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Background. Cryptococcal meningitis remains a significant cause of death among human immunodeficiency virus type 1
(HIV)–infected persons in Africa. We aimed to better understand the pathogenesis and identify immune correlates of mortality,
particularly the role of monocyte activation.

Methods. A prospective cohort study was conducted in Cape Town, South Africa. Patients with a first episode of cryptococcal
meningitis were enrolled, and their immune responses were assessed in unstimulated and stimulated blood specimens, using flow
cytometry and cytokine analysis.

Results. Sixty participants were enrolled (median CD4+ T-cell count, 34 cells/µL). Mortality was 23% (14 of 60 participants) at
14 days and 39% (22 of 57) at 12 weeks. Nonsurvivors were more likely to have an altered consciousness and higher cerebrospinal
fluid fungal burden at presentation. Principal component analysis identified an immune signature associated with early mortality,
characterized by monocyte deactivation (reduced HLA-DR expression and tumor necrosis factor α response to lipopolysaccharide);
increased serum interleukin 6, CXCL10, and interleukin 10 levels; increased neutrophil counts; and decreased T-helper cell type 1
responses. This immune signature remained an independent predictor of early mortality after adjustment for consciousness level and
fungal burden and was associated with higher serum titers of cryptococcal glucuronoxylomannan.

Conclusions. Cryptococcal-related mortality is associated with monocyte deactivation and an antiinflammatory blood immune
signature, possibly due to Cryptococcus modulation of the host immune response. Validation in other cohorts is required.

Keywords. Cryptococcus neoformans; cryptococcal meningitis; HIV; mortality; monocytes; HLA-DR; TNF-alpha; IL-10; flow
cytometry; principal component analysis.

Cryptococcal meningitis, caused by the encapsulated yeast
Cryptococcus neoformans, is the commonest form of adult men-
ingitis in sub-Saharan Africa and remains a significant cause of
death among human immunodeficiency virus type 1 (HIV)–
infected individuals in this region [1–3]. Despite availability of
amphotericin B and antiretroviral therapy (ART), mortality re-
mains high, ranging between 17% and 32% at 14 days and be-
tween 34% and 59% at 12 weeks [4, 5]. Reduced consciousness

level, high fungal burden, and slower yeast clearance from the
cerebrospinal fluid (CSF) have been identified as independent
predictors for mortality [4].However, some patients with a nor-
mal consciousness level at the time of diagnosis may deteriorate
and die despite optimal treatment. Secondary infections such as
bacterial sepsis or tuberculosis can also contribute [4, 6].

The host immune response is central to the pathogenesis of
cryptococcosis. The vast majority of cryptococcal infections
occur among individuals with impaired cell-mediated immuni-
ty, and the marked susceptibility of persons with AIDS demon-
strates the importance of CD4+ T lymphocytes in protection [7].
However, low CD4+ T-cell counts have not consistently been
identified as a risk factor for mortality among persons with
AIDS-related cryptococcosis, nor has the number of circulating
Cryptococcus-specific CD4+ T lymphocytes [4, 8]. Animal mod-
els of cryptococcosis demonstrate the microbiological and sur-
vival benefits of a T-helper type 1 (Th1) response, characterized
by interferon γ (IFN-γ) production and classical macrophage
activation, along with the detrimental effects of a Th2 response,
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characterized by interleukin 4 (IL-4) and interleukin 13 (IL-13)
production with alternative macrophage activation [9–11].
Studies in humans have not demonstrated any association be-
tween a Th2 response and poor outcome but have observed a
significantly higher proportion of circulating cryptococcal-
specific CD4+ T cells that produce both IFN-γ and tumor necro-
sis factor α (TNF-α) in survivors [8]. This is consistent with
previous studies that have observed higher CSF concentrations
of such cytokines in survivors and significantly improved CSF
fungal clearance when adjunctive IFN-γ was given alongside
antifungal therapy [12, 13]. Despite their importance in the
murine immune response, the relationship between the activa-
tion state of macrophages and their blood precursor monocytes
with clinical outcome has not been studied in persons with
HIV-associated cryptococcosis. To address this, we examined
immune responses in blood, using ex vivo stimulation assays,
flow cytometry, and cytokine analysis. We hypothesized that a
less activated monocyte phenotype would be associated with
mortality.

