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Received: 22 June 2021

Accepted: 22 July 2021

Published: 25 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Design, Shanghai Jiao Tong University, Shanghai 200240, China; wsd8416@sjtu.edu.cn (S.W.);
cathyluck@sjtu.edu.cn (X.F.); tianlei.liu@alumni.sjtu.edu.cn (T.L.); yaoyao32688@sina.com (Y.S.)

2 Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China; shirlygao@sjtu.edu.cn
* Correspondence: dqtang@sjtu.edu.cn; Tel.: +86-21-34205730

Abstract: Freesia hybrida is a group of cultivars in the genus Freesia with a strong floral scent composed
of diverse volatile organic compounds (VOCs). In this study, the VOCs of 34 F. hybrida were extracted
and analyzed by headspace solid phase microextraction and gas chromatography mass spectrometry
(HS-SPME-GC-MS). A total of 164 VOCs whose relative contents were higher than 0.05% were
detected. The numbers of VOCs in all germplasms differed between 11 to 38, and the relative contents
ranged from 32.39% to 94.28%, in which most germplasms were higher than 80%. Terpenoids,
especially monoterpenes, were the crucial type of VOCs in most germplasms, of which linalool
and D-limonene were the most frequently occurring. Principal component analysis (PCA) clearly
separated samples based on whether linalool was the main component, and hierarchical clustering
analysis (HCA) clustered samples into 4 groups according to the preponderant compounds linalool
and (E)-β-ocimene. Comparison of parental species and hybrids showed heterosis in three hybrids,
and the inherited and novel substances suggested that monoterpene played an important role in F.
hybrida floral scent. This study established a foundation for the evaluation of Freesia genetic resources,
breeding for the floral aroma and promoting commercial application.

Keywords: Freesia hybrida; floral scent; VOCs; monoterpenes; heterosis

1. Introduction

Volatile organic compounds are a series of small-molecular (below 300 Da) products
of plants’ secondary metabolism [1]. So far, there have been over 1700 volatiles identified
in 991 species [2]. VOCs are the medium by which plants to interact with other organisms
and environment [3]. Plants attract specific pollinators and seed disseminators by emitting
species-specific signals to help increase sexual reproduction efficiency [4–7]. In plant
defense, VOCs emitted from damaged plants tissues can directly influence antagonistic
visitor physiology by toxic or repelling compounds, or can indirectly attract herbivores’
natural enemies by specific compounds [1]. Volatiles can mediate plant-plant competition
by allelopathy or chemical camouflage [3]. In addition, they can also perform a function in
antimicrobial or antifungal defense [8,9].

Floral scent is a kind of well-known odorous VOCs released from floral tissues [10].
VOCs vary among petal, pistil, nectary, and calyx within the same flower and are diverse
in different cultivars, varieties and genotypes [3], which decides the characteristic floral
scent of one plant. There are many studies which have extracted and analyzed natural
VOCs from ornamental flowers to explore the constitutions of their typical aroma. For
instance, rose is famous for its signature sweet scent which primarily consists of geraniol,
citronellol and nerol [11]. A total of 86 VOCs were identified in tea-scented cultivars [12].
These floral VOCs mostly belong to three types according to their metabolic pathways:
terpenoids, benzenoids/phenylpropanoids and fatty acid derivatives [1]. There are also
some products containing sulfur or nitrogen atoms originating from the metabolism of
amino acids [2]. Terpenoids and fatty acid derivatives are the main classes within the rose
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scent. The fragrant oriental lily was found to emit predominantly monoterpenoids and
benzenoids for its special scent [13]. Moreover, the living scent or essential oil extracted
from flowers has health functions. The 3,5-di-methoxytoluene that effectively contributes
to the rose scent has a strong sedative and relaxing effect [14].

