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Abstract

Motivation: The growing complexity of reaction-based models necessitates early detection and resolution of model
errors. Considerable work has been done on the detection of mass balance errors, especially atomic mass analysis
(AMA) (which compares the counts of atoms in the reactants and products) and Linear Programming analysis (which
detects stoichiometric inconsistencies). This article extends model error checking to include: (i) certain structural
errors in reaction networks and (ii) error isolation. First, we consider the balance of chemical structures (moieties)
between reactants and products. This balance is expected in many biochemical reactions, but the imbalance of
chemical structures cannot be detected if the analysis is done in units of atomic masses. Second, we improve on
error isolation for stoichiometric inconsistencies by identifying a small number of reactions and/or species that
cause the error. Doing so simplifies error remediation.

Results: We propose two algorithms that address isolating structural errors in reaction networks. Moiety analysis
finds imbalances of moieties using the same algorithm as AMA, but moiety analysis works in units of moieties in-
stead of atomic masses. We argue for the value of checking moiety balance, and discuss two approaches to decom-
posing chemical species into moieties. Graphical Analysis of Mass Equivalence Sets (GAMES) provides isolation for
stoichiometric inconsistencies by constructing explanations that relate errors in the structure of the reaction network
to elements of the reaction network. We study the effectiveness of moiety analysis and GAMES on curated models
in the BioModels repository. We have created open source codes for moiety analysis and GAMES.

Availability and implementation: Our project is hosted at https://github.com/ModelEngineering/SBMLLint,
which contains examples, documentation, source code files and build scripts used to create SBMLLint. Our source
code is licensed under the MIT open source license.

Contact: jlheller@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mathematical models are an essential part of science and engineer-
ing, because of their ability to explain complex phenomena and pre-
dict outcomes. In Systems Biology, many mathematical models are
based on chemical reactions that specify how reactants are trans-
formed into products. Herein, a reaction is specified by listing the
chemical species (and their associated stoichiometry) for the reac-
tants and the products. The accuracy of reaction-based models
depends in large part on the correct specification of the reactions.
Verifying reaction specifications has become quite challenging as
reaction-based models have grown in complexity. For example,
BioModels (Glont et al., 2018; Malik-Sheriff et al., 2020), a reposi-
tory of literature-based physiologically and pharmaceutically

relevant mechanistic models in standard formats, especially the
Systems Biology Markup Language (SBML) (see Hucka, 2013), con-
tains over 800 curated models that range in size from tens to thou-
sands of reactions. There are many similar public repositories of
biological models such as CellML (Lloyd et al., 2008), MAMMOTh
(Kazantsev et al., 2018) and BiGG (King et al., 2016; Norsigian
et al., 2019). The correctness of models in such public repositories is
of particular concern since these repositories are often the starting
point for new modeling projects.

How can we address the correctness of reaction-based models as
they grow in complexity? Our answer draws inspiration from
approaches used in software engineering (Hellerstein et al., 2019). If
we view reaction-based models as a kind of software, then the com-
plexity of today’s reaction-based models is comparable to the
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complexity of computer software in the early 1960s when programs
were typically tens to a few thousand statements. Today, open
source software such as Linux and the Apache Web Server have sev-
eral million statements. This thousandfold increase in complexity is
in part due to the development of sophisticated tools that automate
error checking of software codes. One example is ‘linters’ (e.g.
Darwin, 1988) that check for errors such as a variable that is refer-
enced before it is assigned and identify unreachable code (e.g. a
statement that follow a return statement). Both of these are exam-
ples of static error checking that is done by examining source codes
without requiring code execution (Louridas, 2006).

Our goal is to develop linters that facilitate the development of
reaction-based models. A linter finds errors by analyzing specifica-
tions or statements without running simulation codes. One example
of linting a reaction is detecting mass balance errors, discrepancies
between the total mass of reactants and the total mass of products.
Many have noted the importance of checking for mass balance
errors (Brim et al., 2013; Chaouiya et al., 2013; Clark et al., 2012;
Medley et al., 2016; Shaw et al., 2012). One approach to detecting
mass balance errors is atomic mass analysis (AMA). AMA uses
annotations of chemical species to obtain atomic formulas (e.g.
Misirli et al., 2016; Neal et al., 2019) and then looks for differences
in the atoms in the reactants and products. Two examples of AMA
implementation and associated tooling are the MEMOTE system
(Lieven et al., 2020) and the COBRA Toolbox (Heirendt et al.,
2019). Annotations used for AMA often specify atom ionization
states, and so AMA can check both charge balance and mass
balance.

The flexibility of AMA can be expanded by the use of ‘R groups’
to designate subparts of molecule (e.g. Brunk et al., 2018). This is a
convenient naming scheme that can be used even if the atomic for-
mula of the R group is unknown. Although the formula may be un-
known, the R group still represents a single atomic formula, and so
a single R group cannot represent a chemical structure that has sev-
eral atomic variants.

