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a b s t r a c t

Raman scattering is an inelastic phenomenon. Although its cross section is very small,

recent advances in electronics, lasers, optics, and nanotechnology have made Raman

spectroscopy suitable in many areas of application. The present article reviews the ap-

plications of Raman spectroscopy in food and drug analysis and inspection, including those

associated with nanomaterials. Brief overviews of basic Raman scattering theory, instru-

mentation, and statistical data analysis are also given. With the advent of Raman

enhancement mechanisms and the progress being made in metal nanomaterials and

nanoscale metal surfaces fabrications, surface enhanced Raman scattering spectroscopy

has become an extra sensitive method, which is applicable not only for analysis of foods

and drugs, but also for intracellular and intercellular imaging. A Raman spectrometer

coupled with a fiber optics probe has great potential in applications such as monitoring and

quality control in industrial food processing, food safety in agricultural plant production,

and convenient inspection of pharmaceutical products, even through different types of

packing. A challenge for the routine application of surface enhanced Raman scattering for

quantitative analysis is reproducibility. Success in this area can be approached with each

or a combination of the following methods: (1) fabrication of nanostructurally regular and

uniform substrates; (2) application of statistic data analysis; and (3) isotopic dilution.

Copyright ª 2014, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC.Open access under CC BY-NC-ND license. 
1. Introduction

Nanomaterials are engineered particles with the shortest

dimension<100 nm. These particles are characterized by very

large surface-to-mass or surface-to-volume ratios. They may

have different physical, chemical, and biological properties

compared to their larger bulk counterparts. As far as food

safety is concerned, ingredients that are generally recognized
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Nanotechnology has the potential to offer many applications

in the food industry, such as nutritional additives, stronger

flavorings and colorings, antibacterial ingredients for food

packaging, or improvement of food structure and texture.

Agricultural applications of nanomaterials include their use

as nano-feed for chickens, an alternative to chemical antibi-
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easy absorption by plants, and nano-vaccines, for addition to

trout ponds for ingestion by fish [2]. These can have positive

effects on food safety. By contrast, some features of nano-

materials may raise potential health and safety concerns. Due

to their small size, they have the potential to penetrate cell

membranes in the lining of the gut and to access all areas of

the body, including the brain and the nuclei of cells.

Nanomaterials are similar in size to many biological mol-

ecules and are useful for both biomedical research and ap-

plications. The integration of nanomaterials with biology has

led to the development of diagnostic devices, contrast agents,

analytical tools, physical therapy applications, and drug de-

livery vehicles [3]. Nanomedicine is the application of nano-

technology to medicine and includes the development and

application of nanomaterials and nanoelectronic biosensors

[4]. Nanomaterials have been used to deliver drugs to specific

cells, thereby reducing side effects of the drug, drug wastage,

and human suffering [5]. They help to improve drug

bioavailability at a specific place in the body, as well as the

pharmacological and therapeutic properties of drugs.

Vibrational spectroscopy, including both infrared (IR) and

Raman spectroscopy, measures the oscillations of atoms in

molecules. The observation of the vibrational transitions yields

information about the molecular vibrational energy levels,

which in turn are related tomolecular conformation, structure,

intermolecular interaction, and chemical bonding. In IR spec-

troscopy, samples are radiated with IR light (wavelength

2.2 mme1 mm) and the observation of IR absorption relies on

the change in the dipolemoment with themolecular vibration.

The Raman effect is an inelastic light-scattering phenomenon,

predicted in 1923 by Smekal [6] and discovered experimentally

in 1927 by Raman [7] and Raman and Krishnan [8]. It was

applied subsequently as a means of investigation into molec-

ular vibrations and rotations. The invention of the laser helped

tremendously to advance the instrumentation of the Raman

spectrometer. Applying the then newly developed pulsed ruby

laser [9] operating at 694.3 nm, two groups successfully recor-

ded the Raman spectra of carbon tetrachloride and benzene

[10,11] in 1962. However, the active use of this technique suf-

fered from experimental restrictions until 1969, when the laser

became a practical source of monochromatic electromagnetic

(EM) radiation for sample excitation and the dispersive laser

Raman spectrometer became commercially available.

