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Abstract: Extrapolation from animal to human data is not always possible, because several
essential factors, such as expression level, localization, as well as the substrate selectivity and
affinity of relevant transport proteins, can differ between species. In this study, we examined the
interactions of drugs and pesticides with the clinically relevant organic cation transporter hOCT1
(SLC22A1) in comparison to the orthologous transporters from mouse and rat. We determined
Km-values (73 ± 7, 36 ± 13, and 57 ± 5 µM) of human, mouse and rat OCT1 for the commonly used
substrate 1-methyl-4-phenylpyridinium (MPP) and IC50-values of decynium22 (12.1 ± 0.8, 5.3 ± 0.4,
and 10.5 ± 0.4 µM). For the first time, we demonstrated the interaction of the cationic fungicides
imazalil, azoxystrobin, prochloraz, and propamocarb with human and rodent OCT1. Drugs such as
ketoconazole, clonidine, and verapamil showed substantial inhibitory potential to human, mouse,
and rat OCT1 activity. A correlation analysis of hOCT1 versus mouse and rat orthologs revealed
a strong functional correlation between the three species. In conclusion, this approach shows that
transporter interaction data are in many cases transferable between rodents and humans, but potential
species differences for other drugs and pesticides could not be excluded, though it is recommendable
to perform functional comparisons of human and rodent transporters for new molecular entities.
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1. Introduction

Numerous hydrophilic compounds require membrane transporters to surmount the plasma
membrane of cells. Members of the ATP-binding cassette (ABC) as well as transporters belonging to
the solute carrier (SLC) transporter superfamily facilitate the cellular entry or exit of small organic
molecules. The driving force for ABC transporter-mediated efflux is provided by ATP hydrolysis,
classifying the ABC transporters as primary active. The SLC transporters translocate their substrate
through the plasma membrane by electrochemical gradients. Thus, they are secondary or tertiary
active transporter. The organic cation transporter 1 (OCT1) is the first member of the SLC22 subfamily
(SLC22A1). In 1994, rOct1 was initially identified from rat kidney and encoded 556 amino acids [1,2].
In the following years, several mammalian OCT1 orthologs from human, mouse and rabbit were
identified [3,4]. Human OCT1 consists of 554 amino acids and shares 78% sequence identity with
both mouse and rat Oct1. Human OCT1 is highly expressed in the liver [3,4], where it is located
in the sinusoidal membrane of hepatocytes [5]. In rodents, Oct1 is expressed not only in the liver
but also highly in the kidney, small intestine, and lung [6]. In the small intestine, OCT1 is localized
at the luminal membrane of enterocytes [7,8], in contrast to the basolateral expression of OCT1 in
hepatocytes. In the human liver, the highest expression of membrane transporters was demonstrated
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for hOCT1 [9]. OCT1 mediates the uptake of cationic substrates from the sinusoid into hepatocytes
and contributes to the first step of hepatic excretion of endogenous as well as exogenous cationic
compounds. In humans, OCT1 enables the reabsorption of organic cations from primary urine,
unlike rodent Oct1, which is expressed on the basolateral membrane of proximal tubule cells [10]. As a
multi-specific transporter, OCT1 translocates structurally different endogenous as well as exogenous
substrates such as choline, corticosterone, acetylcholine, guanidine, and drugs such as metformin,
atropine, ranitidine, cisplatin derivates, sumatriptan, morphine, as well as toxins, such as aflatoxin B1,
monocrotaline, and ethidiumbromide [8,9,11,12].

Human OCT1 is one of around ten SLC and ABC transporters selected by the Food and Drug
Administration (FDA) and European Medicines Agency (EMA) [13] to be tested as part of drug approval,
because of their clinical relevance as drug and toxin transporters and the possible involvement in
drug–drug interactions (DDI). The initial toxicity as well as pharmacokinetic studies in early drug
development are accomplished mainly in laboratory animals, particularly in rodents. Generally,
mice and rats are the species of first choice in drug development, since their organisms are very similar
to that of humans in many respects, but side effects, such as nephrotoxicity or hepatotoxicity, which have
not been observed in animal experiments on rodents occur repeatedly in humans. Therefore, the data
generated from animals could not always be extrapolated to humans. For example, troglitazone showed
severe hepatotoxic effects in man that had not been observed in regulatory animals [14], which could
be due to adverse effects in drug-induced liver injury caused by species-specific susceptibilities [15].
The reasons for the species differences also include physiological parameters in which mice and humans
differ, such as body weight and organ-specific excretionn processes in the kidney and the liver. Drugs
excreted via the liver encounter different physiological parameters, such as species differences in biliary
excretion. The bile flow in rats and mice is 90 and 100 mL/day/kg, respectively, whereas the bile flow
in humans is 5 mL/day/kg [16]. Anatomically, humans and mice can store the bile in the gallbladder,
whereas rats do not have a gallbladder and therefore continuously excrete the bile into the intestine.
The biliary excretion of endogenous as well as exogenous compounds, such as drugs, is dependent on
the activity of SLC and ABC transporters. Membrane transporters play a pivotal role in the absorption,
distribution, metabolism, and elimination (ADME) of drugs. Therefore, it is crucial to compare the
data generated from rodents with humans in in vitro assays to evaluate the impact of the transporter
to DDI for humans during the potential use in therapy. Dresser et al. demonstrated species-dependent
differences in the interaction of OCT1 with n-tetraalkylammonium derivatives [6,17].