AMA provides great value by checking for the balance of indi-
vidual atoms. But biochemical modelers often think in terms of
chemical structures, a higher level of abstraction than individual
atoms (e.g. Brunk et al., 2018; Nelson and Cox, 2004). Indeed, the
concept of chemically similar groups is at the heart of organic chem-
istry. Introductory texts typically discuss 30 or so such groups along
with the reactions in which they participate (e.g. Wade, 2010).
Further, the Gene Ontology is in part structured around molecular
functions, many of which are about transferring chemical structures
between molecules (e.g. Ashburner et al., 2000). We use the term
moiety to refer to a chemical structure; more specifically, a moiety is
‘a part or portion of a molecule, generally complex, having a charac-
teristic chemical or pharmacological property’ (Brightman, 2003).
Unlike an R group, a single moiety may refer to groupings of atoms
that have slightly different atomic formulas.

Many reactions preserve the balance of moieties between reac-
tants and products. Consider ATP hydrolysis. This reaction is com-
monly written as ATP ! ADP þ Pi. Pi is an inorganic phosphate
moiety. ATP has one adenosine moiety and three inorganic phos-
phate moieties; ADP has one adenosine moiety and two inorganic
phosphate moieties. The inorganic phosphate moieties in ATP, ADP
and the unbound Pi have slightly different atomic formulas. For ex-
ample, the c phosphate in ATP has a shared oxygen atom, but the
unbound inorganic phosphate does not. The reaction is moiety bal-
anced because we have one adenosine and three phosphates in the
reactants and the products. Occasionally, we see ATP hydrolysis
written as ATP ! ADP; clearly, this is not moiety balanced. Note
that, using AMA with R groups is insufficient for detecting moiety
balance errors since R groups refer to a single atomic formula, not
chemical groups like inorganic phosphate whose atomic compos-
ition may vary.

Although the reaction ATP! ADP þ Pi is moiety balanced, it is
not mass balanced because of the differences in the atomic formulas
of the inorganic phosphates. To obtain mass balance, we need to in-
clude water in the reactants. However, many modelers do not in-
clude water for reactions in solution because its concentration is

large and relatively constant. Such molecules are often referred to as
implicits. Another example of an implicit molecule is inorganic
phosphate in the reaction ATP ! ADP. Many modelers find it bur-
densome and even unnatural to include implicit molecules in their
reaction networks. In these cases, checking mass balance may be less
meaningful, and so such checks should be optional. This could be
done in the same manner as with software linters, such as the dis-
able flag (and in-line ‘disable comments’) in the pylint package.
Finally, we note that even when mass balance checking is inappro-
priate, these reaction networks may well benefit from checking moi-
ety balance in a way that handles implicit moieties.

The foregoing motivates our generalizing from mass (and
charge) balance to include additional structural errors in reaction
networks. We note that others have considered structural errors
such as blocked reactions and unreachable reactions (e.g. Lieven
et al., 2020). Herein, we consider moiety balance errors. A moiety
balance error is present if a reaction that should preserve moiety bal-
ance is incorrectly specified so that the count of moieties in the reac-
tants differs from its count in the products. Moiety preserving
reactions are exceedingly common in biochemistry. For example,
there are a large number of reactions with transferases that facilitate
the transfer of a chemical group from a reactant to a product. That
said, not all reactions preserve moiety balance, and so there is a need
for selective disabling of checking for moiety balance similar to the
need for selective disabling of checking for mass balance. Further,
some moieties may be implicit (as with inorganic phosphate in the
reaction ATP! ADP), and so it is also desirable to optionally ignore
moiety balance for some moieties.

Our notion of a structural error also includes errors in the struc-
ture of the reaction network. In particular, we consider stoichiomet-
ric inconsistency, a structural error that implies that one or more
chemical species have a mass of zero. We illustrate this with an ex-
ample from BioModels. Consider the model BIOMD0000000255, a
model with 827 reactions.Figure 1 displays 6 of the model’s 827
reactions expressed as chemical equations. We analyze this model as
follows. Reactions v537 and v601 imply mass equality between
chemical species because these reactions have a single reactant and a
single product, and all stoichiometries are one. Similarly, reaction
v13 implies that the mass of c160 is larger than the mass of either
c10 or c154 (since all chemical species must have non-zero mass).
Thus, we conclude a contradiction, that the mass of c160 must be
larger than its own mass.

Much of our focus is on error isolation, finding a subset of the
chemical species and reactions that explain an error. Figure 2 dis-
plays an explanation for the foregoing structural error based on the
relationships implied by the reaction network. The explanation
involves a subset of reactions and chemical species that are impli-
cated in the error. We use the terms reaction isolation set (RIS) and
species isolation set (SIS) to refer to these reactions and chemical
species.

Fig. 1. Snippet of BIOMD0000000255 that contains a stoichiometric inconsistency.