METHODS

Study Design
A prospective cohort study was conducted between April 2012
and January 2014 at GF Jooste, Khayelitsha, and Mitchell’s
Plain Hospitals, Cape Town, South Africa. Consecutive patients
aged ≥18 years with a first episode of HIV-associated crypto-
coccal meningitis were enrolled within 48 hours of starting an-
tifungal therapy. At enrollment, CSF samples were collected and
quantitative culture performed to quantify fungal burden, as
previously described [14]. A peripheral blood specimen was ob-
tained to assess the immune response. Antifungal therapy com-
prised intravenous amphotericin B (1 mg/kg/day) and oral
fluconazole 800 mg/day for 14 days, followed by fluconazole
400 mg/day for a further 10 weeks and then maintenance flu-
conazole. Additional lumbar punctures with therapeutic CSF
drainage were performed at attending clinicians’ discretion to
control raised intracranial pressure. ART was initiated 4 weeks
after meningitis diagnosis according to national guidelines, un-
less patients were receiving it at enrollment [15]. The primary
end point was all-cause mortality at 14 days; the secondary end
point was mortality at 12 weeks. All participants provided writ-
ten informed consent; surrogate consent was sought from the
next of kin for patients with impaired consciousness. Ethical ap-
proval was obtained from the research ethics committees of the
University of Cape Town (reference numbers 408/2010 and
371/2013) and Liverpool School of Tropical Medicine (refer-
ence number 11.92).

Whole-Blood Flow Cytometry
Flow cytometry was performed on unstimulated blood speci-
mens from 56 participants. Fresh whole-blood specimens were
stained with commercially available conjugated monoclonal

antibodies to assess phenotype and activation of both T-cell
and monocyte subsets. Variables measured included the relative
frequency of circulating neutrophils, monocytes, CD4+ T cells,
CD8+ T cells, and CD4−CD8− T cells (recorded as the percent-
age of white blood cells [WBCs]); the proportion of CD16− neu-
trophils (recorded as the percentage of total neutrophils); the
proportion of classical (CD14++CD16−), intermediate (CD14++,
CD16+), and nonclassical (CD14+CD16++) monocytes; the ex-
pression of HLA-DR, CD38, and PD-1 on CD4+, CD8+, and
CD4−CD8− T cells; and the expression of HLA-DR, CD163,
PD-1, CCR2, CCR5, CD80, and Toll-like receptor 4 (TLR4)
on monocytes (determined for the whole population and for
the 3 monocyte subsets described above). Further details of the
antibodies used are given in the Supplementary Methods; the
gating strategy is illustrated in Figure 1A.

Antigen-Stimulation Assay
Fresh whole-blood specimens were stimulated for 6 and 24
hours at 37°C with lipopolysaccharide (LPS; a TLR4 agonist;
Invivogen, San Diego, California); the imidazoquinoline com-
pound R848 (a TLR7/8 agonist; Invivogen); Cryptococcus cap-
sule glucuronoxylomannan (GXM); heat-killed, mechanically
disrupted C. neoformansH99; or an equivalent volume of phos-
phate-buffered saline (unstimulated). Supernatants from whole-
blood specimens stimulated for 24 hours were removed and
stored at −80°C for later cytokine analysis (see below). Cytokine
production was assessed in whole-blood specimens stimulated
for 6 hours, using intracellular cytokine staining. Variables mea-
sured for each of the 4 stimulations included relative frequency
of neutrophils and monocytes (recorded as the percentage of
WBCs); neutrophil expression of CD66 (recorded as the mean
fluorescence intensity [MFI]) and CD16 (recorded as the per-
centage of cells); and expression of HLA-DR (recorded as the
MFI) and production of interleukin 6 (IL-6), interleukin 10
(IL-10), interleukin 12 (IL-12), and TNF-α by circulating
monocytes (recorded as the percentage of monocytes positive
for cytokine). HLA-DR expression was recorded as absolute
MFI value and relative expression compared to unstimulated.
Results from antigen-stimulation assays were available for 41–48
participants (depending on stimulation). Owing to autofluo-
rescence of the cryptococcal preparations, IL-12 and IL-10 ex-
pression could not be measured accurately for cryptococcal
stimulations. Further details regarding the preparation of GXM
and the antibodies and fluorochromes used are given in the Sup-
plementary Methods; the gating strategy is illustrated in Figure 1B.

Biomarker Analysis
The concentrations of 26 cytokines/chemokines were measured
in serum specimens and supernatant of blood specimens sub-
jected to antigen stimulation for 24 hours, using a Luminex
multiplex platform (Invitrogen; Carlsbad, California). These
comprised interleukin 1 receptor antagonist (IL-1RA), IL-1β,
interleukin 2 (IL-2), IL-2R, IL-4, interleukin 5 (IL-5), IL-6,
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interleukin 7, interleukin 8 (IL-8), IL-10, IL-12p40/p70, IL-13,