The aim of this project was to figure out as to what extent species differences play a role in the
transport function of OCT1. For that, we carried out interaction studies of chemical substances with
hOCT1, rOct1, and mOct1 under the same conditions. As the first part of this project, we compared
the affinity of the known substrate 1-methyl-4-phenylpyridinium (MPP) and the inhibition data of
the known inhibitor decynium22 toward hOCT1 with the data of the orthologous mouse and rat
Oct1. While in the second part, we correlated the hOCT1 interaction data of several drugs and also of
pesticides with the data of mouse and rat Oct1. In this context, the involvement of the SLC transporter
OCT1 in the interaction with pesticides ought to be examined to compare a broad spectrum of chemical
entities that humans are exposed to. The interaction of a vast number of drugs with OCTs is intensively
investigated. In contrast, the interaction of pesticides with SLC transporters, and particularly with
OCTs, is barley examined, despite the increasing interest from regulatory authorities and producers of
pesticides. In this project, we elucidated the impact of pesticides in the inhibition of OCT1, since these
compounds could be involved in pesticide–drug interactions.

Hundreds of pesticides are used worldwide in agricultural holdings and large agricultural
industries. To avoid or minimize the exposure of employees and consumers to pesticides, there are
internationally harmonized definitions of the Maximum Residue Level (MRL) of pesticides in foodstuffs
as well as the tolerable daily intake for humans as Acceptable Daily Intake (ADI). These parameters
help to control the potential chronic toxicity by continued intake of foodstuffs contaminated with
pesticides. The ADI is obtained by feeding rats certain amounts of pesticides through their food
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for a very long time. If the rats tolerate this chemical without any health consequences, the daily
allowable dose (ADI) is achieved in mg of active substance per kg of body weight per day. For safety
reasons, the permitted daily dose for humans should be only 1% of the permitted daily dose for
rats. Nevertheless, the pharmacokinetics or ADME processes of several pesticides in humans and the
involvement of membrane transporters in the liver and kidney, which are crucial for the absorption,
elimination, and DDI, are not well understood. Therefore, the additional intention of this work was
to expound the interaction of human OCT1 with pesticides and to correlate with the mouse and
rat Oct1 interaction. Important parameters suh as ADI are generated by the exposure of animals
to these chemical entities to prevent the potential pesticide toxicity to humans. Hence, it is very
important to compare the interaction of the membrane transporter with pesticides across different
species, particularly with rodents.

2. Results

2.1. Functional Characterization of Human, Mouse, and Rat OCT1

To compare the fundamental functional characteristics of human, mouse, and rat OCT1 under
comparable conditions in stable transfected HEK293 cells, initial hOCT1-, mOct1-, and rOct2-mediated
time-dependent uptake experiments were performed. Using MPP as substrate, the uptake into
OCT1-HEK cells was measured over a period of 0.5 to 20 min, as shown in Figure 1. The MPP uptake
facilitated by hOCT1, mOct1, and rOct1 increased linear up to 3 min and was saturated at 10 min
for all species. Initial 1 min uptake of hOCT1-HEK, mOct1-HEK and rOct-HEK cells was 20.3-, 15.6-,
and 14.3-fold higher than the uptake of the control cells; therefore, further MPP uptake experiments
were terminated for all OCT1 transporters at 1 min.
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concentrations of non-labeled MPP. The Km value of hOCT1, mOct1, and rOct1 were determined to 
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103 pmol/mg/min) for MPP. 

Figure 1. Time dependent uptake of 3H-MPP in (A) hOCT1-, (B) mOct1-, and (C) rOct1-HEK293 cells.
Human, mouse, and rat organic cation transporter 1 (OCT1) transfected HEK293 cells were incubated
for increasing time points at 37 ◦C in the presence of labeled 3H-1-methyl-4-phenylpyridinium (MPP)
(2 nM), in case of hOCT1 and mOct1 the concentration was filled up to 10 µM with unlabeled MPP.
Each data point represents the mean of two or three independent experiments ± average deviation.
Experiments were carried out in triplicates.