Reactions are identified by the label that precedes the colon. A stoichiometric incon-

sistency is caused by the three reactions in boxes (v13, v537, v607) that constrain

the relative masses of the four chemical species (c10, c86, c154, c160) in bold
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Generalizing the example in Figure 2, we define error isolation
as comprising: (i) an RIS, (ii) an SIS and (iii) a computationally sim-
ple explanation that shows how the RIS and SIS cause the error. By
computationally simple, we mean that a human can readily under-
stand how the RIS and SIS cause the error. There are two reasons
for requiring that the explanation be computationally simple. First,
a human should be able to verify the detection by inspection since
complex detection algorithms may have software bugs and/or nu-
merical problems. Second, errors can be remediated in many ways,
and so it is important to expose causal relationships so that the
options for remediation are clear. For example, two ways to remedi-
ate the error in Figure 1 are: (i) add c10 to the products of reaction
v537; and (ii) delete c10 from the reactants of v13. In general, we
want both the RIS and SIS to be small. Indeed, if one is small, the
other tends to be small as well. We mostly use RIS in our studies
since reactions relate more directly to the structure of the reaction
network.

Little work has been done on error isolation in reaction net-
works. The absence of error isolation seems to pose little problem
for AMA as it is used in current practice. This is because AMA is
used mostly for metabolic models, as in MEMOTE. Since the reac-
tion isolation set for AMA is always one, isolation is about the SIS
(chemical species). For metabolic models, these are small molecules,
and so isolation is less problematic. However, models of signaling
systems and regulated pathways involve proteins with thousands of
atoms that make the SIS more complex and hence complicate error
isolation for AMA.

For stoichiometric inconsistencies, error isolation involves both
the RIS and SIS. Recall that a stoichiometric inconsistency is present
if there is no assignment of positive masses to chemical species such
that all reactions are mass balanced. More formally, consider the
stoichiometry matrix N, a matrix whose ijth entry is the moles of a
chemical species i which is produced by reaction j. (This entry is
negative if the reaction consumes species i.) A stoichiometric incon-
sistency is present if there is no vector of positive masses v ¼ fvig
such that NTv ¼ 0.

In current art, stoichiometric inconsistency is detected by formu-
lating a linear programming (LP) feasibility problem with the con-
straints NTv ¼ 0 and vi > 0 for each i (Gevorgyan et al., 2008;
Nikolaev et al., 2005). We refer to this as LP analysis. Several tools
implement this approach (e.g. Heirendt et al., 2019; Lund Steffensen
et al., 2016; Swainston et al.; 2011). Although stoichiometric incon-
sistency relates to the structure of the reaction network, it also
relates to mass balance: all stoichiometric inconsistencies are mass
balance errors. However, not all mass balance errors are stoichio-
metric inconsistencies. For example, the model consisting of the sin-
gle reaction ATP ! ADP contains a mass balance error, but there is
no stoichiometric inconsistency.

LP analysis is intended for error detection, not error isolation.
However, there are extensions to LP analysis that use multiple steps
of Mixed Integer Linear Programming (MILP) for error isolation
(Gevorgyan et al., 2008; Orman et al., 2011); we refer this MILP
extended LP analysis as xLP. xLP calculates the equivalents of the
SIS and RIS using three MILP steps; the last step is an iterative opti-
mization over the results of the second step. Supplementary Section
S7 details several issues with xLP: (i) it does not provide an explan-
ation that relates stoichiometric inconsistencies to the SIS and RIS;

(ii) we know of no system that implements xLP, although there are
implementations that simplify or eliminate one or more steps such
as MEMOTE (Lieven et al., 2020) and the COBRA Toolbox
(Heirendt et al., 2019); and (iii) xLP scales very poorly, as evidenced
by our analysis of xLP on Recon3D in Supplementary Section S7.

This article addresses the isolation of structural errors in reaction
networks. We propose moiety analysis for reactions that preserve
moiety balance. As with AMA, moiety analysis verifies that there
are equal counts in the reactants and products. AMA works in units
of atoms; moiety analysis works in units of moieties. As argued pre-
viously, it is valuable to analyze moiety balance separate from mass
balance. Further, working in units of moieties can have the addition-
al benefit of identifying imbalances at a higher level of abstraction
(see Supplementary Section S1). As with the annotation standards
that support AMA, broad use of moiety analysis will require stand-
ards as well. We have developed tooling to aid in obtaining the moi-
ety structure of molecules so that modelers can evaluate moiety
analysis in support of future standards efforts. We emphasize that
our contribution here is motivating, defining and providing practical
illustrations of moiety analysis. Although we propose two schemes
for representing moiety structures as a way to demonstrate the value
of moiety analysis, we do not claim any contribution related to rep-
resenting molecular structures. Examples of such representations in-
clude: PDB files (Berman et al., 2003), bigSMILES (Lin et al., 2019),
HELM (Zhang et al., 2012) and BpForms (Lang et al., 2020).

We also address the isolation of stoichiometric inconsistencies in
reaction networks. We propose Graphical Analysis of Mass
Equivalence Sets (GAMES). As with LP analysis, GAMES detects
stoichiometric inconsistencies. GAMES improves on the error isola-
tion capabilities of xLP by using a combination of graphical analysis
and linear algebra to explain errors in terms of their RIS and SIS,
such as the explanation in Figure 2.

We have created open source, pip distributable implementations
of moiety analysis and GAMES along with a tool for detection using
LP analysis.

2 Materials and methods

This section describes approaches we propose for isolating structural
errors in reaction networks.

2.1 Moiety analysis
Moiety analysis is an extension of AMA that uses moieties instead
of atoms as the units of comparison. Indeed, balance checking can
be generalized to work with arbitrary units, as illustrated in
Supplementary Section S1 that describes a generalized balance
checking algorithm.