The observation of the Raman scattering signal for a mole-

cule depends on a change of its polarizability during the

particular mode of vibration. Due to differences in selection

rules, a complete collection of vibrational spectroscopic data

generally would require the application of both IR and Raman

spectroscopies. Raman spectroscopy has a number of distinct

advantages over IR spectroscopy. Water has very intense IR

absorption bands, but is a weak Raman scatterer and thus

Raman spectra exhibit much less interference fromwater. This

provides Raman spectroscopy with an advantage over IR spec-

troscopy for investigatingaqueousbiological systems,making it

an important technique for biomedical research [12]. Raman

spectroscopy is also well known for its minimum requirement

for samplehandling andpreparation. In the collectionof Raman

spectraldata, the requiredsamplevolume isdeterminedonlyby

thediameterof the focused laserbeam,which isof theorder of a

micron. Materials that transmit in the IR range are very limited;
bycontrast, if EMradiation in thevisible range isused forRaman

scattering excitation, one can easily find materials suitable for

making curettes or sample cells for Raman analysis. Another

advantage is that a Raman spectrum covers the spectral range

between4000cm�1 andw100cm�1, dependingonhoweffective

the Rayleigh line filtering is. By contrast, the collection of an IR

spectrum over this frequency range relies on the use of both

mid- and far-IR spectrometers.

One major disadvantage with conventional Raman spec-

troscopy is the small scattering cross section of many mate-

rials. In biomedical applications, high quality Raman spectra

may require a high concentration (0.1e0.01 M) of a sample,

which significantly exceeds physiological values. At a high

concentration, aggregationof biomoleculesmayoccur, leading

to a change in structure. A method for increasing the sensi-

tivity of detection is resonance Raman (RR) spectroscopy. If the

Raman laser excitation frequency falls within the intense ab-

sorption of a chromophore in a sample, the Raman band in-

tensities of the chromophore would increase by three to five

orders of magnitude. RR spectra may provide information

about the secondary structure of proteins and polypeptides, as

well as elements of their tertiary structure. For complicated

supramolecular complexes, RR spectroscopy in the ultraviolet

(UV) region has provided selective excitation of individual

chromophores [13]. An obstacle to the application of Raman

spectroscopy is fluorescence arising from impurities, the

sample, or both. Some solutions to these problems have,

however, been developed as pointed out in later sections.

Raman spectroscopy is very useful in drug analysis due to

advantages such as ease of use, minimal sample handling, and

the significant differences in scattering strength between

packaging materials, tablet excipients, and active drug compo-

nents [14]. It can also be used to identify isomers and to deter-

mine energy difference between isomers. These advantages, in

combination with fiber optics and microscopes, have enabled

the use of Raman spectroscopy as a quality control tool in the

pharmaceutical industry [15]. In the past several decades,many

Raman phenomena such as coherent anti-Stokes Raman

(CARS), inverseRaman,RR, andsurface enhancedRaman (SERS)

have been discovered. Enormous progress in Raman instru-

mentation and its application has resulted from progress in

technology, such asUV lasers, dye lasers, solid state lasers, fiber

optics, optical filters, detectors, computers and software algo-

rithms. There are many excellent review articles and mono-

graphs dealing with the basic principles and applications of

Raman spectroscopy (see for examples [13,16e19]). In the pre-

sentwork,we review theapplicationsofRamanspectroscopy in

the detection of nanomaterials in food and drugs, including the

use of nanomaterials in the detection of food and drugs. A brief

review of the theory and mechanism of the Raman effect,

including RRand SERS, aswell as an overviewof current Raman

instrumentation, is also included.
2. Theory of Raman

2.1. Conventional Raman scattering

In Raman spectroscopy, the sample is irradiated with UV,

visible or near IR (NIR) EM radiation. Raman scattering is a

http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


Fig. 1 e Rayleigh scattering, conventional, resonance and hyper Raman scatterings involved in vibrational and electronic