Freesia (Iridaceae) originates from South Africa and has been artificially planted for
18 centuries. Freesia hybrida, the modern cultivar population, is formally regarded as the
offspring of Freesia corymbosa and Freesia leichtlinii in the anfractuosity of breeding [15–17].
The fusion of diverse varieties’ genetic resources led to the complex genetic background of
F. hybrida. It is an excellent bulb flower with various colors and an abundant aroma. Thus
far, there have been some studies which have identified the VOCs of the scent of F. hybrida.
The cultivar ‘Rijnvelds Golden Yellow’ was firstly found that the principal compound
linalool accounted for 67.96% in 31 VOCs [18]. Subsequent studies also demonstrated
that terpenoids, in which linalool was critical, dominated the scent of F. hybrida [19,20].
However, these studies usually focused on limited cultivars, leading to an unrepresentative
summary of scent characteristics of plenty of freesia germplasms. More rapid cultivar
innovation provides newer demand to summarize the recent situation of the floral scent of
F. hybrida, which is valuable for the cut flower and essential oil industries. In addition, as the
most important commercial breeding method, intervarietal crossing is generally applied to
breeding new F. hybrida cultivars. Studying the VOCs of hybrids plays a fundamental role
in breeding new fragrant cultivars. It has been found that the hybrid generations would
synthesize some novel scent traits or evidently lost parental chemical compounds [21].
More data are still required to explore the changes which occur during cultivating and
breeding.

Based on our previous persistent breeding and germplasms collection, we selected
34 germplasms to identify the VOCs in these fresh F. hybrida flowers. Compared to other
methods, HS-SPME-GC-MS is rapid, solvent-free, inexpensive and accurate when used
to identify VOCs. [22,23]. PCA and HCA were then performed to analyze the floral
scent pattern of these germplasms. Moreover, we screened some hybrids to explore the
inheritance and variation of VOCs between parents and hybrids. This study aims to
comprehensively analyze the characteristic of F. hybrida, and form a theoretical basis for
scent breeding in F. hybrida.

2. Results
2.1. Comparative Analysis and Evaluation of VOCs

Table 1 showed the information about 34 germplasms. A total of 164 VOCs whose
relative content were higher than 0.05% were found in these germplasms (Table S1, Sup-
plementary Material). The number of VOCs ranged from 11 only in HTG to 38 in three
germplasms, including SN, RP-RX-01 and GR-RP-02 (Figure 1). Out of the 34 samples
detected, the numbers of VOCs in 27 samples were found to exceed 20, of which 10 samples
were above 30; other 7 samples contained less than 20 VOCs, of which HTG, ZMG, AN
were as low as 11, 11 and 12. The percentages of VOCs’ relative contents accounted for
32.39% in RR to 94.28% in LL. A majority of germplasms contained high VOC contents,
in which 23 samples were detected to have greater than 80%. The relative contents of all
detected VOCs were present between 60% and 80% in 7 individual germplasms. Four
samples, including SO, ZMG, RR and HTG-RR-02, contained VOCs with low percentages
of less than 50%.
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Table 1. Sample of 34 F. hybrida germplasms.

No. Code Germplasm Name Source 1 Sample Type

1 AN ‘Ancona’ a Cultivar
2 CAL ‘Calvados’ a Cultivar
3 SB ‘Summer Beach’ a Cultivar
4 PP ‘Pink Passion’ a Cultivar
5 VE ‘Versailles’ a Cultivar
6 HTG ‘SN 2 Hongtaige’ b Cultivar
7 RX ‘SN Ruxiang’ b Cultivar
8 ZMG ‘SN Zimeigui’ b Cultivar
9 SO ‘Soleil’ a Cultivar

