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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) outbreak has become an evolving global health crisis. With an 
increasing incidence of primary hypertension, there is greater awareness of the relationship between primary 
hypertension and the immune system [including CD4+, CD8+ T cells, interleukin-17 (IL-17)/T regulatory cells 
(Treg) balance, macrophages, natural killer (NK) cells, neutrophils, B cells, and cytokines]. Hypertension is 
associated with an increased risk of various infections, post-infection complications, and increased mortality 
from severe infections. Despite ongoing reports on the epidemiological and clinical features of COVID-19, no 
articles have systematically addressed the role of primary hypertension in COVID-19 or how COVID-19 affects 
hypertension or specific treatment in these high-risk groups. Here, we synthesize recent advances in under
standing the relationship between primary hypertension and COVID-19 and its underlying mechanisms and 
provide specific treatment guidelines for these high-risk groups.   

1. Introduction 

Corona Virus Disease 2019 (COVID-19) is an acute respiratory in
fectious disease caused by the severe acute respiratory syndrome coro
navirus 2 (SARS-CoV-2), which is a public health emergency of 
international concern. In the COVID-19 epidemic, researchers found 
that nearly half of COVID-19 inpatients had comorbidities, with hy
pertension being the most common comorbidity [1–5]. What’s more, 
hypertension is more frequently observed in patients with severe 
COVID-19 compared to non-severe patients [6]. This suggests that there 
may be a causal relationship between hypertension and COVID-19 or its 
severity, which may be mainly related to the specific immune status of 
hypertension. Understanding how the immune system changes with 
hypertension and how the immune system interacts with COVID-19 is 
important, as each key link is expected to be a potential target for 
COVID-19, providing new approaches and ideas for treating COVID-19 
in patients with hypertension. Generally, hypertension can be divided 
into primary hypertension and secondary hypertension. This paper 
mainly discusses the interaction of immune system change in primary 

hypertension with SARS-CoV-2 (see Table 1). 

2. The invasion of SARS-CoV-2 

Hypertension has a specific inflammatory immune state that may 
increase the risk of contracting COVID-19 and progressing to severe 
pneumonia [7,8]. When SARS-CoV-2 enters patients with high blood 
pressure, the body’s immune system is more likely to trigger a cytokine 
storm, raising the possibility that the virus will cause serious conse
quences, such as severe pneumonia and death. 

The angiotensin-converting enzyme 2 (ACE2) has been identified as 
a functional receptor for coronaviruses [9], including SARS-CoV and 
SARS-CoV-2. Studies have shown that SARS-CoV-2 uses spikes glyco
protein (S) proteins to bind to ACE2 on target cells [10]. Serum ACE2 
activity is elevated in hypertensive patients [11]. In addition, with the 
development of hypertension, the number of ACE2 in patients will in
crease with the occurrence of other cardiovascular diseases, such as 
coronary atherosclerosis, myocardial ischemia, myocardial infarction, 
and heart failure [11,12]. This suggests that people with high blood 
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Table 1 
Effects of changes in the immune system of hypertension on COVID-19.  

Cell/ 
Receptor/ 
Cytokine 

Function Changes in 
hypertension 

Effects on hypertension Effects on SARS-CoV-2 

CD4+ T cells Secrete pro-inflammatory cytokines; 
identify antigen[151] 

Activated Attenuate the vascular and renal 
immune-inflammation 

Contribute to cytokine storms and are associated 
with severe SARS-CoV-2 infection 

CD8+ T cells Secrete pro-inflammatory cytokines; killing 
effects[151] 

Activated Promote vascular endothelial 
dysfunction, vascular sparsity and 
sodium and water retention induced by 
Ang II[28] 

Associated with the pathogenesis of extremely 
severe SARS-CoV-2 infection[80] 

Th17 cells Promote inflammatory response[41]; 
down-regulate Treg mRNA[152] 

Activated Aggravate vascular inflammatory 
response Vascular dysfunction[152] 

Promotes the onset and development of cytokine 
storms 

Treg cells Inhibit immunity responses Decreased Aggravate vascular dysfunction[40] Promotes the onset and development of cytokine 
storms 

B cells Identify and process antigens; differentiates 
into plasma cells; secrete cytokines 

Increased; 
activated 

Enhance the effect of Ang II on raising 
blood pressure 

Contribute to the formation of cytokine storms[43] 
and associated with a severe infection in COVID-19 
[47,138] 

Plasma cells Produce antibodies and cytokine[153] Increased IgG produced by plasma cells deposits in 
the aorta[43] 

Promotes the onset and development of cytokine 
storms 

Neutrophil Phagocytosis; antibacterial activity 
[154,155]; induces tissue inflammation 
and fibrosis 

Increased Promotes ROS - induced vascular 
damage and kidney damage[156] 

Promotes the onset and development of cytokine 
storms 

NK cells Cytolytic activity; secrete cytokines and 
chemokines 

Increased Interact with monocytes and promote 
Ang II-induced vascular dysfunction 
[49,50] 