energy levels. Note that different excitation frequencies are required to generate different Raman effects.
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two-photon process resulting from photon-molecule in-

teractions. A photon is incident at frequency no and another

photon is scattered at frequency ns. The frequency difference

between no and ns is related to the vibrational energy level

separation. According to classical theory, Raman activity ari-

ses from interactions of the electric field of the EM radiation of

frequency no with molecular species which possess a polar-

izability a. These interactions induce a temporary dipole

moment:

m ¼ aE0 cosð2pv0tÞ (1)

where Eo is the maximum electric field strength and t is time.

In molecular vibrations, the normal coordinate Q varies

periodically with the vibrational frequency nv and can be

expressed as:

Q ¼ Q0 cosð2pnvtÞ (2)

where Qo is the magnitude of the given normal vibration. It is

assumed that the vibration will cause an alternation in the

polarizability a according to:

a ¼ a0 þ ðda=dQÞ0Q (3)

where ao is the polarizability of themolecule in its equilibrium

position, and (da/dQ)o is the derivative of the polarizability

with respect to the normal vibration coordinate at the equi-

librium position. From Equations (1), (2) and (3), one has:

m ¼ a0E0 cosð2pn0tÞ þ 0:5ðda=dQÞ0 Q0 cos½2pðn0 � nnÞt�
þ 0:5ðda=dQÞ0 Q0 cos½2pðn0 þ nvÞt� (4)

The three terms in the right side of Equation (4) represent

the three different scattering frequencies no (Rayleigh), no-nv
(Stokes Raman), and noþnv (anti-Stokes Raman). These are

represented schematically on the energy level diagram shown

as Fig. 1.

Rayleigh scattering is an elastic scattering phenomenon

and there is no energy transfer between the excitation photon
and the molecules being analyzed. Stokes and anti-Stokes

transition arise from the ground and first excited vibrational

states, respectively. If the electronic transition frequency ne

from the ground electronic state to the first electronic excited

state is much higher than the EM radiation frequency no used

for the excitation of Raman scattering, and no is much higher

than the molecular vibration frequency nv, the Placzek theory

[20] finds Stokes I(St) and the anti-Stokes I(aSt) Raman scat-

tering intensities to be:

IðStÞwðno � nvÞ4ðda=dQÞ20 (5A)

IðStÞwðnoþnvÞ4ðda=dQÞ20 (5B)

Thus, the Raman scattering intensity is proportional to the

fourth power of the Raman excitation frequency. For the same

molecule, the relative intensity of a Raman-active vibration is

related to the square of the polarization derivative with

respect to the specific normal coordinate of that vibration;

different vibrational modes may have different intensities.

2.2. RR scattering

The phenomenon of resonance enhancement was predicted

theoretically by Kramers and Heisenberg [21] and Dirac [22] in

their dispersion equation, which describes the polarizability

tensor:

�
aij

�
mn

¼ 1
h

X
e

�ðMiÞmeðMkÞen
ne � n0 þ iGe

þ ðMiÞmeðMkÞen
ne þ nn þ iGe

�
(6)

where m and n denote the initial and final state of the mole-

cule, e is the excited state of themolecule, (Mi)me and (Mk)en are

the dipole moments of the electronic transition along the di-

rection i, k from state m to e and from e to n and iGe is a

dampening term. As the Raman excitation frequency no ap-

proaches the electronic transition frequency ne, the neeno

value in the denominator of Equation (6) becomes very small

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 2 ( 2 0 1 4 ) 2 9e4 832
and this very large term dominants the Raman scattering. The

Raman intensity of certain vibrational modes is thus

enhanced. This phenomenon is called RR scattering or the RR

effect. RR scattering in relation to the vibrational and elec-

tronic energy levels is depicted in Fig. 1.