10 JHH ‘SN Jinhuanghou’ b Cultivar
11 FS ‘Fragrant Sunburst’ a Cultivar
12 LL ‘Lovely Lavander’ a Cultivar
13 SN ‘Snoozy’ a Cultivar
14 HJ ‘SN Huangjin’ b Cultivar
15 GR ‘Gold River’ a Cultivar
16 WR ‘White River’ a Cultivar
17 RP ‘Red Passion’ a Cultivar
18 CA ‘Castor’ a Cultivar
19 MA ‘Mandarine’ a Cultivar
20 GRU ‘Grumpy’ a Cultivar
21 RR ‘Red River’ a Cultivar
22 TW ‘Tweety’ a Cultivar
23 CH ‘SN Chenghuang’ b Cultivar
24 DXQ ‘SN Danxueqing’ b Cultivar
25 DH ‘SN Dahong’ b Cultivar
26 FT ‘SN Feitao’ b Cultivar
27 WR-HJ-01 ‘White River × SN Huangjin—01’ b Hybrid
28 RP-RX-01 ‘Red Passion × SN Ruxiang—01’ b Hybrid
29 CA-WR-01 ‘Castor × White River—01’ b Hybrid
30 HTG-RR-02 ‘SN Hongtaige × Red River—01’ b Hybrid
31 RR-DH-03 ‘Red River × SN Dahong—03’ b Hybrid
32 GR-RP-02 ‘Gold River × Red Passion—02’ b Hybrid
33 GR-RP-05 ‘Gold River × Red Passion—05’ b Hybrid
34 GR-RR-06 ‘Gold River × Red Passion—06’ b Hybrid

1 a indicates the sample originated from Van den bos Co., Ltd. of Netherland; b indicates the sample originated
from Shanghai Jiao Tong University. 2 SN indicates cultivars bred by Shanghai Jiao Tong University.
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Numbers and relative contents of VOCs differed in tested freesia germplasms, and
relative contents did not correspond to numbers. It was revealed that high VOC numbers
did not mean high content for all germplasms. Typically, the germplasms with many VOCs
were accompanied by high relative contents. However, the samples with large numbers
of VOCs may contain low percentages (≤50%), such as RR and HTG-RR-02. Conversely,
some germplasms emitted few VOCs and contained high VOCs percentages, including
AN, HTG, GRU and GR-RR-06.

According to metabolic pathways, the VOCs could be classified into 127 terpenoids,
18 fatty acid derivatives, 9 benzenoids and phenylpropanoids and 10 other compounds
(hydrocarbons, sulfur- and nitrogen-containing compounds) (Figure 2). Terpenoids, includ-
ing 84 monoterpenes and 43 sesquiterpenes, dominated the floral scent in the majority of
germplasms. In relative content terms, monoterpenes were also the most chief components.
As shown in Figure 2, 33 samples contained more than half monoterpenes, except ZMG
whose primary substance was sesquiterpenes. In most germplasms, fatty acid derivatives
were observed in low contents, except for a high percentage in an individual germplasm,
HTG-RR-02. Benzenoids and phenylpropanoids and other compounds were very low in
most germplasms suggesting a negligible effect on F. hybrida.
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Figure 2. Relative content of different VOC types in 34 F. hybrida germplasms.

Among detected VOCs, linalool, the compound with the highest frequency of oc-
currence, was found in all germplasms. Meanwhile, linalool was the highest percentage
substance in 19 samples, with a range of relative abundance from 21.55% to 82.86%. In addi-
tion, D-limonene was also observed with the highest occurrence frequency of 34, followed
by several monoterpenes, including myrcene, (E)-β-ocimene, α-terpineol, terpinolene and
alloocimene, with an occurrence frequency of 33, 32, 28, 28 and 27, respectively. The other
73 compounds were only detected peculiarly in one certain sample, such as (E)-β-farnesene
in CA, myrtenol in LL, o-methyl anisole in RR-DH-03, and so on.

2.2. Pattern of the Floral Composition in 34 Germplasms

In order to describe the composition patterns of floral VOCs in 34 germplasms, 52 aro-
matic compounds above 0.5% were used to visually evaluate the characters and variation
in different samples by statistical methods.