Contribute to SARS-COV-2 invasion and promotes 
the formation of cytokine storms 

Monocytes Phagocytosis; antigen presentation[157] Activated Aggravate vascular dysfunction[49] Promote the onset and development of cytokine 
storms 

Dendritic cells Present antigen and activate T cell; secrete 
cytokines 

Activated Oxidative injury and inflammation[59] Promote the onset and development of cytokine 
storms 

Macrophage Phagocytosis; secretes cytokines and 
chemokines 

Activated Promotes hypertension through RAAS 
[57]; causes vascular endothelial 
disorders and renal sodium excretion 
disorders[158] 

Promote the onset and development of cytokine 
storms 

IFN-γ Antiangiogenesis; promotes inflammatory 
response and antigen presentation[159] 

Increased Promotes vascular inflammation and 
vascular dysfunction and induces target 
organ damage 

Promotes the onset and development of cytokine 
storms; synergistic interaction between TNF and 
IFN-γ specifically induces cell death, leading to 
multiple organ damage[160] 

TNF Promotes apoptosis and renal 
vasoconstriction; reduces glomerular 
filtration rate[161] 

Increased Promotes the development of Ang II- 
dependent hypertension[162] and 
induces target organ damage[33] 

Promotes the onset and development of cytokine 
storms; synergistic interaction between TNF and 
IFN-γ specifically induces cell death, leading to 
multiple organ damage[160] 

VEGF Stimulates the proliferation of vascular 
endothelial cells and induces angiogenesis; 
increases vascular permeability [163] 

Increased Aggravates abnormal angiogenesis and 
endothelial dysfunction[164] 

Cause central nervous system damage via Ang II 
mediation[165] 

TGF-β Promotes the fibrosis[166]; inhibits 
immune cell proliferation and secretion of 
cytokines[167] 

Increased Promotes salt-induced hypertension and 
leads to kidney and heart fibrosis[166] 

Reduces inflammatory response and symptoms; 
delays virus clearance, and increases infection rates 

GM-CSF Increases monocyte and neutrophil; 
Initiation and perpetuation of 
inflammatory response[168,169] 

Increased Promotes Ang II-induced vascular 
dysfunction[170] 

Limits virus-related injury in the early phases; 
inappropriate release promotes the cytokine storms 
in later phases[171] 

IL-1 Activates T cells, B cells and other immune 
cells[172] 

Increased Promotes Ang II-dependent 
hypertension[173] 

Promotes the onset and development of cytokine 
storms 

IL-2 Activates T cell and NK cell cytotoxicity  
[174] 

Decreased – Conducive to SARS-CoV-2 invasion 

IL-4 Induces CD4+ T cells to differentiate into 
Th2 phenotype[175]; regulates cell 
proliferation and apoptosis[176] 

Decreased Reduces endothelial dysfunction[177] Promotes the onset and development of cytokine 
storms 

IL-6 Stimulates the proliferation of activated B 
cells and secretes antibodies; stimulates T 
cell proliferation and CTL activation[178] 

Increased Promotes Ang II - and cold-mediated 
hypertension[179] 

Promotes the onset and development of cytokine 
storms 

IL-8 Up-regulates VEGF synthesis in endothelial 
cells 

Increased Promotes vascular inflammation, 
abnormal angiogenesis, and endothelial 
dysfunction[164] 

Promotes the onset and development of cytokine 
storms 

IL-10 Prevents and limits tissue damage caused 
by excessive immune response[180] 

Decreased Aggravates vascular dysfunction[181] Conducive to SARS-CoV-2 invasion; aggravates 
tissue damage 

IL-13 Inhibits monocyte releasing pro- 
inflammatory cytokines; promotes Th cell 
immune response[182,183] 

Decreased – Promotes the onset and development of cytokine 
storms 

IL-17 Mediates tissue inflammation[184] Increased Resists stress urinary sodium excretion 
[104]; promotes Ang II-induced 
vascular dysfunction[185] 

Promotes the onset and development of cytokine 
storms 

IL-22 Induces pro-inflammatory cytokines 
production 

Increased Exacerbates Ang II-induced vascular 
dysfunction[64] 

Promotes the onset and development of cytokine 
storms 

IL-23 Regulates Th17 phenotypes by IL-23 
receptors[186]; promotes chronic 
inflammatory response[187] 

Increased Exacerbates vascular inflammation; 
aggravates vascular dysfunction 

Promotes the onset and development of cytokine 
storms 

(continued on next page) 
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pressure are more susceptible to SARS-CoV-2 infection and more likely 
to suffer deterioration of the disease. After cell invasion, the virus rep
licates heavily and activates various immune cells, which release large 
amounts of cytokines. 