There are many examples of moieties. The three phosphate
groups in ATP (along with the inorganic phosphate molecule) have
slightly different atomic formulas, but they are all instances of the
same Pi moiety. Other examples of moieties include acetyl, methyl
and amine chemical groups. Moieties differ from R groups in that a
single moiety can refer to many atomic structures. Moieties differ
from stochastic representations (e.g. bigSMILES) in that moieties
are deterministic; that is, a molecular structure either is or is-not an
instance of a moiety. Having deterministic specifications of chemical
structures is essential for deterministic checking of balance errors.

Moiety analysis checks each moiety to determine that its occur-
rence count in the reactants equals its occurrence count in the prod-
ucts. To illustrate, consider ATP ! ADP þ Pi with the moieties A
and Pi; the latter also refers to the bound moieties in ATP and ADP.
The occurrence count of A is one in both the reactants and products,
and the occurrence count of Pi is three in both reactants and prod-
ucts. So, there is moiety balance. However, as noted before, this re-
action is not mass balanced.

Although moiety balance does not guarantee mass balance, it
can sometimes be used in combination with mass balance to simplify
error isolation. Consider the mitogen activated protein kinase
(MAPK) cascade in BIOMD0000000011 (Levchenko et al., 2000).
MAPK is a large molecule that has �360 amino acids, about 3000

Fig. 2. Explanation for the stoichiometric inconsistency in Figure 1. The narrative

shows how the RIS v13, v537 and v607 and the SIS c10, c86, c154 and c160

cause in a stoichiometric inconsistency
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individual atoms. Consider an incorrectly written version of
Reaction 19 in the model: Reaction19a: MAPK þ MEKpp !
MEKpp, where MEKpp is a doubly phosphorylated extracellular regu-
lated kinase. Clearly, we are missing a MAPK in the products. Instead
of reporting this, an analysis in units of atoms would report that the
reactants have an excess of �3000 atoms of carbon, oxygen, nitro-
gen and sulfur. Although the large number of atoms clearly indicates
that one or more large molecules are involved, it may not be obvious
which large and/or small molecules contribute to the imbalance,
thereby complicating error remediation.

Now consider analyzing the above reaction using moiety ana-
lysis. The moieties are MAPK, MEK and p. For MEK and p, the count
of moieties is the same for reactants and products. However, there is
one MAPK in the reactants, and none in the products. So, the modeler
looks at the reactants for an extra MAPK and at the products for a
missing MAPK. This seems much more useful than an accounting of
3000 missing atoms. Supplementary Section S1 illustrates an algo-
rithm that integrates AMA with a kind of moiety analysis to im-
prove the isolation of mass balance errors.

The main barrier to using moiety analysis is annotating mole-
cules with their moiety structure. There are two parts to overcoming
this barrier: (i) addressing the feasibility of decomposing molecules
into moieties and (ii) providing standards and tools to accomplish
the annotations. Regarding feasibility, we note that choosing an ap-
propriate representation of molecules is a kind of modeling that
depends on the chemical network. We do not claim that moieties are
always the best representation. That said, there is ample evidence
that decomposition into molecular substructures works well for
some chemical networks as evidenced by: (i) the use of R groups in
biochemical reactions; (ii) the hierarchical representations of mole-
cules used in rule-based systems (e.g. Chylek et al., 2015) and
HELM representations and (iii) examples we provide in the
Supplementary Information in which chemical species are decom-
posed into moiety structures for several models in BioModels.

The second challenge for moiety analysis is providing standards
and tools. We have previously mentioned a rich set of existing tech-
niques for representing molecules: PDB files, bigSMILES, HELM,
BpForms and rule-based representations. The choice of representa-
tion of moieties is a significant endeavour in its own right that is be-
yond the scope of this article. Instead, we propose a couple of simple
representations and supporting tools that allow the modeling com-
munity to evaluate the value of moiety analysis before undertaking
efforts to choose the best representation of moiety structures.

The first representation of moiety structures used in this article is
an implicit annotation of molecules with their moiety structure using
a naming convention for chemical species that is compatible with
the SBML community standard (Hucka, 2013). We propose the fol-
lowing naming conventions to accomplish implicit annotations of
moiety structures:

• Naming Convention NC-1: The name of a chemical species (in

SBML, its id attribute) should be the concatenation of the names

of the constituent moieties of the species (with repetitions for

multiple occurrences of moieties); and
• Naming Convention NC-2: An underscore (‘_’) separates moiety

names in the name of the chemical species.

Using this convention, ATP is written as A_Pi_Pi_Pi. There are
several examples of this convention in BioModels (e.g.
BIOMD0000000009). Supplementary Section S2 discusses some
refinements of this convention that are supported by our implemen-
tation of moiety analysis.