PCA was performed to explore the preliminary classification of different samples and
the important compounds correlated with them. The comparatively dispersive samples
and evidently contributing VOCs were marked in the biplot (Figure 3). PC1 and PC2
explained 74.77% and 6.53% variances of compounds, respectively. The distribution of
samples assumed two different trends. Most samples which linalool had a strong positive
influence on were gathered; conversely the others dispersing far away from linalool were
slightly affected. Of these linalool-affected samples, VE, GR-RP-06, SB, GR, GR-RP-02, GR-
RP-05, SNFT, CAL, GRU and HTG-RR-02 were positively correlated with (E)-β-ocimene.



Molecules 2021, 26, 4482 5 of 12

SO (PC1, 0.988) and ZMG (PC1, 0.025), the samples that most positively correlated with
PC1, were almost irrelevant to linalool, of which SO were highly affected by β-myrcene,
eucalyptol, (+)-α-piene and sabinene. α-terpineol and D-limonene significantly impacted
JHH and LL, but negatively impacted FT, CAL, GRU and HTG-RR-02. Ethanol had a
positive influence on HTG-RR-02.
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Figure 3. PCA biplot of VOCs in 34 F. hybrida germplasms.

As a result of HCA, the dendrogram showed that 34 samples were clustered distinctly
into two groups by the proportion difference of VOCs when Euclidean distance was 25
(Figure 4). Cluster I contained 22 samples, in which there were noticeable preponderant
compounds accounting for more than 55%, and the other components were observed in
only a few percentages from 0.5% to 3%. The discussion of Cluster I was mainly about the
predominant VOCs. When the distance was 20, Cluster I was divided into 2 subgroups
based on the variation of dominant compounds. The 19 samples in Cluster a were represen-
tative of the only high percentage compound, linalool, and Cluster b, including 3 samples
(FT, CAL, GRU), was prominently by linalool and (E)-β-ocimene. Cluster II contained
12 samples, with the composition pattern showing that the substances’ percentages were
gradually decreasing from the chief substance less than 55% to low relative content VOCs.
When the geometrical distance was 20, Cluster II was also classified into two subgroups
according to composition differences. TW and RP-RX-01 were separated into group c due
to their similar constituents and proportions of linalool, (Z)-β-ocimene, copaene, (E)-β-
ocimene, cyperene, ethanol and rosefuran. In group d, the first high percentages were less
than 45%, the second was less than 20%, the third was under 12% and the other constituents
had a slight step-down in percentages. Within the 10 samples of group d, VE, GR-RP-2, RR,
PP and SN were clustered together due to linalool being the highest percentage substance;
SN was the only sample that contained nerol in high relative content. LL was closely identi-
fied with JHH for their semblable compositions, which contained, sequentially, α-terpineol,
D-limonene, eucalyptol, β-myrcene, sabinene, linalool and so on. The last branch in group
d contained SO, HTG-RR-02 and ZMG in low total relative contents, as well as various
major compounds including (+)-α-pinene, ethanol and α-selinene, respectively.
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2.3. Comparison of the VOCs of Hybrids and Parental Species in F. hybrida

In our previous breeding work, we collected 9 representative hybrids with different
aroma qualities, which were offspring from the intervarietal crossing of 9 cultivars (WR, HJ,
CA, RR, DH, HTG, RP, RX and GR). The comparison of VOC characteristics with hybrids
and parental species was made to analyze the hybridization results of the F. hybrida flower
scent.