The internalization and exfoliation of ACE2 caused by virus invasion 
reduced the expression of ACE2 on the cell membrane [13]. ACE2 has a 
lung-protective effect [14], and a decreased level of ACE2 may aggra
vate lung injury. Besides, angiotensin 1-7 (Ang 1-7) is the main product 
of angiotensin II (Ang II) degradation by ACE2, which produces vaso
dilation by activating bradykinin and nitric oxide (NO), releasing 
prostaglandin, and inhibiting the release of norepinephrine [15,16]. Ang 
1-7 also has anti-inflammatory effects mediated by MAS receptors [17]. 
The decrease of ACE2 also leads to the decrease of Ang 1-7, which will 
further aggravate hypertension and make the inflammatory response 
more intense. Hypertension patients are with high levels of Ang II 
[18–20]. Ang II levels were linearly correlated with viral load and lung 
injury [21]. Ang II binds to angiotensin II type 1 receptor (AT1R) to 
stimulate the Janus Kinase (JAK)/ signal transduction and transcrip
tional activator (STAT) pathway and promotes the production of 
downstream interleukin-6 (IL-6), which in turn triggers the JAK/STAT 
pathway to release more cytokines through positive feedback, such as IL- 
6 and interferon (IFN) [22]. Ang II also interacts with nuclear factor 
Kappa B (NF- binding κ B) and promotes transcription and inflammatory 
cytokines such as interferon-γ (IFN-γ), IL-6, granulocyte-macrophage 
colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF) [23]. 
These may facilitate cytokine storms in COVID-19 patients with hyper
tension and lead to further disease deterioration. 

3. The interaction of SARS-CoV-2 and the immune system of 
hypertension 

Compared with those without hypertension, patients with hyper
tension have a special immune state characterized by endothelial 
dysfunction and oxidative stress [24]. They are often affected by low- 
grade chronic inflammation, which may affect how people with high 
blood pressure respond to viral infections, and SARS-CoV-2 is no 
exception. This state may promote cytokine storms, with severe conse
quences for those infected with COVID-19, potentially leading to death. 
This may explain why COVID-19 patients with hypertension are more 
likely to develop severe pneumonia and die than those without hyper
tension [25] (Fig. 1). 

Pathogen-related molecular patterns (PAMs) produced after SARS- 
CoV-2 invasion and danger-associated molecular patterns (DAMPs) 
released by damaged cells in vivo bind to pattern recognition receptors 
(PRRs), including epithelial cells, macrophages, and dendritic cells. 
These cells produce an intracellular cascade reaction, releasing many 
cytokines that activate and attract more immune cells, such as macro
phages, NK cells, neutrophils, CD4+ T cells, CD8+ T cells, and B cells. 

These activated immune cells concentrate on the damaged site, exert 
corresponding immune effects, and release more cytokines, creating a 
cascade effect that may eventually lead to a cytokine storm [26]. Pre- 
existing inflammation combined with the direct assault of SARS-CoV-2 
may make hypertension patients more likely to develop cytokine storms. 

Ang II stimulates T cell proliferation [27,28]. T cells play a central 
role in the regulation of hypertension, and they are overactivated and 
proliferated in patients with hypertension [29,30]. The lymphocyte 
count was positively correlated with the values of systolic and diastolic 
blood pressure[31]. These T cells exhibit a senescent phenotype char
acterized by telomere shortening, loss of costimulatory factors CD27 and 
CD28, and increased surface marker CD57. Due to the lack of cos
timulatory receptors, senescent T cells cannot participate in classical 
activation through T cell receptor (TCR) [32]. They lose their ability to 
fight the virus. However, these cells showed a continuous state of pro- 
inflammatory activation. T cells produce pro-inflammatory cytokines, 
such as IFN-γ and TNF [CD8+ T, CD4+ T helper 1(Th1)] and IL-17A (γδ 
-T, CD4+ T h17), that exacerbate hypertension-related responses and 
induce endothelial dysfunction, as well as heart, kidney, and neurode
generative damage [33]. Aging CD8+ T cells also produce many cyto
toxic granulosa (IFN-γ perforin and granzyme) [34]. The hyperfunction 
of CD4+ and CD8+ T cells may be associated with the pathogenesis of 
severe SARS-COV-2 infection [35,36]. There is an abnormal ratio of 
helper T cells (Th17) to regulatory T cells (Treg) in hypertensive patients 
[37–41]. Treg cells inhibit innate and adaptive immune responses [40], 
and with the reduction of Treg cells, the anti-inflammatory effect in 
patients with hypertension decreases. There is a physiological shift in 
hypertension patients to a Th17 environment conducive to the expres
sion of inflammatory cytokines IFN-γ, vascular endothelial growth fac
tor (VEGF), IL − 1α, and IL-1β, IL-6, IL-12, IL-17). This provides the 
conditions for cytokine storms to occur. 

Ang II increased B cell and plasma cell activation in lymphoid tissue 
and induced aortic IgG deposition [42]. So in patients with hyperten
sion, B cells are activated and release various cytokines [IL-1, IL-6, IL-8, 
TNF, lymphotoxin-α (LT-α), GM-CSF, granulocyte colony-stimulating 
factor (G-CSF), macrophage-colony stimulating factor (M-CSF), IL-7] 
[43] and differentiate into plasma cells to release antibodies [44,45]. 
Highly activated B cells may be associated with severe COVID-19 
[46–48]. 