To determine and compare the affinity of hOCT1, mOct1, and rOct1 in the same expression system
and under the same experimental conditions, concentration-dependent MPP uptake was conducted.
In transporter-transfected and vector-transfected HEK293 cells, we measured the uptake of MPP in
a transport buffer containing 2 nM [3H]-labeled MPP in the presence of increasing concentrations
of non-labeled MPP. The Km value of hOCT1, mOct1, and rOct1 were determined to be 73 ± 7 µM,
36 ± 13 µM, and 57 ± 5 µM, as shown in Figure 2A–C, respectively. The substrate turnover calculated
as the Vmax value of mOct1 (1423 ± 124 pmol/mg/min) and rOct1 (2740 ± 63 pmol/mg/min) was
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Figure 2. Kinetics of (A) hOCT1-, (B) mOct1-, and (C) rOct1-mediated 3H-MPP transport. Human,
mouse, and rat OCT1-transfected HEK293 cells were incubated for 1 min at 37 ◦C in the presence
of labeled (2 nM) and increasing concentrations of non-labeled MPP. Net uptake was fitted to the
Michaelis–Menten equation to obtain the affinity constant Km and maximum transport velocity Vmax

by non-linear regression analysis using Sigma Plot 13.0 software. Each data point represents the mean
of two independent experiments ± average deviation. Experiments were carried out in triplicates.

Decynium22 is a well-known, high-affinity inhibitor of OCT1, OCT2, and OCT3 [2,17,18].
To our knowledge, there are no systematical studies under the same conditions to evaluate the
concentration-dependent inhibition of hOCT1, mOct1, and rOct1 by decynium22. For further
functional characterization and comparison of the three species, the inhibitory potential of the
increasing decynium22 concentrations on OCT1-mediated uptake of MPP was measured, and the IC50

value of decynium22 for hOCT1, mOct1, and rOct1 was calculated to be 12.1 ± 0.8 µM, 5.3 ± 0.4 µM,
and 10.5 ± 0.4 µM (Figure 3).
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Figure 3. Inhibitory effects of decynium22 on (A) hOCT1-, (B) mOct1-, and (C) rOct1-mediated
3H-MPP transport in stable transfected HEK293 cells. Uptake of MPP at Km value was measured in
the presence of increasing concentrations of decynium22 (1–100 µM). Each data point represents the
mean inhibitory effect (%) calculated from the net-uptake of two independent experiments ± average
deviation. Each experiment was carried out in triplicates. IC50 values were calculated by sigmoidal
3Hill analysis using Sigma Plot 13.0 software.

2.2. Comparison of the Interaction of hOCT1, mOct1, and rOct1 with Drugs and Pesticides

After the basic functional validation, a comparison of hOCT1, mOct1, and rOct1 interaction with
fifteen drugs from different classes of compounds used for specific therapeutic targets as well as nine
pesticides frequently applied in agricultural industries were evaluated.
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Inhibition assays towards human OCT1, mouse Oct1, and rat Oct1 were conducted to compare
the species-dependent interaction of ketoconazole, clonidine, verapamil, quinine, elacridar, quinidine,
procainamide, ritonavir, ranitidine, zosuquidar, metformin, amiodarone, cimetidine, cyclosporine
A, and reserpine. The OCT1-facilitated MPP uptake was inhibited in the presence of 10 or 100 µM
of each drug. Ketoconazole, clonidine, verapamil, quinine, elacridar, quinidine, and procainamide
inhibited the transport activity of hOCT1, mOct1, and rOct1 at 100 µM by more than 50%. The seven
above-mentioned drugs showed high, comparable, and species-independent inhibitory effects on
hOCT1, mOct1, and rOct1, as depicted in Table 1. Slight differences at a very low level were observed,
for example, for ritonavir and zosuquidar. Ritonavir demonstrated at 100 µM a reduction in rOct1- and
hOCT1-mediated MPP uptake to 78% and 61%. In contrast, ritonavir stimulated at 100 µM the mOct1
transport activity by up to 16%. Zosuquidar revealed the low inhibition of the hOCT1-facilitated
transport of MPP and no inhibition of rOct1 but a slight (23%) stimulation of the MPP uptake by mOct1.
However, neither of the drugs showed clear interaction differences between human, mouse, and rat
OCT1 transport activity.

Table 1. Inhibitory effects of various cationic drugs to human, mouse and rat OCT1-mediated
3H-MPP uptake.

Drugs (15) Type of Drug Charge at
pH 7.4

Inhibitory Effects (%)
hOCT1 mOct1 rOct1

10 µM 100 µM 10 µM 100 µM 10 µM 100 µM

Ketoconazol * antifungal 82% uncharged
18% cation 47 83 46 74 43 75

Clonidine hypertension 100% cation 73 83 72 82 62 80
Verapamil * class IV antiarrhythmic agent 100% cation 39 82 29 64 29 64
Quinine * anti malaria 100% cation 20 59 −7 50 −1 44
Elacridar tumor drug resistance 100% cation 31 57 61 76 53 70

Quinidine * class I antiarrhythmic agent 100% cation 13 53 −5 46 19 37
Procainamide * class I antiarrhythmic agent 100% cation 10 43 −5 58 21 58

Ritonavir * antiretroviral HIV 100% cation 17 39 8 −16 17 22

Ranitidine * H2 histamine receptor
antagonist 100% cation 10 38 −12 12 11 45

Zosuquidar antineoplastic drug 37% uncharged
63% cation 2 20 −4 −23 0 4

Metformin * type 2 diabetes 100% cation 11 13 12 9 −19 −4
Amiodarone * class III antiarrhythmic agent 100% cation 9 10 −29 9 −25 1

Cimetidine * H2 histamine receptor
antagonist

75% uncharged
25% cation 8 9 −25 21 19 20

CyclosporinA * immunsuppressant 100% cation 10 7 −27 6 −15 8

Reserpine hypertension 70% uncharged
30% cation 7 6 −12 2 −17 12

* Asterisks show the compounds which are already published to interact with hOCT1 but not with all rodent
Oct1 [8,19,20].