Also discussed in Supplementary Section S2 is a way to explicitly
represent the moiety structure of a chemical species. Constructing
explicit representations can be cumbersome, and so we provide tool-
ing to assist. Specifically, we noticed that many models in
BioModels satisfy NC-1 but not NC-2. An example is
BIOMD0000000011 referenced above in which MEKpp has one in-
stance of the moiety MEK and two instances of the moiety p. Thus,
in Supplementary Section S2, we describe the tool

make_moiety_structure that takes as input: (i) an SBML file
with species whose id attributes comply with NC-1 and (ii) a list of
moieties. The tool outputs the moiety structure of the molecules in
the SBML file.

2.2 Graphical Analysis of Mass Equivalence Sets
Stoichiometric inconsistency is a structural error in the reaction net-
work that involves mass balance. A stoichiometric inconsistency
implies that one or more chemical species must have a mass of zero.
The most widely used approach for detecting stoichiometric incon-
sistencies is LP analysis. However, as noted previously, LP analysis
is not intended for error isolation. Further, xLP, the MILP exten-
sions to LP analysis for error isolation, have serious shortcomings,
as detailed in Supplementary Section S7.

Here, we introduce the GAMES algorithm for detecting stoichio-
metric inconsistencies. GAMES provides error isolation by explain-
ing errors in terms of their SIS and RIS. The explanations are
constructed by inferring relationships between the masses of chem-
ical species based on reactions in the model. Because the focus of
GAMES is mass balance, we use the term mass balance error in the
discussion of GAMES.

The GAMES algorithm consists of two parts. Section 2.2.1
describes the core algorithm, which we call basic GAMES or
bGAMES. bGAMES uses graphical techniques to identify the SIS
and RIS and then constructs an inference chain that relates the stoi-
chiometric inconsistency to the SIS and RIS. Section 2.2.2 describes
extensions to this algorithm that use linear algebra to construct
pseudo reactions that infer the stoichiometric inconsistency from the
RIS and SIS.

2.2.1 Isolating errors with basic GAMES

Basic GAMES (bGAMES) can be viewed as a kind of ‘inference en-
gine’ that attempts to construct inferences that contradict the as-
sumption that all chemical species have positive mass. The inference
steps rely on mass equality and inequality relationships implied by
model reactions. If bGAMES infers that a chemical species does not
have a positive mass, then the RIS and SIS are the set of the reactions
and chemical species (respectively) that are used in the
inference.bGAMES uses insights such as those used in Figure 1 to
construct equality and inequality relationships between the masses
of chemical species. For example in Figure 1, v537: c160 ! c86
implies that the mass of c160 must be the same as the mass of c86.
This is an example of a uni–uni reaction, a reaction with one react-
ant and one product that have the same stoichiometries. A uni–uni
reaction implies that the mass of the reactant equals the mass of the
product.

The equality relationships implied by uni–uni reactions allow
bGAMES to construct groupings of chemical species that have the
same mass. We refer to such a grouping as a Mass Equivalence Set
(MEQ). From the previous example discussed in Figure 1, we see
that reaction v537 infers a MEQ that consists of the species c160
and c86, which we denote by fc86¼c160g. MEQs are expanded
by transitivity. To illustrate, Figure 1 also contains the MEQ
fc154¼c86g (implied by v601), and so by transitivity, we have
fc86¼c154¼c160g. To account for all species in Figure 1, we
also have three singleton MEQs: fc10g, fc16g and
fc11g.bGAMES also infers mass inequalities. For example, two
mass inequalities can be inferred from the reaction v13:
c10þc154 ! c160: (i) the mass of c160 is greater than the mass
of c10 and (ii) c160 is greater than c154. v13 is an example of a
multi–uni reaction, in which the reactants (or products) consist of
two or more chemical species and there is a single chemical species
as the product (or reactant).

The bGAMES inference engine uses uni–uni and multi–uni reac-
tions to construct a directed graph that is then analyzed to detect
stoichiometric inconsistencies. We refer to this as the MEQGraph
since the nodes of the graph are MEQs. If (X, Y) is an arc in the
MEQGraph, then the mass of MEQ X is less than the mass of MEQ
Y. MEQs are constructed from the transitive closure of uni–uni reac-
tions, and arcs are constructed from multi–uni reactions. For
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example, consider the reaction aþb ! c, with a in MEQ X, b in
MEQ Y and c in MEQ Z. Then, the MEQGraph has the arcs (X, Z)
and (Y, Z).bGAMES detects a stoichiometric inconsistency by find-
ing a cycle in the MEQGraph. This is because a cycle implies a logic-
al contradiction, that all MEQs in the cycle have a mass less than
their own mass.

Having detected a cycle in the MEQGraph, the RIS consists of
reactions that are either: (i) multi–uni reactions that correspond to
an arc in the cycle or (ii) uni–uni reactions used in the MEQs trav-
ersed by the cycle. The SIS are the chemical species associated with
each MEQ. For example, in Figure 1 (with more details in
Supplementary Fig. S3), there is a cycle with arcs labelled with reac-
tions v13 and v208. The MEQs in this cycle are fc10g and
fc6¼c86¼c154¼c160g. The latter are created by three uni–uni
reactions (v523, v537, v601). The resulting RIS is fv13, v208,
v523, v537, v601g; the SIS is fc6, c10, c86, c154, c160g.