interleukin 15, interleukin 17 (IL-17), granulocyte colony–

stimulating factor, granulocyte-macrophage colony-stimulating

factor (GM-CSF), TNF-α, IFN-α, IFN-γ, vascular endothelium

growth factor, C-C motif chemokine ligand 2 (CCL2), CCL3,

CCL4, CCL5, C-X-C motif chemokine ligand 9 (CXCL9), and

CXCL10. Eight biomarkers were consistently undetectable in

unstimulated serum specimens and excluded from that analysis

(IL-2, IL-4, IL-5, IL-13, IL-17, GM-CSF, IFN-γ, and TNF-α); all

biomarkers were detectable in stimulated blood specimens. The

concentrations of 2 soluble markers of macrophage activation

(soluble CD163 [sCD163] and sCD14) were measured in unsti-

mulated serum, using an enzyme-linked immunosorbent assay

(R&D, Minneapolis, Minnesota). A semiquantitative measure-

ment of serum GXM titer was made by performing 2-fold serial

dilutions and testing each dilution with a cryptococcal antigen

lateral flow assay (Immy, Norman, Oklahoma). Routine hema-

tological and biochemical tests were performed by the National

Health Laboratory Service at Groote Schuur Hospital, Cape
Town. Biomarker concentrations below the detectable limit
for the assay were ascribed a value of 0. In stimulation assays,
the unstimulated value was subtracted from the stimulated to
the determine absolute change in biomarker level.

Data Analysis
Baseline characteristics were summarized using proportions or
median values with interquartile ranges (IQRs). Characteristics
between survivors and nonsurvivors were compared using the
Wilcoxon rank sum test, t test, or Fisher exact test, as appropri-
ate. Data from flow cytometry and biomarker analysis on unsti-
mulated and stimulated blood were combined and analyzed
using principal component analysis (PCA) and unsupervised
hierarchical cluster analysis as described elsewhere [16]. Before
PCA, skewed variables were log2 transformed and scaled, such
that the geometric mean equaled 0 and variance equaled 1. Var-
iables were filtered using statistical tests prior to incorporation
into PCA plots and cluster analysis, such that only variables

Figure 1. Flow cytometry gating strategy (representative plots). A, Circulating cell populations (unstimulated blood). a, Following exclusion of doublets and antibody aggre-
gates, cells were separated into neutrophils and nonneutrophils by physical characteristics. b, CD14+ monocytes removed from neutrophils population. c, CD16− (apoptotic)
neutrophils identified. d, nonneutrophils split into T cells (CD3+) and non–T cells (CD3−). e, Monocytes identified from non–T cells, using CD14+. f, CD19 used to exclude B cells
from monocyte population. g, Removal of CD14− and HLA-DR− cells from monocyte population. h, Monocytes split into classical (CD14++CD16−; red), intermediate (CD14+
+CD16+; blue), and nonclassical (CD14+CD16++; green) subtypes. i, CD4+, CD8+, and CD4−CD8− T cells identified. j, Histogram showing expression of HLA-DR on monocyte
subsets. k, Histogram showing expression of CD163 on monocyte subsets. FSC-A, forward scatter, area; SSC-A, side scatter, area. All axes apart from FSC-A, SSC-A, and the
percentage of maximum are log10 scale. B, Monocyte cytokine production (lipopolysaccharide-stimulated blood). a, Cellular debris from end of acquisition removed. b, Doublets
removed. c, Debris removed. d, Dump channel used to remove T cells, B cells, and neutrophils. e, Monocytes identified using CD14 and HLA-DR. f, Expression of interleukin 6 (IL-
6) and tumor necrosis factor α (TNF-α). g, Expression of interleukin 12 (IL-12) and interleukin 10 (IL-10). Positive gates in panels f and g are drawn using the unstimulated
sample. This figure is available in black and white in print and in color online.
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with a statistically significant association with the dependent
variable (14-day mortality) were used. Statistical significance
was defined as a P value of <.05 and a Q value of <.1 (equivalent
to a 10% false-discovery rate [FDR], using the Benjamini–
Hochberg procedure for multiple-testing correction [17]). For
initial PCA, missing values were imputed using the K nearest-
neighbors technique [18]; subsequent logistic regression analy-
sis was restricted to 37 participants who had all 205 baseline
variables measured. Analysis was performed using Stata,
version 12. (Stata, College Station, Texas), and Qlucore Omics
Explorer, version 3.0 (Qlucore, Lund, Sweden).