The following pesticides were examined to elucidate their inhibitory potential on the OCT-mediated
MPP uptake: imazalil, propamocarb, azoxystrobin, prochloraz, atrazin, amitraz, glyphosate,
imidacloprid, and paraquat. The highest inhibition of OCTs was observed with imazalil, propamocarb,
and azoxystrobin. They reduced the transporter-mediated uptake of MPP in the presence of 100 µM
by 50% or more. The other pesticides showed no or only slight inhibitory effects. Some pesticides
showed stimulation of OCT1-mediated MPP uptake, as summarized in Table 2. None of the pesticides
demonstrated a clear differential species-dependent interaction within human, mouse, and rat OCT1
transport activity.
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Table 2. Inhibitory effects of various pesticides to human, mouse and rat OCT1 mediated
3H-MPP uptake.

Pesticides (n = 9) Type of
Pesticide

Charge at pH 7.4
Inhibitory Effects (%)

hOCT1 mOct1 rOct1
10 µM 100 µM 10 µM 100 µM 10 µM 100 µM

Imazalil fungicide 81% uncharged 19% cation 56 84 84 97 68 92
Propamocarb fungicide 100% uncharged 9 49 29 63 24 57
Azoxystrobin fungicide 100% uncharged 17 44 −2 49 0 42

Prochloraz fungicide 100% cation 14 42 29 28 25 33
Atrazin herbicide 100% uncharged −8 15 −1 1 −65 −33
Amitraz insecticide 100% cation 8 12 −23 21 −30 10

Glyphosat herbicide 73% anion 27% ± charge 1 7 −9 22 −52 −19
Imidacloprid insecticide 100% ± charge 4 1 23 −9 −5 −36

Paraquat * herbicide 100% cation 0 −1 17 −9 1 −35

* The asterisk shows the compound which is already published to interact with hOCT1 but not with all rodent
Oct1 [21].

Correlation analyses were carried out to visualize the interaction studies performed with drugs
and pesticides toward hOCT1-, mOct1-, and rOct1-transfected HEK293 cells. The inhibitory effect of
fifteen drugs and nine pesticides at both concentrations was plotted to evaluate interaction outcome of
two transporters of different species. The Figure 4A–C present the functional correlation of hOCT1
versus mOct1, hOCT1 versus rOct1, and mOct1 versus rOct1. The correlation coefficient R2 of all three
plots was higher than 0.7, representing a good functional correlation of OCT1 within the species.
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Furthermore, to compare the drug and pesticide interaction of human OCT1 with other members
of organic cation transporters belonging to the SLC22A and SLC47A (hOCT2 and hMATE1) families,
additional inhibition studies with drugs and pesticides were performed. The hOCT2-mediated MPP as
well as hMATE1-mediated metformin uptake was inhibited at 10 and 100 µM of fourteen cationic drugs
and nine mainly cationic pesticides. The inhibition studies were measured in stable transfected HEK293
cells at comparable conditions. As shown in Table 3, decynium22 revealed transporter-dependent
high inhibition down to 3% to 10% of metformin or MPP uptake by hMATE1, hOCT1, and hOCT2.
The highest inhibition of hOCT1, hMATE1, and hOCT2 at 100 µM of pesticides was achieved with
imazalil to 16%, 17%, and 39% remaining transporter activity.
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Table 3. Inhibitory effects of various cationic drugs to hOCT1- and hOCT2-mediated 3H-MPP uptake
and MATE1-mediated 14C-metformin uptake.

Drugs (14)
Inhibitory Effects (%)

hOCT1 hOCT2 hMATE1
10 µM 100 µM 10 µM 100 µM 10 µM 100 µM

Decynium22 * 87 90 42 90 76 97
Clonidine 73 83 69 80 24 60

Ketoconazol * 47 83 33 64 87 98
Verapamil * 39 82 35 43 44 82

Elacridar 31 57 −5 14 42 71
Quinidine * 13 53 0 24 11 24

Procainamide * 10 43 22 38 22 30
Ritonavir * 17 39 15 24 69 91
Ranitidine * 10 38 9 30 19 76
Zosuquidar 2 20 −19 14 23 65
Metformin * 11 13 10 6 5 36

Amiodarone * 9 10 9 19 1 12
CyclosporinA 10 7 −26 −27 18 6

Reserpine 7 6 3 8 72 83

* Asterisks show the compounds which are already published to interact with hOCT1 but not with all rodent
Oct1 [8,19,20].

The correlation analyses of the drug and pesticide interaction with hOCT1 versus hOCT2,
as plotted in Figure 5A, shows with a correlation coefficient R2 of 0.67 a good correlation for the selected
compounds. Yet, for a few compounds (e.g., elacridar), there is no clear correlation between hOCT1
and hOCT2 (see Table 3).