In Ang II-induced hypertension, NK cells and monocytes activate 
each other [49]. NK cells have cytolytic activity against tumor or 
pathogen-infected cells, and they also release cytokines including IFN-γ, 
TNF, and GM-CSF, as well as chemokines such as chemokine ligand 
(CCL) 4, CCL5, and CCL22 [50,51]. The increase of NK cells in patients 
with hypertension leads to a significantly enhanced inflammatory 
response. Circulating monocytes in hypertensive patients have a pro- 
inflammatory phenotype [52] and contain high concentrations of 
harmful cytokines in the serum (IL-1β and TNF) [53]. Increased pro- 

Table 1 (continued ) 

Cell/ 
Receptor/ 
Cytokine 

Function Changes in 
hypertension 

Effects on hypertension Effects on SARS-CoV-2 

CRP Activates the complement pathway; 
promotes the release of pro-inflammatory 
cytokines and apoptosis[188] 

Increased Promotes vascular endothelial 
dysfunction and atherosclerosis[189] 

Promotes the onset and development of cytokine 
storms 

ACE2 Promotes angiotensin conversion; 
functional receptors for SARS-COV-2 

Increased; 
activated 

Promotes Ang II-mediated hypertension 
[190] 

Conducive to the invasion of SARS-COV-2; 
exacerbates lung injury 

C3 Promotes immune cells to engulf 
pathogens; regulates cytokine release, and 
promotes an inflammatory response[191] 

Increased Aggravates inflammatory response and 
terminal organ injury[192] 

Promotes inflammation and exacerbates symptoms 
of SARS-COV-2 infection[191] 

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Ang II, angiotensin II; Th17 cells, T helper cell 17; Th2 cell, T helper cell 2; Treg cells, regulatory cells; 
ROS, reactive oxygen species; NK cells, natural killer cells; RAAS, renin-angiotensin-aldosterone-system; IFN-γ, interferon gamma; TNF, tumor necrosis factor-alpha; 
VEGF, vascular endothelial growth factor; TGF-β, transforming growth factor-beta; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL-1, interleukin 1; IL- 
2, interleukin 2; IL-4, interleukin 4; IL-6, interleukin 6; IL-8, interleukin 8; IL-10, interleukin 10; IL-13, interleukin 13; IL-17, interleukin 17; IL-22, interleukin 22; IL-23, 
interleukin 23; CTL, cytotoxicity T lymphocyte; CRP, C-reactive protein; ACE2, angiotensin-converting enzyme 2; C3, complement 3. 
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inflammatory (M1) macrophage activity and number were observed in 
angiotensin II-induced salt hypertension [54–58]. M1 macrophages can 
produce pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12, IL-23, 
and TNF, which aggravate the cytokine storm [58]. Dendritic cells are 
activated in hypertensive patients and trigger T cell activation and 

proliferation to produce IL-17A, TNF, and IFN-γ [59]. Patients with 
hypertension have elevated levels of neutrophils [60] that will further 
promote the occurrence and development of cytokine storms in COVID- 
19 patients. 

The levels of IFN-γ, TGF-β, VEGF, IL -1α, TNF, IL-1β, IL-6, IL-8, IL-17, 

Fig. 1. SARS-CoV-2 binds to ACE2 in alveolar epithelial cells and invades cells. Dendritic cells and macrophages recognize the antigen of SARS-CoV-2, and their 
surface MCH-II binds to the surface CD4 TCR of Th0 cells, promoting the differentiation of Th0 cells into Th1, Th2, Th17 and Treg phenotypes. These cells secrete 
cytokines to promote inflammation. Dendritic cells stimulate Th1 cells to activate CTL, and CD8 TCR on the CTL surface recognizes and binds to MHC-I on SARS- 
COV-2-infected cells and then lyses the infected cells. Macrophages activate NK cells to release lethal substances, thereby clearing SARS-CoV-2-infected cells. When 
activated, B cells release cytokines to promote the killing activity of NK cells and differentiate into plasma cells, producing neutralizing antibodies to clear SARS-CoV- 
2. PAMS and DAMPS, generated after SARS-CoV-2 invasion, bind to PRR on the surface of dendritic cells and macrophages, which promotes the release of cytokines 
in these cells. And then, other immune cells are activated and release cytokines, which results in a cascade reaction, even a cytokine storm. Hypertensive patients are 
in a special immune state, which hints the inflammatory response is more serious and the risk of cytokine storm is higher than in normal people. Of note, ACE2 has a 
protective effect on the lung, and its hydrolysate Ang-(1-7) has an anti-inflammatory effect. The level of ACE2 and Ang-(1-7) in hypertension patients is relatively 
high, which may be with a certain protective effect on various organs. However, SARS-CoV-2 is more likely to invade cells due to a high level of ACE2. 
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IL-22, IL-23, C-reactive protein (CRP), complement component 3 (C3), 
and chemokines were increased [61–65]. On the contrary, IL-4 [66], IL- 
2 [67], IL-10 [68,69], and IL-13 [70] levels were decreased. These 
changes – during hypertension – have been associated with worsening 
symptoms in patients with COVID-19 and the occurrence and develop
ment of cytokine storms. 