RESULTS

Participants
Sixty participants were enrolled, with a median age of 36 years
(IQR, 30–43 years) and median CD4+ T-cell count of 34 cells/
µL (IQR, 13–76 cells/µL); 17 (28%) were taking ART at enroll-
ment. Mortality was 23% at 2 weeks (14 of 60 patients) and 39%
at 12 weeks (22 of 57). Three participants were lost to follow-up
after hospital discharge. Of 14 deaths within 2 weeks, attribut-
able causes of death were cryptococcal meningitis (n = 10),
pulmonary cryptococcosis (n = 1), pneumonia (n = 1), and
multiorgan failure of unknown etiology (n = 2). Of 8 deaths
between 2 and 12 weeks, attributable causes of death were
cryptococcal meningitis (n = 1), cryptococcal-related immune
reconstitution inflammatory syndrome (n = 1), Klebsiella pneu-
moniae bacteremia (n = 1), ruptured iliac aneurysm (n = 1), and
unknown (n = 4). Blood cultures were performed at study en-
rollment for 46 participants (35 survivors and 11 nonsurvivors);
C. neoformans grew in 20 (43.5%). No episodes of bacteremia
were identified in any participant at enrollment, but 32 had re-
ceived ceftriaxone on hospital admission. Microbiologically
confirmed tuberculosis was diagnosed in 9 patients within 2
months of study enrollment. No study deaths were attributable
to tuberculosis.

Clinical and Laboratory Differences Between Subjects Who Died and
Those Who Survived
Persons who died by day 14 were significantly more likely than
survivors to have impaired consciousness at presentation (43%
vs 11%; P = .014). Nonsurvivors were also more likely to have
evidence of gaze palsy (29% vs 7%; P = .045), higher CSF quan-
titative culture (median, 5.5 log10 CFU/mL [IQR, 4.7–6.4 log10
CFU/mL] vs 4.5 log10 CFU/mL [IQR, 3.1–5.5 log10 CFU/mL];
P = .032), higher circulating WBC counts (median, 6.5×109

cells/L [IQR, 3.9×109–7.4×109 cells/L] vs 4.4×109 cells/L
[IQR, 2.8×109–5.8×109 cells/L]; P = .020), and higher serum
C-reactive protein levels (median, 85 mg/L [IQR, 46–115 mg/
L] vs 33 mg/L [IQR, 13–68 mg/L]; P = .011). There was no sig-
nificant difference observed in baseline CD4+ T-cell count, HIV
load, or ART status between survivors and nonsurvivors
(Table 1).

Differences in Blood Immune Response Between Subjects Who Died
and Those Who Survived
A clear difference in peripheral blood immune response was
noted between nonsurvivors and survivors. PCA showed dis-
tinct clustering of participants according to day 14 outcome,
with persons who died having significantly higher values for
principal component 1 (PC1; Figure 2A). Twenty-three vari-
ables contributed to PC1, and levels of all differed significantly
between survivors and nonsurvivors (P < .05 and Q < 0.1), re-
sulting in a distinct immune signature (Figure 2B and Table 2).
This was characterized by an increased proportion of circulating
neutrophils; higher serum concentrations of IL-6, IL-10, and
CXCL10; decreased expression of HLA-DR on circulating
monocytes (both resting and stimulated with LPS or R848); a
decreased proportion of monocytes producing TNF-α when
stimulated with LPS; and reduced concentrations of IL-12 and
IFN-γ when whole blood was stimulated with LPS or R848
(Table 2). Although HLA-DR ratios (stimulated/unstimulated)
were significantly higher in nonsurvivors, this was due to low
expression by unstimulated cells. Unsupervised hierarchical
clustering using the same 23 variables also demonstrated clear
grouping of participants by day 14 outcome (Figure 2C). A sim-
ilar immune signature was identified in participants who died
by week 12, but this was not significant when adjusted for mul-
tiple comparisons (data not shown).

Table 1. Differences in Baseline Characteristics Between Participants
Who Died and Survived by Day 14

Variable
Survived to Day 14

(n = 46)
Died by Day 14

(n = 14)
P

Valuea

Age, y 36 (30–43) 37 (27–45) .854

Male sex 25 (54) 8 (57) .999

CD4+ T-cell count, cells/µL 35 (12–85) 33 (13–45) .546

HIV load, log10 copies/mL 5.1 (4.4–5.41) 5.2 (4.7–5.7) .318

Receiving ART 14 (30) 3 (21) .737

Active tuberculosisb 7 (15) 2 (14) .999

Altered consciousness 5 (11) 6 (43) .014

Seizures 8 (17) 3 (21) .707

Gaze palsy 3 (7) 4 (29) .045

CSF culture, log10 CFU/mL 4.5 (3.1–5.5) 5.5 (4.7–6.4) .032

CSF OP at enrollment,
cm H2O

27 (19–36) 22 (14–41) .577

Maximum CSF OP, cm H2O 36 (27–47) 31 (16–49.5) .308

CSF WBC count, cells/µL 19.5 (3–106) 5.5 (1–45) .258

CSF protein level, g/L 1.04 (0.65–1.52) 0.69 (0.46–1.43) .311

CSF glucose level, mmol/L 2.1 (1.6–2.7) 3.0 (2.1–4.4) .015

Blood WBC count,
×109 cells/L

4.4 (2.83–5.79) 6.46 (3.86–7.36) .020

CRP level, mg/L 33 (13–68.3) 85 (46.5–115) .011

Data are medians with IQR, or numbers with percentages.