Human OCT1 and MATE1 show for a few compounds inhibitory effects at the same level, e.g.,
imazalil at a very high level (83%), and amitraz at a very low level (12%) (see Table 4). However,
the inhibitory effects of a large number of the compounds do not reveal a functional correlation of
hOCT1 and hMATE1, as presented in Figure 5B. The calculated functional correlation coefficient R2

was 0.45, which is remarkably lower than the coefficient between the OCT1 species or between hOCT1
and hOCT2.

Table 4. Inhibitory effects of various pesticides to hOCT1- and hOCT2-mediated 3H-MPP uptake and
MATE1-mediated 14C-metformin uptake.

Pesticides (9)
Inhibitory Effects (%)

OCT1 OCT2 MATE1
10 µM 100 µM 10 µM 100 µM 10 µM 100 µM

Imazalil 56 84 39 61 33 83
Propamocarb 9 49 24 54 22 25
Azoxystrobin 17 44 33 38 27 68

Prochloraz 14 42 32 33 7 70
Atrazin −8 15 1 10 18 32
Amitraz 8 12 9 27 −11 12

Glyphosat 1 7 12 2 −1 14
Imidacloprid 4 1 −3 19 −8 29

Paraquat * 0 −1 −6 −4 3 4

* The asterisk shows the compound which is already published to interact with hOCT1 but not with all rodent
Oct1 [21].
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detail in Tables 3 and 4.

3. Discussion

Laboratory animals are indispensable tools in the initial preclinical drug development and
evaluation of the pharmacokinetics of new molecular entities (NMEs). In vivo, they deliver pivotal
data in terms of toxicity and achievement of the therapeutic target as well as ADME. The parameters
received from animal experiments reflect the systemic performance of the compound after treatment.
Additional in vitro experiments are crucial to address specific interactions of NME with metabolizing
enzymes, target proteins, permeability of the plasma membrane as well as transporter proteins,
which mediate the intake or the release of the compounds for the cells. Therefore, the potential species
differences should also be considered in the in vitro experimental setups.

The objective of this study was to compare the drug and pesticide interaction with human and
rodent organic cation transporter 1 (OCT1; SLC22A1). There are several studies demonstrating the
interaction of drugs with human, mouse and rat OCT1. Nevertheless, the direct comparison of the
data is difficult, since most of the results are generated with different expression systems, substrates,
and experimental conditions. Consequently, in our study, functional characterization and validation
of the stable in HEK293 cell transfected human, mouse, and rat OCT1 was carried out, starting with
the time-dependent MPP uptake, where all three transporters were saturated after 10 min and the
linear uptake extended to 3 min. In the first time-dependent functional evaluation of rOct1 and
hOCT1 by injecting cRNA in Xenopus laevis oocytes, a linear uptake of 14C-TEA of 90 min and 120 min
3H-MPP uptake was observed [1]. The substantial difference on the linearity of the uptake in X. laevis
oocytes and HEK293 cells could be the expression of the OCTs in the plasma membrane, which is
not comparable. In several studies, the group of Mladen Tzvetkov demonstrated the linear uptake of
several compounds in OCT1-expressing HEK293 cells within 2 min [9,11,22]. The affinity of the OCT1
transporter different species for specific small molecules could differ within the same expression system,
as demonstrated by Dresser et al. They compared the interaction and affinity of n-tetraalkylammonium
derivates with human, mouse, rat, and rabbit OCT1 expressed in X. laevis oocytes and showed 4-fold
higher affinity of mOct1 to TBA than the hOCT1 [17]. Therefore, it was very important to determine
the affinity of the three transporters to MPP (Km values) under the same conditions. In our study,
the Km values of human and rodent OCT1 were in a comparable range. Nevertheless, the affinities for
mOct1 and rOct1 were slightly higher than the affinity for hOCT1. However, these differences were
not significant according to Student’s t-test (p > 0.05).