4. Immune changes in COVID-19 lead to hypertension 

Studies have shown that people with COVID-19 can develop high 
blood pressure [71]. Ang II levels were significantly higher in patients 
with elevated blood pressure after COVID-19. Renin-angiotensin-aldo
sterone-system (RAAS) plays a key role in the cardiovascular system, 
including the classical RAAS axis (ACE-ANG II-AT1R pathway) and the 
non-classical RAAS axis (ACE2-ANG 1-7- Mas receptor pathway), 
balancing the roles of the two axes in regulating cardiovascular physi
ology and disease [72,73]. In those people with COVID-19 that develop 

high blood pressure, this may be related to the inhibition of Ang II 
degradation by the combination of SARS-COV-2 and ACE2, leading to 
increased blood pressure. At the same time, elevated Ang II promotes 
inflammatory and cytokine storms [23] that stimulate the nicotinamide 
adenine dinucleotide (NADH)/ nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase system and trigger cell contraction and 
vasoconstriction, exacerbating COVID-19-related organ damage [21] 
(Fig. 2). 

Hypertension is a cause or result of endothelial dysfunction [74]. 
Endothelial dysfunction after SARS-CoV-2 infection is the key to the 
progression of COVID-19 [75], so patients infected with SARS-CoV-2 are 
at increased risk of developing hypertension and exacerbation of 
hypertension. 

The number of CD4+ and CD8+ T cells was significantly reduced in 
peripheral blood, and their state was overactivated. And increased Th17 
and high cytotoxicity of CD8 T cells were observed [76,77]. In addition, 
circulating levels of different pro-inflammatory cytokines dramatically 

Fig. 2. In COVID-19 patients, CD4+ T cells, CD8+ T cells, and macrophages increase, and then cytokines, such as TNF, IL-1 and IL-6, produced by these cells 
increase, which promotes the occurrence of inflammatory reactions in vivo and leads to vascular endothelial dysfunction, thus increasing the risk of the occurrence 
and aggravation of hypertension. (a) Both COVID-19 and chronic hypertension can lead to arrhythmias. Cytokines such as TNF are increased in hypertensive patients 
with COVID-19, further damaging myocardial cells and increasing arrhythmias. (b) High plasma fibrinogen levels and impaired vascular endothelium in hypertensive 
patients are conducive to thrombosis. People with high blood pressure who have COVID-19 are more likely to develop blood clots because of their abnormal clotting 
status and endothelial dysfunction due to inflammation. (c) Many macrophages and T cells infiltrate renal microvessels in COVID-19 patients, while patients with 
hypertension are more likely to form cytokine storms, which leads to acute kidney injury. TNF, tumor necrosis facor; IL-1, interleukin 1; IL-6, interleukin 6. 
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increase, causing CD4 and CD8 to accumulate in target organs, which 
was related to severe acute respiratory syndrome [78]. Cytokines 
secreted by T cells play a key role in developing hypertension [30]. 
Moreover, CD4+ T cells and CD8+ T cells play a central role in hyper
tension. In line with this, patients with COVID-19 are more likely to 
develop or have worsened hypertension [79]. 

In COVID-19 patients, the level of Treg cells decreased [35,80], the 
level of Th17 cells increased, and the ratio of Treg/Th17 cells decreased 
[81]. There is an overall decrease in NK cell subsets in COVID-19, and 
the balance of NK cell subsets favors inflammation rather than cyto
toxicity [82]. Inflammatory monocyte-derived macrophages increase in 
COVID-19 patients and infiltrate the lungs, promoting inflammatory 
response [78]. Meanwhile, levels of IFN-γ, TNF, IL-1, IL-6, IL-8, IL-10, 
monocyte chemotactic protein-1 (MCP-1), and macrophage inflamma
tory protein-1A (MIP-1A) were significantly elevated in COVID-19 pa
tients [4,80,83]. This makes the immune state of the body to pro- 
inflammatory state change, which will be conducive to the occurrence 
and development of hypertension. 

5. COVID-19 with hypertension leads to adverse outcomes 

COVID-19 with hypertension can increase the risk and severity of 
cardiovascular system and kidney damage (Fig. 2). 

Long-term high blood pressure can damage the heart muscle [84,85]. 
COVID-19 patients with cardiovascular disease have a higher prevalence 
of myocardial damage and are more likely to require admission to the 
Intensive Care Unit (ICU) [86]. SARS-COV-2 binds to ACE2, and a 
decrease in ACE2 leads to age-dependent cardiomyopathy, cardiac 
insufficiency, and heart failure [87,88]. Down-regulation of ACE2 also 
reduces Ang 1-7, impeding its cardioprotective effect, leading to 
increased production of TNF and promoting inflammatory responses 
[87,89]. Meanwhile, pre-existing inflammation combined with the 
direct assault of SARS-CoV-2 may make hypertension patients more 
likely to develop cytokine storms, which release large amounts of cy
tokines and cause damage to heart cells [26]. 

