degree of PAM-agonism can be highly system dependent [54], and this
property could contribute to undesirable over-activation of a target
GPCR by novel classes of PAMs.

In the second series of studies, we probed for binding site location
via mutational analysis of key residues previously implicated in the
actions of prototypical “common” site modulators or bitopic ligands.
Our previous mutagenesis and molecular modelling predicted im-
portant roles for Y179ECL2 and W4007.35 in the stability of BQCA
binding via hydrophobic π-π interactions [27]. We had also confirmed
the importance of these residues for BQZ-12 binding, indicating a
shared binding site for both ligands [31]. In the current study, we also
found that Y179ECL2 and W4007.35 are absolutely critical for the binding
and activity of PF-06767832, VU6004256 and MIPS1780, consistent
with the binding of these PAMs to a similar site as that of BQCA or BQZ-
12. Further support for these residues, as well as for Y822.61, was noted
in a prior homology model of the M1 mAChR bound to a structurally
related compound to PF-06767832 (compound 11 in [21]). We had also
previously found that Y822.61 was involved in transmission of positive
cooperativity and/or modulator binding affinity in studies focusing on
BQCA and BQZ-12 [27,31]. Our current findings with PF-06767832,
VU6004256 and MIPS1780 are also in agreement with a broad role for
this residue either in modulator binding affinity and/or transmission of
cooperativity. The reduced binding cooperativity of these modulators
with [3H]NMS but not with ACh at Y822.61A indicates the key role of
this residue in the transmission of cooperativity specifically with the
antagonist and not the agonist. The differences in which pharmacolo-
gical behaviours are modified (i.e., affinity, cooperativity or efficacy),
likely relate to differences in the poses each PAM adopts within the
common allosteric pocket. Our data suggest that Y822.61 may form key
π-π interactions with the thiazole (in PF-06767832) or pyrazole (in
VU6004256 and MIPS1780) pendent group, whereas Y179ECL2 and
W4007.35 interact with the core of these compounds as well as BQCA,
which lacks an extended pendent group. However, this needs to be
confirmed in future studies by additional structure-activity relation-
ships and molecular modelling. In contrast to the aforementioned key
residues, only modest effects of the F772.56I mutation on the M1 PAMs
were noted. Previous studies had highlighted a vital role for this TM2
residue in the action of extended, bitopic, ligands [32,39,40]. The lack
of observed effect in the current study argues against such a mode of
interaction for the novel chemotypes investigated herein. Ideally, an
additional test of our hypothesis for a common binding site for different
PAM chemotypes at the M1 mAChR would be a direct competition assay
between each PAM and a neutral, or near neutral, allosteric ligand
binding to the same site with high affinity. However, to our knowledge,
no such allosteric ligand has thus far been identified for the M1 mAChR.

Collectively, our findings support a model whereby PF-06767832,
VU6004256 and MIPS1780 share a similar binding site with BQCA,
located within the “common” extracellular vestibule region. However,
additional studies are required to better understand the structural basis
of selectivity of these PAM scaffolds. For instance, W7.35 is conserved
across the five mAChR subtypes, Y179ECL2 is present in both M1 and M2

mAChRs, and Y2.61 is conserved across all but the M3 subtype indicating

Table 4
Potency (pEC50) and efficacy (τA) of ACh in IP1 accumulation assays at the WT
and mutant M1 mAChRs. Values represent the mean ± S.E.M. of at least four
experiments performed in duplicate. Potency values were estimated using a
three-parameter logistic equation, and efficacy values were quantified ac-
cording to an operational model of agonism (Eq. (2)). The pKA of ACh at each
mutant M1 mAChR was constrained to the corresponding binding affinity (pKI),
listed in Table 3.