Abbreviations: ART, antiretroviral therapy; CFU, colony-forming units; CRP, C-reactive
protein; CSF, cerebrospinal fluid; IQR, interquartile range; OP, opening pressure; WBC,
white blood cell.
a By the Wilcoxon rank sum or Fisher exact tests, as appropriate.
b Defined as microbiologically confirmed tuberculosis ± 2 months of study enrollment
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Figure 2. Principal component analysis (PCA) and unsupervised hierarchical clustering illustrating differences in baseline immune response between subjects who died or
survived by day 14. A, PCA shows distribution of subjects according to baseline blood immune response. Study subjects are represented by dots, colored by outcome. The 3 axes
shown refer to the first 3 principal components; their contribution to the total sample variation is shown as a percentage. Subjects who died (blue) cluster together and are
largely separated from those who survived (yellow), owing to higher values for principal component 1 (PC1). B, Variables that contributed to PC1 and their respective weighting
(green bars, negative weighting; red bars, positive weighting). Stimulating agents or the ratio between stimulated and unstimulated (US) are listed in brackets. C, Heat map
illustrating unsupervised hierarchical clustering of participants (columns) according to the 23 variables contributing to PC1 (rows; green square, variable decreased; red square,
variable increased). Subjects clustered by day 14 outcome (blue, died; yellow, survived). Abbreviations: CD16+M, CD14++CD16+ intermediate monocytes; CD16−M, CD14+
+CD16− classical monocytes; CW, heat-killed, mechanically disrupted Cryptococcus; GXM, glucuronoxylomannan; HLA, HLA-DR expression (mean fluorescence intensity);
IFN-γ, interferon γ; IL-6, interleukin 6; IL-10, interleukin 10; IL-12, interleukin 12; LPS, lipopolysaccharide; M, monocytes; Neut, neutrophils; R8, R848 (TLR7/8 agonist);
TNF-α, tumor necrosis factor α; US, unstimulated.
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Predictive Ability of Blood Immune Signature
To further explore the association between this immune signa-
ture and poor outcome, the first principal component from the

analysis (PC1) was added as a summative variable to a logistic

regression model predicting death by day 14. Analysis was re-

stricted to 37 individuals for whom full immunological data

were available (28 survivors and 9 nonsurvivors). PC1 was

found to be significantly associated with day 14 mortality

both on univariate analysis and multivariate analysis adjusted

for GCS and CSF fungal burden (unadjusted odds ratio [OR],

1.9 [95% confidence interval {CI}, 1.2–3.1; P = .007]; adjusted

OR, 2.02 [95% CI, 1.2–3.4; P < .001]; Table 3). Adding PC1 to

a base model consisting of altered consciousness level and CSF

fungal burden resulted in significantly improved model fit (like-

lihood ratio test P = .0001). To ensure that these findings were

applicable to the rest of the cohort, PC1 was recalculated

without the 16 variables derived from whole-blood antigen-
stimulation assays (the main reason for missing data). The 7 re-
maining variables comprised HLA-DR expression on classical
monocytes, intermediate monocytes, and monocytes as a whole;
neutrophil frequency (percentage of WBCs); and serum con-
centrations of IL-6, IL-10, and CXCL10. Data were available
for 55 subjects in the cohort (42 survivors and 13 nonsurvi-
vors). Despite the removal of 16 variables, limited PC1 re-
mained significantly associated with day 14 mortality on both
univariate and multivariate analyses (unadjusted OR, 2.55
[95% CI, 1.4–4.5; P = .002]; adjusted OR, 2.89 [95% CI, 1.5–
5.8; P < .001]; Table 3). The addition of limited PC1 also signifi-
cantly improved the fit of the model, compared with BASE
model (likelihood ratio test P < .0001). In both the PC1 and
the limited PC1 model, adjusting the model for CD4+ T-cell
count, ART status, and amphotericin B status at enrollment

Table 2. Differences in Variables Contributing to Principal Component 1 (PC1) Between Subjects Who Died or Survived by Day 14