Changes in cardiac hemodynamics, structure, and electrophysiolog
ical characteristics caused by chronic hypertension can lead to supra
ventricular and ventricular arrhythmias [90]. COVID-19 can cause 
arrhythmias, possibly due to electrolyte and hemodynamic disturbances 
and high inflammatory stress [91–94]. Patients with severe COVID-19 
and myocardial damage have a higher incidence of arrhythmias[1], 
and hypertension is a risk factor for severe COVID-19 and cardiac injury. 
Consequently, people with high blood pressure who have COVID-19 are 
more likely to develop myocardial damage and arrhythmias. 

Patients with hypertension have high plasma fibrinogen levels, 
impaired fibrinolysis, endothelial dysfunction, and favorable thrombosis 
[95]. Likewise, studies have suggested that COVID-19 is an endothelial 
disease, which can lead to clotting disorders [96]. When endothelial 
dysfunction persists, coagulation cascade activation and microvascular 
obstruction occur [97]. Dysfunction of ACE2 leads to abnormal activa
tion of RAAS and systemic endodermatitis, which is associated with 
abnormal clotting in COVID-19 patients [98]. In addition, over
activation of the inflammatory response is also involved in COVID-19- 
related thrombosis [99]. If hypertension patients are infected by 
SARS-COV-2, an existing abnormal clotting state in the body will further 
promote the formation of thrombosis. 

Because COVID-19 patients with high blood pressure are more likely 
to develop cardiovascular complications that can lead to death in severe 
cases, therefore, we should pay more attention to the cardiovascular 
situation of COVID-19 patients with hypertension, timely detection of 
problems and appropriate treatment measures. 

Patients with COVID-19 have a high incidence of renal dysfunction 
and are prone to acute kidney injury [100]. The main immune mecha
nisms of renal damage in COVID-19 patients are macrophage and T-cell- 
dominated microvascular inflammation (glomerulitis and peritubular 
capillaries) [101]. The innate and adaptive immune systems of 

hypertensive patients are active [102]. Activated immune cells (mono
cytes, macrophages, neutrophils, dendritic cells, NK cells, and T cells) 
can promote a host of pro-inflammatory cytokines, such as TNF, TGF-β, 
IL-1, IL-6, IL-17, and IFN-γ, which magnify elevated kidney injury 
[103–106]. This is similar to the overactivation of the immune system in 
patients with COVID-19 and the eventual formation of cytokine storms. 
Therefore, the co-occurrence of hypertension and COVID-19 may in
crease the risk of impaired renal function, and we recommend long-term 
renal function testing and blood pressure control in these patients 
[107,108]. 

6. Hypertension therapy under COVID-19 

In the COVID-19 pandemic, medication options for patients with 
hypertension will be different (Table 2). 

RAAS inhibitors, especially ACE inhibitors (ACEI) or angiotensin 
receptor blockers (ARB), are widely used in patients with hypertension 
because of their good antihypertensive effect [73]. RAAS inhibitors, 
particularly ACE inhibitors or angiotensin receptor blockers, may lead to 
increased expression of ACE2 in the respiratory tract, thereby increasing 
the risk of infection and serious life-threatening complications due to 
COVID-19 [109]. However, numerous studies have shown that RAAS 
inhibitors are safe. The use of RAAS inhibitors did not increase the risk of 
hospitalization for COVID-19 or the occurrence of critical illness 
[110,111].  Meanwhile, there was no significant difference in clinical 
outcomes between ACEI alone and ARB alone [112]. However, ACEI 
therapy is associated with suppressing excessive inflammation associ
ated with COVID-19 and an increased intracellular antiviral response, 
whereas ARB is not [113]. 

Furthermore, RAAS inhibitors have been shown to reduce compli
cations and mortality in patients with COVID-19 compared to other 
antihypertensive drugs [114]. COVID-19 patients who have previously 
used RAAS inhibitors have a better prognosis than those who have not 
previously used them [115]. This may be related to the lung-protective 
effect of ACE2 and the vasodilatory anti-inflammatory effect of its 
degradation product Ang 1-7. The clinical benefits of ARB and ACEI 
therapy for COVID-19 patients with hypertension deserve further 
investigation. 

Calcium channel antagonists, another common treatment for hy
pertension, also reduce mortality from COVID-19. Amlodipine can resist 
the infection of novel coronavirus and inhibit replication of novel 
coronavirus [116]. But hypertension patients with COVID-19 who used 

Table 2 
Treatment of hypertension in COVID-19.  