pEC50
a LogτA (τA)b

WT 6.82 ± 0.03 1.47 ± 0.02 (30)
F772.56I 6.52 ± 0.06* 1.67 ± 0.03 (47)
Y822.61A 5.72 ± 0.04* 2.39 ± 0.08* (245)
Y179ECL2A 5.90 ± 0.03* 1.42 ± 0.06 (26)
W4007.35A 5.43 ± 0.04* 3.78 ± 0.17* (6025)

a Negative logarithm of the agonist concentration required to produce half
the maximal response, estimated using a three-parameter logistic equation.

b Logarithm of the functional efficacy of ACh, estimated via fitting to an
operational model of agonism (Eq. (1)) and then corrected for receptor ex-
pression levels relative to WT.
* Significantly different compared to WT, p < 0.05, one-way ANOVA with

Dunnett’s post-hoc test.

Table 5
Operational model parameters for IP1 interaction assays between ACh and M1

PAMs, BQCA, PF-06767832, VU6004256 or MIPS1780, at the WT and mutant
M1 mAChRs. Values represent the mean ± S.E.M. of at least four experiments
performed in duplicate, and were estimated using an operational model of al-
losterism (Eq. (2)). The pKB of each modulator was constrained to the corre-
sponding binding affinity, listed in Table 1. The β parameter was constrained to
1 to indicate lack of efficacy modulation. ND, not determined (no ACh mod-
ulation).

PAMs Logαβ (αβ)a LogτB (τB)b

BQCA WT 1.34 ± 0.10 (22) 0.78 ± 0.03 (6)
F772.56I 1.40 ± 0.15 (25) 1.03 ± 0.06* (11)
Y822.61A 1.66 ± 0.11 (46) 1.30 ± 0.07* (20)
Y179ECL2A ND ND
W4007.35A ND ND

PF-06767832 WT 1.92 ± 0.11 (83) 1.01 ± 0.03 (10)
F772.56I 2.05 ± 0.13 (112) 1.51 ± 0.07* (32)
Y822.61A 1.66 ± 0.12 (46) 0.95 ± 0.12 (9)
Y179ECL2A ND ND
W4007.35A ND ND

VU6004256 WT 1.78 ± 0.18 (60) 1.24 ± 0.05 (17)
F772.56I 1.71 ± 0.15 (51) 1.43 ± 0.06 (27)
Y822.61A 1.29 ± 0.10 (19) 0.50 ± 0.10* (3)
Y179ECL2A ND ND
W4007.35A ND ND

MIPS1780 WT 1.77 ± 0.14 (59) 1.00 ± 0.05 (10)
F772.56I 1.80 ± 0.15 (63) 1.52 ± 0.06* (33)
Y822.61A 1.96 ± 0.14 (91) 1.85 ± 0.12* (71)
Y179ECL2A ND ND
W4007.35A ND ND

a Logarithm of functional cooperativity between ACh and each modulator.
b Logarithm of functional efficacy of the modulator corrected for receptor

expression levels relative to WT.
* Significantly different compared to WT, p < 0.05, one-way ANOVA with

Dunnett’s post-hoc test.
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complexity beyond sequence conservation in the subtype selective ac-
tions of the modulators. One intriguing possibility is that the exquisite
degrees of selectivity achieved by allosteric modulators of GPCRs arise
from a combination of both allosteric pocket residues and energetically
preferred dynamic networks that underlie transmission of cooperativity
between orthosteric and allosteric sites [20,46,55,56]. In addition, de-
spite the commonalities in mechanism proposed for the different classes
of M1 PAMs described in our study, it should be noted that different
modes of GPCR allosteric modulation occur, including differential ef-
fects on efficacy in addition to affinity, as well as the potential for
pathway-biased modulation [23,45,52,57], highlighting additional
mechanistic questions for the field. Our current study was limited to
analysis of the relative effects on a single signaling endpoint and ad-
ditional work is required to understand the extent to which biased
modulation may or may not occur. Nonetheless, and as evidenced by

very recent advances in structure-based approaches to discovering new
allosteric modulators [42,58,59], novel insights into the structural basis
of M1 allosteric modulator binding and activity can facilitate the ra-
tional design of new PAMs as drug-like candidates.
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