The foregoing allows for constructing a narrative such as that
shown in Figure 2. The narrative consists of three parts: (i) mass
equivalences (MEQs) inferred from uni–uni reactions, (ii) mass
inequalities obtained from multi–uni reactions and (iii) a statement
of the contradiction inferred.bGAMES does not detect all stoichio-
metric inconsistencies. Since we can use LP analysis to detect stoi-
chiometric inconsistencies, there is no false negative. However, since
bGAMES can only explain stoichiometric inconsistencies that it
detects, there is limited coverage for error isolation. By coverage, we
mean the number of models in which bGAMES detects a stoichio-
metric inconsistency divided by the number of models in which LP
analysis detects a stoichiometric inconsistency. The coverage limita-
tions of bGAMES are largely due to its not analyzing multi–multi
reactions, reactions with more than one chemical species for both
reactants and products. In BioModels, bGAMES has a coverage of
about 78%.

2.2.2 Isolating errors with extended GAMES

This section describes extended GAMES (xGAMES), an extension
to bGAMES that addresses the coverage limitations of bGAMES.
SBMLLint automatically invokes xGAMES if bGAMES does not de-
tect a stoichiometric inconsistency.

We illustrate the capabilities of xGAMES using BioModels
BIOMD0000000167 as displayed in Figure 3. Consider the follow-
ing two reactions: R2: Pstat_nuc ! stat_nuc and R4: 2
Pstat_nuc ! PstatDimer_nuc. If these reactions are mass bal-
anced, then the sum of the reactants of both reactions must have the
same mass as the sum of their products. That is, the mass of 3
Pstat_nuc must equal the sum of the masses of stat_nuc and
PstatDimer_nuc. Put differently, we have mass balance for the
hypothetical reaction R2þR4: 3 Pstat_nuc ! stat_nuc þ
PstatDimer_nuc. We do not claim that this reaction is chemically
feasible, and so refer to it as a pseudo reaction. In this case, mass
balance holds, and so we use the term mass-balanced pseudo
reaction.

We can generalized beyond the summation of two reactions. If a
collection of reactions fRig is mass balanced, then any linear com-
bination of these reactions will be a mass-balanced pseudo reaction.

LP analysis detects a stoichiometric inconsistency if there is no
positive vector of masses v such that NTv ¼ 0, where N is the stoi-
chiometry matrix (columns are reactions and rows are species). Such

a v cannot be found if either: (i) the dimension of the column (spe-
cies) null space of NT is 0; or (ii) the column null space does not
intersect the subspace where v is positive. xGAMES uses matrix de-
composition to test for these conditions and do error isolation by
reporting the reactions that result in a stoichiometric inconsisten-
cy.x. GAMES works with a new stoichiometry matrix (N) whose
rows are MEQs instead of chemical species. Doing so allows us to
eliminate uni–uni reactions since this information is already encoded
in the MEQs. This is illustrated in Table 1. The columns are the pse-
duoreactions PR3, PR1 and PR4 that correspond to the original
reactions R3, R1 and R4. For example PR1: 2fPstat_solg !
fPstatDimer_sol¼PsatDimer_nucg. Note that, every column
contains at least one negative value and at least one positive value.
This is because every reaction has at least one reactant and at least
one product.

Next, xGAMES transforms N into reduced column echelon form
using standard techniques from linear algebra such as LU decompos-
ition (Horn and Johnson, 1985). We denote this transformed matrix
by NR ¼ fnR

ij g. Table 2 displays NR for our running example. We
can see that the leading entry in each column is non-zero and nR

ij ¼ 0
for j> i, as required by reduced column echelon form. Also, as with
Table 1, the columns of Table 2 are pseduo reactions. Specifically,
the columns of NR are linear combinations of the columns of N. For
example, PR30 ¼ PR3þ 1

2 PR1� 1
2 PR4.x GAMES detects a mass

balance error using the following decision criteria:

• Detection Criteria (DC): A mass balance error is present if there

is a linear combination of columns of N whose non-zero values

all have the same sign.

It turns out that DC is a sufficient but not a necessary condition
for stoichiometric inconsistencies, as we discuss later. Also, we note
in passing that DC relates to the concept of a leakage mode in
Gevorgyan et al. (2008), which is a set of reactions that results in in-
consistent stoichiometry.

DC detects mass balance errors by identifying reactions for
which mass is either created or destroyed. A column of the stoichi-
ometry matrix in which all non-zero values are positive describes a
reaction that has products and no reactants. That is, mass is created.
Analogously, a column in which all non-zero values are negative
describes a reaction that has reactants and no products, and so mass
is destroyed.xGAMES detects a stoichiometric inconsistency by
inferring that DC holds using proof by contradiction. The inference
engine starts by assuming that the original reactions are mass bal-
anced. From the foregoing, we know that linear combinations of
mass-balanced reactions result in a mass-balanced pseudo reactions.
So, if some linear combination of reactions in the model results in
DC being satisfied, then we know that the original set of reactions is
not mass balanced.

An xGAMES explanation extends the analysis of bGAMES by
considering pseudo reactions. This is illustrated in Figure 4 for
BIOMD0000000167 (with complete details in Supplementary Fig.
S6).