Figure 5 shows the quantitative comparison between parental species and hybrids.
As a whole, 9 hybrids stably inherited a total of 16 compounds from both of their parents,
and they contained steady VOCs with a range from 6 (in WR-HJ-01, RR-DH-03 and HTG-
RR-02) to 9 (in GR-RP-05 and GR-RP-02), including linalool, (E)-β-ocimene, D-limonene, β-
myrcene, cosmene and alloocimene and so on (Table 2). These VOCs were all monoterpenes;
linalool, (E)-β-ocimene, D-limonene and β-myrcene were observed in each overlap between
parents and hybrids, of which linalool showed high relative contents above 30% in most
hybrids except HTG-RR-02 (6.03%). (E)-β-ocimene was higher than 6%, except in WR-HJ-01
(1.86%) and CA-WR-01 (0.89%). Conversely, D-limonene and β-myrcene emitted low levels
under 1.50%. In addition, numbers of unique compounds in hybrids differed from 4 in
GR-RP-05 and GR-RP-06 to 19 in RP-RX-01 when compared with their parents, such as
cyperene in WR-HJ-01, sabinene in RR-DH-02, durenol in RP-RX-01 and so on. These
specific substances in hybrids were almost always lower than 2.80%, excluding ethanol
(17.92%) in HTG-RR-02.
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Table 2. Frequency of the VOCs of freesia hybrids inherited from both parental species.

No. Name Frequency

1 Linalool 6
2 β-Myrcene 6
3 D-Limonene 6
4 (E)-β-Ocimene 6
5 α-Terpineol 4
6 (+)-α-Pinene 3
7 Alloocimene 3
8 Terpinolene 2
9 (E)-Dehydroxylinalool Oxide 2
10 Rosefuran 1
11 (E)-Linalool Oxide (Pyranoid) 1
12 Ethanol 1
13 Cosmene 1
14 Dihydro-β-Ionone 1
15 β-Elemene 1
16 Selina-4(15),7(11)-Diene 1

Figure 6 showed the relative contents of total VOCs and some important compounds
of parents and hybrids. It was observed that different parental species groups generated
various results, and the relative contents in most hybrids were near to, or higher than,
parental species. Firstly, in WR-HJ-01, CA-WR-01 and RR-DH-03, the VOC proportions
of hybrids were closer to the parents, with the advantage of high VOCs relative content,
mainly due to an increase in copaene, linalool and (E)-β-ocimene, respectively. Secondly,
the percentage of HTG-RR-02 was observed in evident proximity to RR, the female parent
with low VOC relative content, as a result of a decrease in linalool percentage and a
substantial increase in ethanol percentage. Thirdly, heterosis was present in RP-RX-01,
GR-RP-05 and GR-RP-06. This occurred in RP-RX-01 mainly because of the increase of
ocimene. However, as the offspring of the same parents (GR and RP), GR-RP-02 contained
the lowest VOCs, even less than parents, which was also observed via linalool relative
content decrease and ethanol content increase.
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3. Discussion

Richness of VOCs in numbers and relative contents reflects the diversity of different
resources. We obtained the most floral scent compounds from 34 F. hybrida germplasms
so far. There are more VOCs detected in F. hybrida than other species, such as Prunus
mume, which emitted 31 VOCs in 8 cultivars [24]. As the most abundant floral scent
volatiles, terpenoids widely exist in many scented plants, including β-ionone and linalool
in Osmanthus fragrans [25]. In most detected F. hybrida, monoterpenes contribute the
majority of VOCs. There are also sesquiterpenes serving as the chief compounds in some
freesia cultivars, including ZMG and ‘Rose Marie’ [26]. Similar results were reported
that fatty acid derivatives may play a certain role in Freesia fragrance [21]; and some wild
Dianthus also emit them as principal VOCs [27]. Though benzenoids and phenylpropanoids
have no evident effects on F. hybrida, they are the primary VOCs in Petunia axillaris [28],
Antirrhinum majus [29], and Hedychium coronarium [30]. In addition, these results are nearly
consistent with the result that linalool is the predominant VOC with a range from 33.60% to
82.51% in most F. hybrida in previous reports [18,26,31]. Linalool is also a primary volatile
substance in many species, which occurs in more than half of the families of seed plants [2].
Other compounds like terpinolene and alloocimene, the important volatiles firstly reported
in F. hybrida, contribute specificity to the germplasm.