The intensity of RR scattering is higher than that of the

normal Raman scattering by an order of three or more

magnitudes. Due to its high intensity, RR has found appli-

cations in the study of azo dyes [23], metal complexes

[24,25], biochemicals [26,27], nucleic acids [28], and other

molecules that exhibit electronic transitions which have

frequencies close to that of the Raman excitation frequency

no. Based on the above theory, the observation of RR spectra

depends on the choice of EM radiation frequency for exci-

tation. RR of colored compounds can be obtained with

excitation radiation in the visible range. The development of

tunable lasers and UV lasers with wavelengths as low as

200 nm, as well as improvements in photodetection, makes

the routine collection of RR spectra for many molecules

possible. There are two distinct mechanisms responsible for

RR intensities. The first one involves a single excited state

and the second one involves two electronic excited states.

The functioning of the mechanisms can sometimes be

determined by studying the frequency dependence of the

spectral intensities. As the former mechanism activates,

one may observe significant enhancement of overtone vi-

brations in the RR spectra. The frequencies of the funda-

mental vibrational modes observed in RR spectra depend

only on the molecular structure and chemical bonding in

the ground state; the intensities depend on the electronic

excited state. Thus, the collection of RR spectra can be

applied to study molecules in the electronic excited states

[29,30]. With the increase of sensitivity, RR spectra of the

anticancer drugs, Adriamycin and daunomycin, have been

observed in solutions as dilute as 10�4 M [31].
2.3. Surface enhanced Raman scattering

A relatively new Raman scattering phenomenon known as

surface enhanced Raman scattering was first observed by

Fleischmann et al [32] at a silver electrode surface in 1974.

Quantitative studies by two groups, Jeanmaire and Van

Duyne [33] and Albrecht and Creighton [34] in 1977 provided

evidence that the observations were due to the enhancement

of the scattering cross section of molecules adsorbed onto the

silver electrodes. The magnitude of enhancement could

reach an order of four to six. It is commonly recognized that

the phenomenon of SERS is a combination of several effects.

The Raman cross section depends on the dipole moment, m,

of the molecule induced by the interaction of the electric

component, E, of the excitation radiation with the molecule.

There is an additional contribution to the induced dipole

from an electric field gradient, E0, via the quadrupole polar-

izability, A, of the molecule. This relationship is given by the

equation:

m ¼ aEþAE0=3 (7)

where a is the polarizability of molecule. There are several

different types of widely used SERS active surfaces. The first
type is the surfaces of noble metal electrodes roughened by

electrochemical oxidation and reduction cycles. The second

type is the surface of colloidal metal nanoparticles (NPs). The

third type of surface is formed by depositing a metal film onto

a substrate by either high vacuum vaporization or chemical

reduction methods. Particles on the surfaces are small and

close together on a 10e100 nm scale (see [35] for additional

types of substrate). One important feature of the surface is

that it can concentrate the EM field due to the incident light

into a region of the surface. This can be done as a result of a

resonant response of the roughened or particle covered sur-

faces to the EM field.

Both EM and chemical mechanisms have been put forth to

explain SERS. EM mechanisms are long range in nature and

may apply to all molecules within a sample. Besides the pro-

duction of intense EM fields and possibly high field gradients

on metal surfaces, it is also recognized that the molecule-

surface interaction, including charge transfer [36], may in-

crease the polarizability, a, and the quadruple polarizability,

A, giving an additional increase of scattering intensity ac-

cording to Equation (7). Chemical mechanisms are necessarily

short range, because a direct contact between the metal sur-

face and the adsorbate is required. Measuring the enhance-

ment factor as a function of adsorbate-metal surface distance

may provide information to distinguish between the two

mechanisms. Based on our understanding of the enhance-

mentmechanism, experimental conditions can be adjusted to

obtain stronger SERS signals. To maximize the enhancement,

one needs to tune the excitation laser frequency into reso-

nance with the adsorption of the metal particles favoring the

EM mechanism, whereas the absorption frequency of the

molecule-metal complex favors the chemical mechanism.