Variable Stimulation

Survived Died

P Valuea Qbn Median (IQR)c n Median (IQR)c

Cell frequencies, % of WBCs

Neutrophils None 46 67.5 (54.6–75.8) 14 76.8 (68.8–82.6) .006 0.088

Neutrophils GXM 31 54.2 (39.6–65.5) 11 70.8 (68.5–73.6) .003 0.058

Neutrophils CW 30 54.1 (44.9–70.8) 11 75.0 (65.1–88.7) .003 0.058

Monocytes GXM 31 4.86 (3.14–5.76) 11 2.98 (0.91–4.35) .006 0.093

Serum cytokines, pg/mL

IL-6 None 46 27 (13–57) 14 85 (18–170) .009 0.097

IL-10 None 46 5.6 (1.5–11.3) 14 16.3 (10.9–35.2) .001 0.030

CXCL10 None 46 76 (58–126) 14 127 (79–272) .009 0.097

Monocyte activationd

HLA-DR None 43 1373 (807–2073) 13 865 (367–995) .009 0.097

HLA-DR CD16− None 43 1113 (675–1591) 13 518 (351–896) .002 0.057

HLA-DR CD16+ None 43 6723 (5357–9860) 13 3491 (2623–6966) .003 0.058

HLA-DR R8 32 5880 (4027–8257) 13 3495 (1775–5694) .009 0.097

HLA-DR LPS 33 5648 (4356–7730) 13 3173 (2058–5881) .003 0.058

HLA-DR GXM 31 4360 (3754–6179) 11 2033 (1352–5254) .001 0.028

HLA-DR CW 30 3181 (2367–3974) 11 1115 (551–3470) .002 0.057

HLA-DR ratio R8/US 32 1.85 (1.50–2.25) 13 2.95 (2.47–4.51) <.001 <0.001

HLA-DR ratio LPS/US 33 1.75 (1.47–2.02) 13 3.59 (2.12–4.81) <.001 <0.001

HLA-DR ratio GXM/US 31 1.35 (1.16–1.56) 11 2.47 (1.64–3.34) <.001 <0.001

HLA-DR ratio CW/US 30 0.94 (0.67–1.16) 11 1.59 (1.19–2.21) .001 0.030

TNF positivity–% LPS 35 48 (37–58) 13 13 (10–41) .003 0.058

Whole-blood responses, pg/mLe

IFN-γ R848 33 85 (35–469) 13 43 (31–67) .011 0.099

IL-12 R848 33 7829 (4802–12571) 13 4168 (2951–9368) .010 0.099

IFN-γ LPS 33 32.3 (30.5–43.4) 13 30.5 (30.0–37.1) .009 0.097

IL-12 LPS 33 2783 (1953–3975) 13 2204 (1112–2867) .009 0.097

Abbreviations: CD16+, CD14++CD16+ (intermediate monocytes); CD16−, CD14++CD16−, classical monocytes; CW, heat-killed, mechanically disrupted C. neoformans H99; GXM,
glucuronoxylomannan; IFN-γ, interferon γ; IL-6, interleukin 6; IL-10, interleukin 10; IL-12, interleukin 12; LPS, lipopolysaccharide (Toll-like receptor 4 agonist); R8, R848 (Toll-like receptor 7/8
agonist); TNF, tumor necrosis factor; US, unstimulated; WBC, white blood cell.
a Calculated using independent t tests.
b Calculated using the Benjamini–Hochberg principal for multiple comparisons as previously described [18].
c Medians and interquartile ranges (IQRs) are displayed for clarity, but statistical testing was performed using parametric tests with log-transformed variables normalized to the geometric mean.
d Data are median fluorescence intensity, unless indicated.
e Data refer to absolute difference in relation to unstimulated sample.
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or excluding the 3 noncryptococcal deaths did not significantly
alter these findings (Supplementary Tables 1 and 2). Adding
PC1 or limited PC1 to the base model also resulted in increased
area under the curve on receiver operating characteristic curve
analysis, but this did not reach statistical significance (P = .107
and .074, respectively; Supplementary Figure 1).

Reasons for an Antiinflammatory Response in Nonsurvivors
We hypothesized that the immune phenotype observed in non-
survivors was a compensatory downregulation of cellular re-
sponses following a period of immune activation. Possible
causes of this immune activation included disseminated crypto-
coccal infection, HIV infection, or occult bacterial sepsis. To
explore the first 2 possibilities, associations between PC1 scores

and parameters approximating these factors were examined. A
statistically significant positive correlation was noted between
limited PC1 scores and serum GXM titers (Spearman r = 0.28;
P = .041; Figure 3A) but not with plasma HIV load (Spearman
rho = 0.08; P = .561). When the relationship between GXM and
individual components of limited PC1 were examined, a posi-
tive correlation was noted with the percentage of neutrophils in
blood (Spearman rho = 0.33; P = .010), serum CXCL10 concen-
trations (Spearman rho = 0.31; P = .015), and serum IL-10 con-
centrations (Spearman rho = 0.39; P = .002; Figure 3B).