The scent of VOCs is closely related to their composition. It was demonstrated that the
number of VOCs had little effect on a sensory evaluation survey, suggesting that the floral
odor was predominated by the principal volatile compound and its content [32]. Lower
content and higher odor threshold values lead to weaker perceptions of floral scent [33].
Among the germplasms dominated by linalool, RR is almost without fragrance, due to
the low content proportion of linalool compared to the other germplasms. Moreover,
the principal VOCs of LL and SO are α-terpineol and (+)-α-pinene, whose odor value
thresholds are 0.01–110 mg/m3 and 0.0053–23 mg/m3, respectively. These substances
were observed in low proportions and their odor value thresholds were much higher than
linalool (0.0004–6 mg/m3), so their scent was imperceptible [34].

Based on PCA and HCA, there are various composition patterns of VOCs of F. hybrida.
Undoubtedly, linalool significantly contributes the floral scent of most germplasms. Inter-
estingly, there are also other types of VOC composition observed in F. hybrida, including
those which are dominated by (E)-β-ocimene, predominant in (Z)-β-ocimene, linalool and
copaene simultaneously, and predominant in α-terpineol, D-limonene and eucalyptol and
other substances, respectively. (Z)-β-ocimene are even higher than linalool in TW. These
substances were first observed as the major components in F. hybrida. As an inherited
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trait, the similar VOC compositions in the same group may possess a close evolutionary
relationship [14,35], so the high scent similarity of LL and JHH may be due to close an-
cestors. Having various major VOC compositions is beneficial to the diversity of floral
scent. According to scent classification, 29 Tulipa cultivars were classified into 9 groups,
including anise, citrus, fruity and six other scented groups [36]. These above findings will
enhance the understanding of the floral scent of F. hybrida and are helpful to exploit the
developmental potential of different F. hybrida scent types in future.

Intervarietal crossing is frequently used as an important method to breed new varieties
for important commercial flowers including Freesia. As a showy trait, excellent floral scent
is also considered as a key breeding purpose in Freesia. The stable inheritance of some
substances is evidently influenced by the level and activity of enzymes [37,38]. All of these
monoterpenes are synthesized by the MEP pathway, suggesting that MEP is the active
and descendible metabolic pathway in producing VOCs in F. hybrida. Coincidentally, the
novel substances generated in hybrids are almost monoterpenes as well, which implies
the differential expression of downstream synthetases in the MEP pathway. This study
even found that the presence of a high-percentage fatty acid derivative in a F. hybrida
hybrid, which was different from its parental species [21], indicating an absolute difference
generating from another biochemical pathway [39].

Furthermore, higher VOC contents and abundant combinations are beneficial in breed-
ing novel varieties with stronger fragrances and different scent types. In this study, we
found that some hybrids generated higher relative contents of specific volatiles. Compared
to the male parent WR, the percentage of copaene that smelt peppery was observed to
be raised in hybrid WR-HJ-01. Hybrids, like WR-HJ-01 that are superior to one parental
species, can serve in unidirectional backcrossing to enhance this special scent perfor-
mance [39]. Additionally, there is heterosis in the offspring of GR and RP, such that the 05
and 06 hybrids individually obtained higher VOC content; while the 02 hybrid conversely
emanated a low floral scent content but generated many novel compounds that existed
in neither parental species, which may be a result of transgressive inheritance [40]. These
novel VOCs can provide the potential of forming different floral scent compositions when
breeding new varieties. Meanwhile, it may also be due to the susceptibility to the envi-
ronment of floral scent [41]. In consequence, intervarietal crossing can keep the beneficial
floral scent traits of parental species, and an increase in certain VOCs can enhance aromatic
odor. The newly-generated substances can enrich the diversity of Freesia scents and provide
different flavors for the breeding of new cultivars.