When both absorptions are in the same spectral region, a

double resonancewill produce very intense scattering signals.

Another approach is to combine EM enhancement with the RR

effect. The overall enhancement of these two effects is mul-

tiplicative and called surface enhanced RR scattering (SERRS).
3. Instrumentation

Raman instrumentation has significantly advanced since its

early development and use in specialized academic setting in

the 1960s. Today, photo-multiplier tubes have been replaced

with charge coupled device (CCD) detectors and other solid

state devices. Triple monochromators have been replaced

with single gratings or interferometers with highly efficient

Rayleigh line filters. Current state of the art micro-Raman

spectrometers can produce chemical functionality based

maps with spatial resolution of the order of 500 nm. Data

analysis has also taken full advantage of the capabilities of

modern computers and algorithms. In the following sections

we present a brief overview of these major developments.

3.1. Fourier transform-Raman

Fourier transform (FT)-Raman spectrometers, which use near

IR excitation sources, were first commercially available in

1987 [37]. With its ease of operation, Raman spectroscopy

became a common feature in many industrial laboratories.

http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


Fig. 3 e Schematic layout of a typical dispersive

micro-Raman spectrometer. CCD [ charge coupled device;

DG [ diffraction grating; DM [ dove mirror; L [ laser;

M [ monochromator; MS [ microscope; O [ objective

lens; OF [ optical filters; S [ sample; SL [ slits.
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The use of 1064 nm excitation from Nd:YAG (Neodymium

doped yttrium aluminum garnet) lasers reduced the fluores-

cence issues that plagued Raman analysis of samples con-

taining biological materials such as proteins [38]. Other

advantages include high spectral resolution and good wave-

length accuracy. A schematic representation of a typical in-

strument is shown in Fig. 2. The beam from the laser (L) is

generally focused onto the sample (S) using 180� backscatter

geometry. A traditional 90� sampling geometry can often also

be obtained. The scattered radiation is collected through the

lens (O) and passed through the Michelson interferometer

(MI). The output of the interferometer is focused on the face of

either a liquid nitrogen cooled Ge or room temperature InGaAs

detector (D). Prior to the Raman-scattered light reaching the

detector, it must be optically filtered (RF) to remove the Ray-

leigh line. FT-Raman instruments can be fitted with fiber optic

probes (see section on fiber optic probes) as well as coupled to

optical microscopes to enhance their versatility.
3.2. Dispersive micro-Raman

Dispersive micro-Raman spectroscopy is carried out using

systems that couple optical microscopes with conventional

Raman spectrometers. The incorporation of a microscope

with an x-y stage enables specific regions of a sample to be

analyzed. Magnifications of �20, �50, and �100 are common,

with the laser spot size being determined by the laser wave-

length and numerical aperture (NA) of the objective. Using

514 nm excitation through a �50 objective with an NA of 0.75,

a theoretical spot diameter of 0.84 mm can be calculated.

Excitation wavelengths range from the UV through to the NIR.

Typical wavelengths include 457 nm, 488 nm, and 514 nm

from an argon Ion laser, 633 nm from a HeNe laser, and

785 nm and 830 nm from diode lasers. The use of these latter

wavelengths addresses the issues of fluorescence, which

usually has to be burnt out of biomaterial samples with

extended laser exposure when visible excitation is used. This

is, however, rapidly achieved with minimal to no sample

damage with the concentrated power densities of these

instruments.

A schematic representation of a typical instrument is

shown in Fig. 3. Unlike early dispersive Raman instruments
Fig. 2 e Schematic layout of a typical Fourier transform

(FT)-Raman spectrometer. D [ detector; L [ laser;

MI [ Michelson interferometer; O [ objective lens;

RF [ Rayleigh filter; S [ sample.
which used 90� sampling optics, micro-Raman instruments

extensively use 180� backscatter geometry with the laser (L)

focused through the microscope (MS) onto the sample (S) and

the Raman-scattered light is collected by the samemicroscope

objective (O). The scattered radiation is passed through optical

filters (OF) such as edge or notch filters to remove the Rayleigh

line prior to being directed through slits (SL) and into the

monochromator (M). A typical monochromator, as illustrated

in Fig. 3, is comprised of a single diffraction grating (DG) and a

dove mirror (DM). Finally the Raman scattered radiation is

focused onto the elements of a CCD camera.