This indicates also a study of Gründemann and colleagues [23], where the Km value of
hOCT1-HEK293 cells was determined to be 32 µM, which is 2.2-fold lower than was observed
in our study, even though the experimental conditions were comparable except for the fact that
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the HBSS buffer used in this study contained bicarbonate. Km values of 10 µM and 5.6 µM were
determined for mOct1 and rOct1 expressed X. laevis oocytes [24,25]. For further validation of hOCT1-,
mOct1-, and rOct1-expressing HEK293 cells, the concentration-dependent inhibitory potential of
the well-known OCT inhibitor [6] decynium22 was determined and the Km values were calculated.
Similarly, the IC50 values of decynium22 for hOCT1 and rOct1 were almost the same and mOct1
exhibited 2-fold higher affinity for decynium22 than the human and rat OCT1. In another study,
decynium22 inhibited the MPP uptake in isolated rat hepatocytes as well as in hOCT1-expressing
X. laevis oocytes, with IC50 values of 1.4 and 4.7 µM, respectively [2,26]. The difference on the substrate
and inhibitor selectivity as well as affinity with in the orthologues OCT1 transporter could be the
specific amino acid variation within the amino acid sequence. As very well discussed by Wright and
Dantzler [27] and demonstrated by mutation analysis and the replacement of aspartate 475 to glutamate
(D475E) in rOct1 amino acid sequence, the affinity for methylnicotinamide, tetraethylammonium
(TEA), and choline increased by 4-, 8- and 15-fold, respectively. In contrast, the affinity of the mutant
D475E rOct1 for MPP remained unchanged in comparison to the wild-type rOct1 [28]. Several studies
demonstrated numerous hOCT1 polymorphisms as well as a worldwide genetic variability of hOCT1,
indicating specific polymorphisms M420del could lead to loss-of-function. For example, 9% of the
Caucasian population possesses OCT1 without functional activity [29]. Nevertheless, several SNPs
that prompt a specific amino acid exchange in hOCT1 revealed alternated affinity as well as substrate
or inhibitor selectivity [9,11,22].

To elucidate the interaction of drugs and pesticides with human, mouse, and rat OCT1,
we performed the inhibition of OCT1-mediated uptake of MPP with two concentrations (10 and
100 µM) for each of the 15 drugs and nine pesticides. Seven drugs showed an inhibitory potential with
a reduction of the uptake rate to more than 50%. The highest inhibition for hOCT1 was observed at
100 µM for ketoconazole > clonidine > verapamil > quinine > elacridar > quinidine > procainamide.
Other drugs revealed very low inhibitory effects on hOCT1 activity. Nevertheless, most of the inhibitor
drugs showed comparable inhibition between hOCT1, mOct1, and rOct1, with only slight variation.
The results achieved in this study at 10 µM drug inhibitory potential to hOCT1 in % reflect the published
IC50 values of 2.6–7.4 µM for ketoconazole, 0.6–23 µM for clonidine, 1–13 µM for verapamil, 3.5–96 µM
for quinine, 5–340 µM for quinidine, 15–74µM for procainamide, and 5–34µM for ritonavir [8]. Elacridar
inhibited the OCT1-mediated MPP uptake down to 69% and 39% remaining transport activity at 10 and
100 µM. In this study, we demonstrate, for the first time, the interaction/inhibition of hOCT1, mOct1,
and rOct1 by elacridar (also known as GF 120918), an inhibitor of several ABC-efflux transporters.

Pesticides are, unfortunately, a part of our nutrition. Therefore, the responsible agencies worldwide
try to protect the consumers by setting the Maximum Residue Level (MRL). However, the MRL is
often exceeded accidentally or intentionally [30,31]. Consumers are continually exposed to pesticides,
primarily through residues in foodstuff [32] and by close neighborhood to farms intensively treated
with pesticides, which leads to an intake of pesticides through inhalation as well as through the skin
by contaminated air. Food safety reports 2014 of the German federal office of consumer protection and
food safety as well as the commission of the European community for monitoring of pesticide residues
in plant products confirmed that pesticide residues were found to different extent in several foods
(vegetables). Glyphosate is the most used pesticide worldwide and 4000 exposures were reported by
the US poison center each year. Almost 10% of these cases were intentional (suicide) ingestions [33].
Thousands of accidental and intentional deaths by ingestion of paraquat are also observed. A plasma
concentration of 734 µg/mL was determined in a patient who intentionally ingested glyphosate.
The half-life of glyphosate is 3.1 h [33].

Glyphosate was found in human urine samples possibly as a result of dietary intake or from
occupational use [34]. A urinary excretion study from farm families exposed to glyphosate demonstrated
a maximum concentration of 233 µg/mL [35]. Similarly, paraquat, imazalil, azoxystrobin, atrazine,
amitraz as well as imidacloprid were excreted and identified in urine [36–41]. Prochloraz was not
detected in urine but several of its metabolites were, e.g., 2,4,6-trichlorophenoxyacetic acid, which was
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detected mainly as a glucuronide conjugate [42]. The kidney actively secretes numerous pesticides.
Therefore, several transporter proteins expressed in proximal tubule cells could be involved in the
active secretion of pesticides. The transport of paraquat by hOCT2-expressing HEK cells was reported
recently [21]. The interaction of azoxystrobin, propamocarb, and several other pesticides inhibit the
efflux activity of rabbit Abcg2 at the MRL level [43]. However, the MRL in foodstuff show enormous
concentration differences. For example, propamocarb MRL in cereals is 0.1 mg/kg while in vegetables,
it is 500-fold higher (50 mg/kg). Therefore, we used relatively high concentrations (10 and 100 µM)
of the nine pesticides, which are mainly positively charged at the physiological pH, to elucidate
their inhibitory potential on human, mouse, and rat OCT1. The choice of the high concentrations of
the pesticides for the inhibition of OCT1-mediated MPP uptake enabled us to directly compare the
inhibitory potential of each pesticide to OCT1 activity. The highest species-independent inhibition of
OCT1 was observed for imazalil, followed by propamocarb > azoxystrobin > prochloraz. The hOCT1-,
mOct1-, and rOct1-mediated MPP uptake was decreased between 3% and 75%. The inhibition of OCT1
and OCT2 as well the stimulation of MATE2K by propamocarb was reported by Guéniche et al. (2020),
but the study also confirmed that propamocarb is not a substrate of the cation transporter [44]. To our
knowledge, up to now, there is no data that showed the excretion of propamocarb in urine. Therefore,
OCTs as well as MATE2K are most probably not involved in the renal secretion of propamocarb.
Nevertheless, the detection of imazalil, azoxystrobin, and prochloraz metabolites in urine might be an
active elimination facilitated by the OCTs as well as by MATEs.