DISCUSSION

In this prospective cohort study, we examined clinical and im-
mune correlates of fatal outcome in people with HIV-associated
cryptococcal meningitis. Similar to other cohorts, nonsurvivors
were significantly more likely to have a reduced consciousness
level at presentation, a higher CSF fungal burden, and increased
numbers of circulating blood leukocytes [8]. PCA and unsuper-
vised hierarchical clustering analysis demonstrated clear differ-
ences in the baseline blood immune response between subjects
who survived or died by day 14, with nonsurvivors having sig-
nificantly higher scores for PC1. A breakdown of the variables
contributing to PC1 revealed an immune signature associated
with mortality, characterized by a higher proportion of circulat-
ing neutrophils, increased levels of soluble markers of immune
activation (IL-6 and CXCL10), higher concentrations of antiin-
flammatory mediators (IL-10), reduced Th1 cytokine (IL-12
and IFN-γ) production in supernatant following incubation of
whole blood with TLR4 or TLR7/8 agonists, decreased HLA-DR
expression on circulating monocytes (both stimulated and un-
stimulated), and decreased monocyte production of TNF-α fol-
lowing LPS stimulation. This immune signature remained an
independent determinant of 14-day mortality even when

Table 3. Logistic Regression Models Illustrating the Association
Between Immune Signature (PC1) and Day 14 Mortality, Adjusting for
Altered Consciousness and Fungal Burden

Variable Adjusted OR (95% CI) P Value

Full PC1 model (n = 37)a

Altered consciousness 6.39 (.45–90) .152

CSF quantitative culture, log10 CFU/mL 2.09b (.65–6.7) .141

PC1 (full) 2.02b (1.19–3.43) <.001

Limited PC1 model (n = 55)c

Altered consciousness 20.6 (1.35–314) .012

CSF quantitative culture, log10 CFU/mL 2.37b (.89–6.3) .034

PC1 (limited) 2.89b (1.45–5.75) <.001

Abbreviations: CI, confidence interval; CFU, colony-forming units; CSF, cerebrospinal fluid;
GCS, Glasgow coma scale; OR, odds ratio; PC, principal component.
a Full PC1 calculated for 37 subjects, using 23 variables.
b OR expressed as per unit increase.
c Limited PC1 calculated for 55 subjects, using 7 variables: monocyte HLA-DR expression
(classical, intermediate, and entire population), proportion of neutrophils, and serum
concentrations of interleukin 6, interleukin 10, and CXCL10.

Figure 3. Relationship between cryptococcal antigen load and blood immune response. A, Scatterplot demonstrating positive correlation between glucuronoxylomannan
(GXM) titer and values for limited principal component 1 (PC1). B, Scatterplot demonstrating significant positive correlation between serum GXM titer and interleukin 10
concentration.

Monocyte Deactivation in Cryptococcosis • JID 2016:213 (1 June) • 1731

http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw007/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw007/-/DC1


adjusted for baseline fungal burden, consciousness level, CD4+

T-cell count, ART status, and amphotericin B status, and even if
noncryptococcal deaths were excluded.

The combination of decreased monocyte expression of
HLA-DR and reduced monocyte TNF-α response to LPS
has been referred to by some authors as “monocyte anergy”
[19–21]. It has previously been described in bacterial sepsis,
acute pancreatitis, and severe trauma, in which it is frequently
associated with a worse clinical outcome, such as increased fre-
quency of nosocomial infections and increased mortality
[19, 22–25]. Monocyte anergy is one component of a more
widespread downregulation of the immune response known
as the compensatory antiinflammatory response syndrome
(CARS), which typically occurs following a severe proin-
flammatory insult. Additional features of CARS include
increased lymphocyte apoptosis, cutaneous anergy, reduced
T-cell proliferation and proinflammatory cytokine (IL-2
and TNF-α) responses, and increased concentrations of IL-10
[21, 25–27]. Increased plasma IL-10 levels were noted among
nonsurvivors in our study and may explain the observed alter-
ations in ex vivo cellular immune responses. In vitro studies
have shown that IL-10 directly inhibits proinflammatory cyto-
kine production and antigen presentation by macrophages, re-
sulting in additional impairment of CD4+ T-cell production of
IFN-γ [28, 29]. Murine studies have also shown that signifi-
cantly impaired T-cell proliferation and decreased IFN-γ pro-
duction occur when monocyte anergy is induced through
preexposure to LPS, an IL-10–dependent phenomenon
known as endotoxin tolerance [30–32]. Although T-cell re-
sponses were not examined specifically in this study, subjects
who died by day 14 had decreased production of IL-12 and
IFN-γ when stimulated with TLR4 or TLR7/8 agonists in
whole-blood assays, suggesting a decreased ability to mount a
Th1 response. IFN-γ is widely recognized to be a central com-
ponent of the protective Th1 host response against C. neofor-
mans. Low CSF concentrations of IFN-γ and a blood CD4+