Confocal Raman spectroscopy refers to the ability to

spatially filter the analysis volume of the sample from which

the data is being collected in the x-y (lateral) and z (depth)

axis. The confocal effect can be accomplished by using either

a pinhole, or by a combination of the slits in one direction and

the CCD pixel dimensions (binning) in the other. The depth of

field as determined by the NA of the objective sets the depth

resolution into the sample, thus enabling depth profiling ex-

periments to be carried out. Typically, the depth increment is

of the order of 1e0.5 mm. The depth into a sample from which

data can be obtained can be limited to the nm level for sam-

ples that are opaque to the excitation wavelength.

Through the smart usage of the CCD detector arrays and

modified laser optics, both line and area confocal mapping

strategies have been developed [39]. Data files containing

1000s of spectra can be converted into maps depicting varia-

tions in chemical functionality with spatial resolutions of the

order of 500 nm. These maps can be based on band intensities

or band intensity ratios, as well as peak maximum positions

and usually involve some degree of pre-processing of the data

(see section on data analysis).

As an example of spectral mapping, we show in Fig. 4 the

results obtained from the surface of a tablet containing 500mg

paracetamol and 8 mg codeine. A fixed spectral window from

1765 cm�1 to 460 cm�1 was collected from a 57 mm � 42 mm

area with a spatial resolution of 1.2 mm. The total collection

time for the 1656 spectra comprising the map was <20 mi-

nutes. The map (Fig. 4) is based on the intensity ratio of two

sharp bands observed at 797 cm�1 and 857 cm�1, one of the

http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


Fig. 4 e Raman map obtained from the surface of a tablet

containing 500 mg paracetamol and 8 mg codeine.
Fig. 5 e Three different types of fiber optic probes: (A) fiber

bundle probe, (B) double-fiber probe, and (C) single fiber

probe. The lower images represent the cross-sectional

view. The shaded fiber represents the excitation fiber in (A)

and (B).
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few spectral features that were found to vary in the data set.

No evidence of codeine was detected in the mapped region,

suggesting that the 8 mg are either highly dispersed, or pre-

sent as larger particles of which none were present within the

area analyzed.

3.3. Fiber optic probes

Optical fibers can be used to transmit light from one place to

another based on the principle of total internal reflection. The

major function of the optical fiber in the Raman spectrometer

is to transmit the excitation laser light, Raman scattering light,

or both. In 1980, three different groups reported the use of

optical fibers or optical fiber bundles to collect the scattering

signals from samples at different angles [40], to illuminate flat

or unstable samples for RR scattering [41], and to transmit

CARS signals generated in a remote flame to a spectrometer

[42]. In these devices, the optical fibers were used along with

dispersive Raman spectrometers. Subsequent applications

reported the use of fibers for both excitation and collection

[43,44]. Schematic representations of three different fiber

optic probes based on the use of different fibers for sample

excitation and scattering collection are shown in Fig. 5.

In probe (A), a single fiber at the center of the bundle is used

to transmit excitation laser light, whereas the surrounding

fibers are used for collecting the scattered light. More than one

circle of surrounding fibers may be used to increase the

collection efficiency. The advantage of this probe design

compared to others is the high collection efficiency for the

scattering light which may be needed when conventional

Raman scattering experiments are being carried out. Probe (B)