Step 1 in Figure 4 is generated by reporting the uni–uni reactions
used to construct MEQs (as described in Section 2.2.1). From this, a
new stoichiometry matrix is constructed. This matrix: (i) replaces

Fig. 3. Reactions in BIOMD0000000167. The reaction names are changed to sim-

plify the description. The complete model has two instances of R6 with different

kinetics

Table 1. Stoichiometry matrix for pseudo reactions

MEQ PR3 PR1 PR4

fspecies_testg 1 0 0

fPstat_solg 1 �2 0

fPstatDimer_sol¼PstatDimer_nucg 0 1 1

fPstat_nuc¼stat_nuc¼stat_solg �1 0 �2

Note: Rows are MEQs. Columns are pseudo reactions that are numbered

corresponding to the reactions in Figure 3. Cells are the stoichiometry of a

MEQ in the products minus the stoichiometry of the MEQ in the reactions.

Uni–uni reactions are not included since they are used to construct the MEQs.
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each chemical species with its corresponding MEQ, (ii) sums rows
that correspond to the same MEQ and (iii) deletes columns corre-
sponding to uni–uni reactions (since the information in uni–uni reac-
tions is implied by using MEQs instead of chemical species).

Now we consider how xGAMES infers a stoichiometric incon-
sistency. Let N be the resulting stoichiometry matrix. We use LU de-
composition (Horn and Johnson, 1985) to factor NT into PLU,
where P is a permutation matrix and L, U are lower and upper tri-
angular matrices, respectively. Since L is invertible, we can calculate
U ¼ L�1P�1NT , and UT ¼ NPðL�1ÞT . The columns of PðL�1ÞT re-
veal the linear combinations of reactions of N that result in the col-
umns echelon form.

For some models, there are multiple possible permutation matri-
ces P, and thus multiple possible L, U matrices. Different choices for
these matrices can, in some cases, result in detecting different errors.
Thus, it is sometimes helpful to run GAMES multiple times to gain a
more complete picture of the mass balance errors present in a
model.

Once the column echelon form is obtained, we can readily ex-
tend it to reduced column echelon form by elementary matrix opera-
tions so that we have a matrix that informs us of the linear
combinations of columns of N that are used to construct the reduced
column echelon matrix R. So, the RIS in Step 2 of the explanation is
the set of reactions that correspond to the columns in this linear
combination that have non-zero multipliers; the SIS in Step 1 are the
species (rows) in which the RIS columns have non-zero values. The
explanation in Step 3 is the linear combination of the RIS that
results in mass creation or destruction.

In our experience with BioModels, xGAMES has a coverage of
about 98.1%. To understand the 1.9% coverage gap, recall that a
stoichiometric inconsistency is present if (1) there is no vector of
masses v such that NTv ¼ 0 (where N is the stoichiometry matrix)
such that (2) v>0. LP analysis checks precisely for these two condi-
tions. The xGAMES decision criteria DC detects violations of condi-
tion (1) if NT has a trivial null space. However, DC only
approximates detection of violations to condition (2). Specifically,
DC looks for columns where the non-zero values have the same
sign. This is a sufficient but not a necessary condition for detecting
violations of v>0.

3 Results

This section studies moiety analysis and GAMES in the context of
the curated SBML models in the BioModels repository.

3.1 Studies of moiety analysis
Moiety analysis reports and explains moiety imbalances. As shown
in Figure 5, part of a report for BioModels BIOMD0000000011, the
top of the report summarizes the errors detected; this is followed by
a section for each reaction in which an imbalance is detected.

A core challenge with moiety analysis is exposing the moiety
structure of chemical species. Our experience with BioModels has
been that a non-trivial fraction of the curated models use names of
chemical species that comply with our NC-1 naming convention.
Consider BIOMD0000000167. The model has the species names
Pstat_sol, PstatDimer_sol, stat_sol, Pstat_nuc,
PstatDimer_nuc. These names are structured as follows: (i) P or a
null string followed by (ii) stat followed by (iii) Dimer or null string
followed by (iv) _sol or _nuc. We consider P, stat, Dimer, sol
and nuc as candidate moieties for the model. With further scrutiny,
we see that sol and nuc are not moieties; rather, this is how the mod-
eler indicates compartments. We eliminate sol and nuc from our
analysis by using the SBMLLint option to have a ‘configuration file’
that ignores these elements. We expose the moiety structure of the
chemical species using the explicit representation of moiety structure
as described in Section 2.1. This structure can be created automatic-
ally using the tool make_moiety_analysis.

Supplementary Section S2 contains more details of the algorithm
used by make_moiety_structure. Supplementary Section S4
provides two in-depth case studies of applying moiety analysis to
models in BioModels, and points to �10 examples of moiety ana-
lysis in our github repository.

3.2 Studies of GAMES
This section provides insights into the coverage and quality of
explanations generated by GAMES. Supplementary Section S5

Table 2. Reduced column echelon form for the running example

MEQ PR30 PR10 PR4

fspecies_testg 1 0 0

fPstat_solg 0 1 0

fPstatDimer_sol¼PstatDimer_nucg 0 0 1

fPstat_nuc¼stat_nuc¼stat_solg 0 �1 �2

Note: The prime symbol indicates a reaction formed by linear combina-

tions of these in Table 1.