4. Materials and Methods
4.1. Plant Materials

Thirty-four F. hybrida germplasms, including 26 cultivars and 8 interspecific hybrids,
were cultivated under the same conditions in the standard polyhouse of Modern Agri-
cultural Engineering Training Center of Shanghai Jiao Tong University (Figure 7, Table 1).
Fresh flower branches were cut during 9:00~10:00 am. According to previous results, the
fully open flower stage emitted the most abundant fragrant VOCs. Hence, we selected
petals in the full open flower period to study the floral scent characters of all germplasms
(Figure S1, Supplementary Material).
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4.2. HS-SPME-GC-MS

Fresh petal samples (1.0 g) were weighted into a capped solid-phase microextraction
vial (20 mL). Headspace sampling was done using 50 µm DVB/PDMS/CAR fiber, and the
SPME fiber was exposed to the headspace of the sample for analyte extraction for 30 min at
40 ◦C by the CombiPAL autosampler (CTC Analytics, Zwingen, Switzerland).

GC-MS analyses were performed on a gas chromatograph-mass spectrometer (GC-MS
7890B-5977B, Agilent, Santa Clara, CA, USA) coupled with a DB-Wax column (30 m ×
0.25 mm × 0.25 µm). The SPME fiber was desorbed into the GC injection port at 260 ◦C
for 5 min in splitless mode. Helium (99.999%) was used as the carrier gas at a constant
flow rate of 1.0 mL/min. The oven temperature was programmed from 40 ◦C for 5 min to
220 ◦C at 5 ◦C/min, and increased to 250 ◦C for 2.5 min at 20 ◦C/min. MS were operated
in electron impact (EI) mode at 70 eV within the mass range 20–400 amu. The transfer
line, ionization source and quadrupole were thermostated at 260 ◦C, 230 ◦C and 150 ◦C,
respectively.

4.3. Data Analysis

Qualitative analysis was based on the comparison of experimental spectra with the
National Institute of Standards and Technology (NIST) 2014 database and with published
data [42]. Further identification was confirmed by retention index (RI) and NIST library
similarity index. RI was calculated according to the data of a n-alkane (C7-C40) mixture
standards. When standard RI was not available, NIST library similarity index (SI) was
using as an auxiliary qualitative index. The baseline of compounds with a minimal relative
content may cause a significant impact to mass spectra information, and lead to low SI
(≤75%). The relative content data were calculated by peak area normalization measurement
and by the following Equation (1):

Relative content (%) = 100 × peak area of compound
total peak area

(1)

The compounds (≤0.05%) were excluded for few effects to aromatic profile. Statistical
analysis was performed by IBM SPSS 14.0. Z-normalization was carried out before PCA.
Euclidean distance was used as proximity measurement for HCA.

5. Conclusions

F. hybrida is one kind of famous fragrant flower. This study collected by far the most
germplasms to explore the aromatic VOCs of F. hybrida. 164 VOCs whose relative con-
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tents were higher than 0.05% were detected in 34 germplasms, and most germplasms
contained many VOCs, as well as a high relative content of VOCs. We focused on the
52 compounds above 0.5% and found that linalool was the most predominant VOC in
many germplasms, and also observed that D-limonene, (E)-β-ocimene and other monoter-
penes were important in Freesia. PCA and HCA showed the separation of germplasms
between linalool-dominated and other 3 compounds’ constituent patterns. Similar VOC
compositions showed the close evolutionary relationship among germplasms. Abundant
stably-inherited and newly-created compounds demonstrated that monoterpenes were the
most important VOCs of the floral scent of F. hybrida. Besides the samples dominated by
linalool, we anticipate obtaining more fragrance types with novel VOCs composition by
intervarietal crossing. These findings establish the overall conception of the floral scent of
F. hybrida from different aspects, providing a reference of directed breeding for enriching
the pleasant fragrance of F. hybrida.

Supplementary Materials: The following are available online, Figure S1: Flowers of F. hybrida ‘SN
Jinhuanghou’ in four developmental stages, Table S1: Relative contents (>0.05%) of floral scent
compounds in 34 F. hybrida germplasms.
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