Therapeutic 
function 

Drug Mechanism of action Effect in COVID-19 

Antihypertensive ACEI Inhibits angiotensin 
II biosynthesis[193] 

Dampens COVID-19- 
related 
hyperinflammation and 
increases cell-intrinsic 
antiviral response[113]  

ARB Blocks angiotensin II 
receptor[193] 

Enhances epithelial- 
immune cell 
interactions[113]  

CCB Blocks Ca2+ via 
voltage-dependent 
calcium channels 
[194] 

Suppresses the 
activation of immune 
reactions[195]  

β-blockers Against 
catecholamines, 
adrenergic 
transmitters[196]; 
decreases ACE2 
receptors expression 
and CD147[197] 

Decreases the SARS- 
CoV-2 cellular entry; 
decreases the morbidity 
and mortality in COVID- 
19 patients[197] 

ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor 
blocker; CCB, calcium channel blockers; COVID-19, Coronavirus Disease 2019. 
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ACEI and ARB for a long period had lower hospitalization and mortality 
rates than patients who used this channel antagonist [117,118]. It is 
worth noting that calcium channel blockers (CCBs) offered protective 
effects in hypertensive patients with COVID-19 [119]. However, it has 
also been reported that CCBs may increase mortality in patients with 
severe COVID-19, which may be related to how CCBs inhibit pulmonary 
vasoconstriction during hypoxia [120]. Therefore, CCBs should be used 
according to the actual clinical situation. 

Beta-blockers, another class of blood pressure drug, do not increase 
the rate of COVID-19 infection [121]. Studies have shown that beta- 
blockers may also benefit patients with high blood pressure due to 
COVID-19 [122]. However, other studies have shown that stopping 
beta-blockers at admission has no impact on the clinical outcome of 
COVID-19 patients [123]. Therefore, the specific effects of beta-blockers 
need to be further studied. 

There have been few reports on the effects of diuretic use, with only 
studies suggesting that discontinuing the drug does not affect the 
prognosis of COVID-19 patients [123]. 

7. COVID-19 therapy under hypertension 

The treatment of COVID-19 in patients with hypertension will differ 
from those without hypertension, and more attention should be paid to 
cardiovascular side effects when taking medication. We have summa
rized several drugs suitable for treating COVID-19 in patients with hy
pertension (Table 3). 

Remdesivir is a novel broad-spectrum antiviral nucleotide prodrug 
that inhibits viral replication by interrupting viral RNA transcription. In 
vitro and in vivo experiments have shown that it can resist the replica
tion of SARS-CoV [124,125]. Studies have shown that remdesivir may 
reduce clinical recovery time for COVID-19 patients [126]. There have 
been no reports of cardiovascular side effects and toxicity associated 
with remdesivir, which is a very promising treatment [127]. 

Bamlanivima and etesevimab are recombinant human 

immunoglobulin G1 antibodies that rapidly protect against SARS-COV-2 
infection and COVID-19 by binding to the Spike protein. Studies have 
shown that bamlanivima can reduce infection rates in people at high risk 
of COVID-19 and reduce the risk of hospitalization in patients with mild 
cases [128,129]. Treatment with bamlanivimab and etesevimab signif
icantly reduced SARS-COV-2 load compared with placebo in out-of- 
hospital patients with mild-to-moderate COVID-19 and reduced hospi
talizations and deaths [128,130]. Patients with other chronic condi
tions, such as cardiovascular disease and high blood pressure, could 
benefit [130]. 

Tocilizumab is an IL-6 antagonist. Studies have shown that tocili
zumab reduces all-cause mortality in patients with COVID-19, which 
may be related to the fact that IL-6 antagonists reduce inflammation in 
patients and help the immune system fight COVID-19 [131]. Other IL-6 
antagonists have been shown to have similar effects [131,132]. Notably, 
IL-6 antagonists improved outcomes in patients with severe cardiovas
cular complications [132]. 

Interferon is a cytokine that regulates the immune response to viral 
infection. Studies have shown that IFN β-1a improves antiviral response 
and lung function, contributing to improvement or recovery in patients 
with SARS-CoV-2 infection, and is also safe and effective in patients with 
hypertension [133,134]. Similarly, other interferons, such as interferon 
-α and interferon α-2b, are equally effective against COVID-19 [135]. 

Baricitinib is a selective inhibitor of Janus kinase (JAK) 1 and 2 
[136]. Baricitinib can decrease the cytokines, including IL-2, IL-6, IL-10, 
INF-γ, and GM-CSF, and improves lymphocyte counts in patients with 
COVID-19 [137]. Despite concerns about immunosuppressive secondary 
infections and thrombosis with JAK inhibitors, the addition of baritinib 
was not associated with a significantly increased incidence of adverse 
events or thromboembolic events [138]. It is a relatively safe drug, but 
further studies are needed for COVID-19 patients with hypertension. 

Corticosteroids are steroid hormones and are used as immunosup
pressants in clinical work. Systemic corticosteroids are used to treat 
people with COVID-19 because they counter hyper-inflammation, such 

Table 3 
Treatment of COVID-19 with hypertension.  