Atrazin, amitraz, glyphosat, imidacloprid, and paraquat showed at 100 µM either a marginal
inhibitory effect or a stimulation of OCT1 activity. Several tested compounds, particularly ritonavir,
amiodarone, glyphosate and atrazine, demonstrated a stimulatory effect between 16% and 65%.
Drug-induced cis-stimulation of the reference substrate uptake was observed previously for various
influx as well as for efflux transporters and numerous compounds. Hagos et al. demonstrated 24% to
86% stimulation of OAT3 (SLC22A8) as well as OAT4 (SLC22A11)-mediated estrone sulfate uptake by
melphalan, respectively [45]. Irinotecan caused 93% stimulation of estrone sulfate uptake by OATP1B1
(SLCO1B1), as reported by Marada et al. (2015) [46]. The mechanism behind these phenomena is still
not clear. One possible explanation is the binding of the compound to a specific site of the transporter
which generates a higher turnover for the substrate. The consequence is a higher accumulation of the
reference substrate in the cells even at relatively low concentrations. This modulation of the transporter
is most probably caused by allosteric effects or cooperativity of specific sites within the transporter.

Chen et al. (2007) reported results comparable to our studies concerning the interaction of
paraquat with OCT1 but, in contrast, they demonstrated the transport of paraquat by OCT2, while we
did not observe a significant interaction for paraquat with hOCT2. Since these pesticides did not
interact significantly with OCTs as well as with MATEs, the renal secretion mediated by the cationic
transporter that were examined in this study and are located in the kidney could be excluded. Most of
these pesticides interact with several efflux transporters. Therefore, it would need further studies to
understand the role of SLC transporters in the renal secretion mechanism of the pesticides. In this study,
we evaluated the inhibitory potential of drugs and pesticides to hOCT1-, mOCT1- and rOct1-mediated
uptake of MPP. Based on our data, we cannot deny that some of the drugs and pesticides that showed
an inhibitory potential are also substrates of the OCTs. For a differentiation between inhibitor and
substrate there are several options for further studies: If the substance to be examined is available
radioactively or fluorescently labeled, a direct measurement of the accumulation in the HEK cells is
possible, but the ultimate method to determine the OCT1-mediated uptake of non-labeled drugs and
pesticides is by the HPLC tandem LC–MS/MS method. For a precise understanding of the interaction
of the above-mentioned drugs and pesticides, further OCT1-mediated substrate uptake by LS–MS/MS
analysis are needed.

In conclusion, the present study elucidated, for 26 structurally different and, at pH 7.4,
mainly positively charged compounds, a good functional correlation between human, mouse, and rat
OCT1. Additionally, we found substantial inhibitory potential for three of the selected pesticides with
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OCT1, which was not species dependent. Nevertheless, potential species differences within OCT1
could not be excluded for other drugs and pesticides that were not considered in this study. Hence,
for clinically relevant new molecular entities, it is recommended to perform functional in vivo as well
as in vitro comparisons of the transport in humans and rodents.

4. Materials and Methods

4.1. Material

3H-MPP (1-Methyl-4-phenylpyridinium iodide) and 14C-metformin were purchased from
American Radiolabeled Chemicals Saint louis; Missouri, USA. All non labelled chemicals were
obtained from Sigma-Aldrich, Darmstadt, Germany. For transfection, the following cDNAs were used:
hOCT1 (GeneBank: accession number: NM_003057.2), mOct1 (NM_009202.5), rOct1 (NM_012697.1),
hMATE1 (NM_018242.2), and hOCT2 (NM_003058.3). The hOCT1 cloned has the genotype Ser14,
Arg61, Cys88, Phe160, Gly401,Met408, Met420 and Gly465, which corresponds to the OCT1*1B allele
according to the nomenclature suggested by Seitz et al. [29].

4.2. Transfection and Cell Culture

The respective cDNA of the cation transporters has been cloned into the expression vector
pcDNA5/FRT. Human embryonic kidney (HEK-293-Flp-In) cells (Invitrogen, Darmstadt, Germany)
were transfected using Lipofectamine 2000 (Invitrogen, Darmstadt, Germany) according to the
manufacturer’s protocol. Twenty-four hours after transfection, 175 µg/mL hygromycin B was added to
the medium to select stable clones. After two to three weeks, single colonies were picked and expanded.
The growth medium for stably transfected HEK-293 cells was Dulbecco’s modified Eagle’s medium
(DMEM, high glucose) supplemented with 10% fetal bovine serum (Biochrom, Berlin, Geramny),
1% penicillin (10.000 Units/mL)/streptomycin (10 mg/mL). Cell lines were grown in a humidified
atmosphere containing 5% CO2 at 37 ◦C.