Fig. 4. Example of xGAMES explanation for BIOMD0000000167. The SIS is a collection of MEQs; the RIS is a collection of pseudo reactions; the explanation is a ‘proof by

contradiction’ that shows a linear combination of the RIS results in mass creation

Fig. 5. Partial moiety analysis report. This is the initial segment of the report gener-

ated by moiety analysis for BIOMD0000000011 using the moiety names RAF, K,

p, PH, MEK and MAP. It appears that p (inorganic phosphate) is an implicit moiety

that causes the mass imbalances
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details two case studies of GAMES analysis done on models in
BioModels.

To provide broader insights into GAMES, Table 3 displays
results from analyzing the 826 curated models in which we report
measures of the bGAMES and xGAMES portions of GAMES. We

see that xGAMES has much better coverage than bGAMES, but
xGAMES has much longer runtimes since higher coverage requires
longer processing times. Another reason for longer runtimes for

xGAMES is that the errors that are not covered by bGAMES are
generally much more complicated. Optimization of the xGAMES

code will likely reduce its runtimes. That said, these optimizations
may be unnecessary, at least for model complexities comparable to
BioModels, since the average time per model is a few seconds. This

should be acceptable for model tooling, especially since GAMES
should be run only if LP analysis reports a stoichiometric inconsist-

ency. Supplementary Section S5 contains more case studies of
GAMES, including very large models from BiGG.

Next, we study the effectiveness of the error isolation produced
by GAMES. The concern here is that if the SIS and/or RIS is very
large, then the error isolation is not very useful. For example, con-

sider the error isolation in Figure 4. Having a large RIS would great-
ly complicate Step 2 and Step 3. Thus, we quantify complexity using
the size of the RIS. A related measure is the normalized RIS, the

ratio of the RIS to the number of reactions in the model.
Table 4 reports the results. We see that in BioModels the RIS size

is modest, averaging 3.78 for xGAMES and 5.56 for bGAMES.

4 Discussion

The growing complexity of reaction-based models makes it chal-
lenging to detect and remediate model errors. This article focuses on

isolating structural errors in reaction networks.
We consider two kinds of structural errors: imbalances of moi-

eties in reactions and stoichiometric inconsistency (an error in the
structure of the reaction network). We also consider error isolation
since it exposes causal relationships that aid in error remediation. By

isolating an error we mean: (i) finding a subset of chemical species
that cause the error, which we call the species isolation set (SIS); (ii)

finding a subset of the reactions that cause the error, which we call
the reaction isolation set (RIS) and (iii) constructing a computation-
ally simple narrative that explains the error in terms of the SIS and

RIS. Further, the computationally simple narrative allows modelers
to check for false detections. False detections are a concern because

techniques that do computationally intensive matrix operations can

suffer from numerical issues (e.g. near singularities) because of the
structure of the stoichiometry matrix.

We identify two areas of work related to ours. Atomic mass ana-
lysis (AMA) is widely used to detect structural errors in the form of
imbalances in atomic masses. But AMA is not intended to detect
imbalances in chemical structures such as moieties that may have
variations in their atomic formulas. For stoichiometric inconsist-
ency, extended LP (xLP) uses multiple steps of mixed integer linear
programs to calculate equivalents to the SIS and RIS. But xLP has
issues with computational and algorithmic complexity and an in-
ability to explain errors detected in terms of their SIS and RIS.

The first structural error that we address is the balance of moi-
eties between reactants and products. Many biochemical reactions
preserve this balance (e.g. reactions catalyzed by transferases).
Moiety analysis can be viewed as an extension of AMA to moieties.
Indeed, these algorithmic similarities mean that moiety analysis can
be integrated with AMA to improve AMA error isolation by report-
ing a few missing moieties instead of a large number of missing
atoms. The central challenge with moiety analysis is exposing the
moiety structure of molecules. We introduce two approaches to
exposing moiety structure that allow the modeling community to
evaluate moiety analysis as a step toward the development of rele-
vant standards and tools.

Our alternative to xLP analysis is GAMES. GAMES uses graph-
ical techniques and linear algebra to explain a stoichiometric incon-
sistency in terms of its SIS and RIS. GAMES typically provides
concise explanations for errors in models with several hundred to a
couple thousand reactions. However, the GAMES SIS and RIS can
be large for very big models.

We have created open source, pip installable implementations
of moiety analysis and GAMES.

We are pursuing a number of directions for future work. For
moiety analysis, our focus is the representations of the moiety struc-
ture of molecules. For GAMES, we are investigating ways to reduce
runtimes, increase the coverage of stoichiometric inconsistencies,
and better address error isolation when the RIS and/or SIS are large
(as is the case for many BiGG models). For example, there might be
a way to incorporate mathematical programming with graphical
approaches that reduces runtimes without reducing coverage.
Further, we are exploring revisions to the xGAMES detection crite-
ria (DC) to increase the coverage of xGAMES. More broadly, we
are interested in providing modelers with insights into preferred
practices or ‘model patterns’, which we might be able to infer from
analyzing many models.
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