Therapeutic 
function 

Drug Mechanism of action Effect in COVID-19 Adverse effects 

Anti-virus      
Remdesivir Inhibits viral replication by interrupting 

viral RNA transcription[198] 
Inhibits the replication of COVID-19 coronavirus 
[125,126] 

Hypotension, nausea, acute 
respiratory failure, hypokalemia[199] 
…  

Bamlanivimab 
Etesevimab 

Binds to Spike protein and protects 
against SARS-COV-2 infection[200] 

Accelerates the decline in the SARS-CoV-2 viral 
load[129,138] 

Nausea, rash, dizziness, diarrhea, 
hypertension[138]… 

Cytokine 
antagonists      

Tocilizumab Binds soluble IL-6 receptor and inhibits 
IL-6 signalling[201,202] 

Reduces inflammatory response and reduces 
symptoms after SARS-CoV-2 infection[132] 

Infection, rash, headache, dizziness, 
hypertension, cough[202]…  

IFN β − 1a Supplies IFN[203] Prevents cytokine storm, improves antiviral 
response and lung function 

Injection-related, neuropsychiatric 
problems, hypersensitivity reactions 
[204]… 

Others      
Baricitinib Binds to AAK1 and GAK; suppresses 

JAK1/JAK2[205] 
Interrupts SARS-COV-2 access to target cells and 
intracellular assembly; moderates cytokine storm 

Malignancy, thrombosis, neutropenia, 
lymphopenia, anemia, 
thrombocytosis  

Vitamin D Regulates the imbalance of Treg/Th17 
and prevents excessive inflammatory 
response[206] 

Against respiratory viral infections and prevents 
excessive inflammatory response 

–  

Convalescent plasma Supplies virus-associated antibodies Reduces the progression of COVID-19 –  
Steroids Suppress innate and adaptive immunity Reduce the catastrophic effects generated by the 

overactivation of the immune system 
Hyperglycemia, infection, water 
sodium retention[207,208]… 

Vaccination      
Messenger RNA 
vaccines 

Induces an immune response Reduce the risk of contracting COVID-19 and 
progressing to severe pneumonia; slow the 
further spread of COVID-19 

Anaphylaxis, myocarditis, 
thrombosis, capillary leak syndrome 
[209]  Viral vector vaccines  

Inactivated and protein 
subunit vaccines 

COVID-19, Coronavirus Disease 2019; SARS-COV-2, severe acute respiratory syndrome coronavirus 2; JAK1, Janus kinase 1; JAK2, Janus kinase 2; AAK1, AP2- 
associated protein kinase-1; GAK, cyclin G-associated kinase; IL-6, interleukin-6; IFN, interferon; Treg/Th17, T regulatory cells/ T helper cell 17. 
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as suppressing pro-inflammatory cytokines and increasing anti- 
inflammatory cytokine mediators. The benefits and risks of glucocorti
coid use in patients with mild COVID-19 are uncertain [139–141]. For 
patients of critical severity, glucocorticoid treatment reduced mortality 
[142]. However, corticosteroids may increase the risk of hyperglycemia, 
infection, and water sodium retention. Therefore, glucocorticoids 
should be used with caution in COVID-19 patients with hypertension. 

Vitamin D is an immunomodulatory hormone that can prevent 
excessive inflammatory response and speeds up the healing process in 
affected areas, primarily lung tissue [143]. Vitamin D supplementation 
protects against acute respiratory infections [144]. In the meantime, 
vitamin D has a protective effect against the development of hyperten
sion [145,146]. Vitamin D is, therefore, a promising complementary 
therapy. 

Convalescent plasma therapy is one of the promising treatments for 
COVID-19 disease. It should be most effective in the early stages of 
infection before organ damage becomes apparent. Hospitalized adult 
patients with severe COVID-19 pneumonia received no improvement in 
convalescent plasma clinical status or overall mortality [147]. Early 
administration of high titer convalescent plasma resistant to SARS-CoV- 
2 to mildly infected older adults can reduce the progression of COVID- 
19, and it has been shown to be safe and effective in patients with hy
pertension [148]. 

Vaccination is one of the most promising preventive measures 
against COVID-19. It provides immune protection and reduces the risk of 
contracting COVID-19 and progressing to severe pneumonia if infected 
[149]. Vaccination can also slow the further spread of COVID-19. 
Vaccination is safe and effective for people with high blood pressure. 
Up to now, few cardiovascular side effects have been reported with the 
vaccine [149,150]. More extensive research is required regarding 
vaccinating hypertension patients. 

8. Conclusion 

COVID-19-related immune system changes in hypertension patients 
involve multiple cytokines, cells, and receptors. The special immune 
system status of hypertension patients makes them more susceptible to 
SARS-CoV-2 invasion. After SARS-CoV-2 invades hypertension patients, 
the body’s immune response may be more serious, along with a higher 
risk of cytokine storms, which increases post-infection complications 
and mortality from severe infections. Therefore, it is important to 
accurately identify COVID-19 inflammatory pathways and therapeutic 
targets in hypertension patients. 
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