4.3. Transporter Mediated Uptake of Radiolabeled Substrates

For uptake assays, 2 × 105 cells in 0.5 mL growth medium per well were seeded into 24-well plates,
coated with poly-D-lysine and cultured for 3 days. Then, growth medium was aspirated and each
well was rinsed three times with 0.5 mL incubation buffer (HBSS buffer supplemented with 20 mM
HEPES, pH 7.4) and incubated at least 20 min at 37 ◦C as described previously [47]. For hMATE1,
it was necessary to generate an intracellular acidification; therefore, the cells were pre-incubated for at
least 30 min in a 30 mM NH4Cl containing incubation buffer at pH 7.4 and 37 ◦C.

The incubation buffer was removed and 200 µL incubation buffer containing radiolabeled and
non-radiolabeled substances was added to each well and incubated at 37 ◦C for 1 min. After incubation,
the uptake was terminated by aspirating the reaction mixture and washing the cells three times with
0.4 mL ice-cold PBS buffer. Cells were solubilized with 0.6 mL of 1N NaOH overnight. [3H] or
[14C] content was measured after addition of 2.5 mL scintillation solvent (Roti®eco plus, Carl Roth,
Karlsruhe, Germany ) in a Beckmann LS6000 scintillation counter.

To determine the affinity (Km) of MPP as a substrate of organic cation transporter, saturation
experiments at initial rate period were performed as determined in time dependency experiments
(data not shown). Organic cation transporter transfected HEK and empty vector-HEK cells were
incubated for 1 min with 2 nM [3H] MPP and increasing concentrations of non-labeled MPP: 1, 10, 25,
50, 100, 250, 500, and 750 µM. Experiments were conducted on at least two separate days. On each day,
all experiments were performed as triplicates.

4.4. Inhibition Experiments

Inhibition experiments for IC50 determination were performed for 1 min with the known inhibitor
of organic cation transporter, decynium22, at the respective calculated Km-values of MPP (containing
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2nM 3H MPP). The MPP uptake was cis-inhibited by following concentrations of decynium22: 1, 5,
10, 25, 50, 75, and 100 µM. Experiments were conducted on at least 2 separate days. On each day,
all experiments were performed as triplicates.

For screening experiments, cis-inhibition was carried out in duplicate by measuring the uptake of
the labeled probe substrate in the absence and presence of 10 µM or 100 µM of the respective pesticide
or drug. Transporter- and vector transfected HEK293 cells were incubated for 1 min with 2 nM 3H-MPP
or 1 µM 14C-metformin. Inhibitory effects in percent were calculated from net-uptake.

4.5. Determination of Protein Concentration

The cellular protein amount was determined using a method described by Bradford [48]. On each
experimental day, six wells per cell line of an additional 24-well plate were analyzed in parallel to
the transport experiments. Cell monolayers in 24-well plates were washed three times with 0.5 mL
incubation buffer and afterwards stored at −20 ◦C. For protein determination, the plates were thawed
and each well was incubated for lyses 30–60 min in 100 µL 1× lyses buffer (Promega, Manheim,
Germany ). Cell lysate was filled up with ddH2O to 1 mL per well and mixed thoroughly. The protein
determination was performed in 96-well plates (flat bottom; Sarstedt, Nümbrecht, Germany) in
duplicate. BSA was used as standard for a calibration curve ranging from 50 to 300 µg/mL. A total of
20 µL of BSA standards or 20 µL sample (1:1 diluted in ddH2O) were mixed with 200 µL 1x Bradford
reagent (Carl Roth) per well. After 10–20 min of incubation at room temperature, absorption was
measured at 595 nm (Microplate Reader, Wallac Victor2 Perkin Elmer, Rodgau-Jügesheim, Germany).
A standard curve was plotted from absorbance of 0–300 µg of BSA and the concentration of each test
sample was determined using the standard curve.

4.6. Data Analysis

For the Km calculation of MPP, the transporter-mediated uptake (pmol/mg protein/min) was plotted
against MPP concentrations. The Km and Vmax values were obtained using SigmaPlot 13 by fitting the
Michaelis–Menten equation V = Vmax*[S]/(Km + [S]), where V refers to the rate of substrate transport,
Vmax refers to the maximum rate of substrate transport, [S] refers to the concentration of substrate,
and Km is defined as the concentration of substrate at the half-maximal transport rate. The inhibitory
effect I (%) was calculated according to the formula I(%) = 100 − (Vwith inhibitor*100/Vw/o inhibitor),
and, for the IC50 calculation of the inhibitor, the inhibitory effect I (%) was plotted against inhibitor
concentrations and fitted using a 3-parameter Hill equation with Imax set to 100 using SigmaPlot 13.
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