T-cell phenotype characterized by a lack of IFN-γ and TNF-α
production have been observed in HIV-infected individuals
who died from cryptococcal meningitis [8, 12]. Furthermore,
IFN-γ therapy has been shown to increase the rate of fungal
clearance when added to amphotericin B and flucytosine in a
clinical trial [13]. IL-12 is produced by monocytes, macrophag-
es, and dendritic cells and acts during antigen presentation to
promote IFN-γ production by natural killer and CD4 T cells
[30, 33–35]. The low levels of IL-12 production following
whole-blood stimulation along with decreased expression of
the major histocompatibility complex class II molecule HLA-
DR on deactivated (or “anergic”) monocytes observed in this
study suggest that impaired antigen presentation may be an ex-
planation for the impaired Th1 responses previously observed in
nonsurvivors. In addition to impairing anticryptococcal respons-
es, such an immune phenotype may also predispose to further

infections with bacterial pathogens, as observed in patients
with severe sepsis [27].

There are a number of possible explanations why a CARS-like
immune response was observed among HIV-infected individu-
als who died from cryptococcosis. The significant correlations
between serum titers of GXM (the major component of the
cryptococcal capsule), PC1, and serum IL-10 provide supportive
evidence that this immune phenotype may have been driven by
the cryptococcal organism and its antigens. This hypothesis is
further supported by in vitro studies showing that GXM provokes
a proinflammatory cytokine response in neutrophils (IL-1β, IL-6,
IL-8, and TNF-α) but leads to an antiinflammatory response in
monocytes (production of IL-10 and impaired antigen presen-
tation) [36–38]. Given the massive tissue burden of cryptococci
observed in HIV-associated cryptococcosis [39], it is plausible
that the immune phenotype observed among nonsurvivors in
this study was a direct effect of GXM, possibly mediated by
the actions of IL-10. This is supported by in vitro work demon-
strating that the addition of GXM to monocytes in cell culture
results in impaired antigen presentation and reduced T-cell
responses via an IL-10–dependent mechanism [38].

An alternative explanation is that the immune signature rep-
resents immune exhaustion due to persistent HIV-associated
immune activation, an increasingly recognized component of
HIV pathogenesis [40, 41]. IL-10 levels are known to increase
as HIV infection progresses, and high levels of serum IL-6
(along with C-reactive protein) have been repeatedly associated
with fatal outcome [42–45]. Possible mechanisms for this in-
clude translocation of bacterial products through the intestinal
wall [46, 47] or direct effects of HIV on the host immune re-
sponse, possibly through direct stimulation of monocytes by
HIV proteins [48]. However, there was no significant associa-
tion noted between PC1 and HIV load, and sCD14—a marker
of monocyte activation following stimulation with LPS and fre-
quently used as a surrogate marker of gut translocation [47]—
did not form part of the immune signature identified among
nonsurvivors.

Finally, the observed immune phenotype could conceivably
be due to coexistent but clinically unrecognized bacterial infec-
tion. Although no blood cultures performed at study enrollment
identified any bacterial pathogens, the widespread use of ceftri-
axone on admission to the hospital will have significantly re-
duced the sensitivity of this.

There are a number of limitations to this study. It was explor-
atory in nature with a relatively small sample size and thus was
underpowered for certain analyses. As the cohort was not split
into training and testing sets, the predictive ability of this im-
mune signature remains unvalidated. It is therefore important
to repeat these observations in independent cohorts to assess re-
producibility. The study also suffered from a degree of missing
data, as an ambitious number of immune assays were per-
formed, the majority of them in real time on fresh samples of
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peripheral blood. However, this did not appear to alter the final
results. The immune signature remained significantly associated
with 14-day mortality either when restricted to the 37 persons
with a full set of observations, when a limited signature was ap-
plied to 55 persons, or when an accepted method of imputing
missing data was used for the whole data set.

Despite these limitations, this study presents new insights re-
garding the systemic immune dysfunction associated with death
in HIV-associated cryptococcal meningitis. A clear immune
signature was identified at baseline in the blood of nonsurvivors,
characterized by increased inflammation, monocyte deactiva-
tion (or anergy), and downregulation of Th1 responses. This
immune signature remained an independent determinant of
mortality even after adjustment for other baseline factors.
Given the known immune modulating effects of GXM and
the strong association between serum GXM titer and IL-10 con-
centration observed in this cohort, it is plausible that this may
be a direct consequence of disseminated infection with C. neo-
formans. Further work is required to define the mechanism and
develop strategies to reverse the immune phenomenon.
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