is composed of a single excitation fiber and a single collection

fiber. They can be configured in different angles and different

positions. In a series of experiments linking the fibers to a

Raman spectrometer to evaluate the efficiency of the probe

system, Hendra et al [45] obtainedmaximum signals when the

excitation fiber was normal to the sample surface and the

collection fiber was at an angle of 17�. Counts were further

optimized when the collection fiber was 2 mm closer to the

sample than the excitation fiber. This type of probe was uti-

lized in SERS studies of biological molecules on silver
electrochemical substrates [46e48]. Also using this type of

probe, along with a substrate consisting of silver alumina

layers on microscope slides, Bello and Vo-Dinh [49] optimized

the conditions for the SERS fiber sensor and obtained a limit of

detection (LOD) of 0.4 ng for p-aminobenzoic acid. The pene-

trability of a laser beam through a substrate allows for the

positioning of the excitation and collection fibers not only on

the same side, but also on opposite sides of a substrate,

making the application of this probe for SERS measurements

rather versatile [50]. In this type of optical system, the laser

beam, transmitted through a band pass filter, is focused by an

appropriate lens into the end of the excitation fiber. If the f

number of the fiber is different from that of the spectrometer,

the input scattering signals from the collection fibermust also

be focused into the spectrometer with lenses.

One major advantage with fiber optic probes is their easy

access for monitoring of samples in harsh environments or

remote locations. Some fiber optic sensors have been built

with long fibers, enabling the analysis of samples as far as

20 m from the analytical spectroscopy laboratory [51]. How-

ever, Raman background may arise from the fiber optic ma-

terial itself used in the light transmission. Ma and Li [52,53]

studied the Raman background in relation to the fiber NA, the

spatial arrangement, and the tilted angle of the fiber end.With

the use of band pass filters, Angel et al [54] measured the

spectra of aspirin tablets at a distance of 50 m from the

spectrometer.

The third type of probe relies on a single fiber for the

transmission of both the laser excitation beam and the Raman

scattered light (see Fig. 5C). This probe appears to be simpler

than the other types of probe, but requires the use of optical

components to couple the laser beam into the single collection

fiber. As shown in Fig. 6, the holographic beam splitter reflects

the laser into objective lens 1, which focuses the laser beam

onto the end of optical fiber 1. The Raman scattering signal

returns from the probe tip and emerges from the optical fiber,

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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Fig. 6 e Optical guiding system for a single fiber probe.
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where it is collected and collimated by lens 1, transmitted

through the beam-splitter, and focused by lens 2 onto the

optical fiber 2. A holographic notch filter is used to reject the

Rayleigh scattering radiation transmitted by the beam splitter;

fiber 2 is designated to transmit the Raman signal to the

spectrometer. It is feasible to use the single fiber probe to

monitor samples in remote locations and in hazardous envi-

ronments. Additionally, this probe can be converted into a

fiber optic nanosensor by using nanofibers [55,56]. For SERS

detection, a tapered optical fiber has been coatedwith 6 nmAg

NPs in a high vacuum electron beam evaporator, to obtain

probe tips with diameters <100 nm.

3.4. Data analysis

The digital nature of the data collected by modern Raman

spectrometers allows for a wide range of data processing al-

gorithms to be applied [57]. The use of spectral subtraction,

which can be used to isolate the features of specific compo-

nents in non-interacting mixtures, was first demonstrated in

1986 [37]. The smoothing and differentiation algorithm

currently used for discrete data sets was developed by

Savitzky and Golay in 1964 [58]. Successive subsets of adjacent

data points are fit with a low-degree polynomial using linear

least squares. When the data points are equally spaced, an

analytical solution to the least squares equations can be

found, in the form of a single set of convolution coefficients

that can be applied to all data subsets, to give estimates of the

smoothed or derivatized signal. High frequency noise can also

be removed from spectra by Fourier filtering. In this approach,

spectra are first Fourier transformed into the time domain and

then specific frequencies are either attenuated or amplified by

the application of a filter. The modified output is obtained by

inverse transformation. The use of second derivative trans-

formation enhances separation of overlapping band compo-

nents, and removes baseline shifts, making spectral

comparisons much easier. Overlapping features can be

resolved through spectral deconvolution and band fitting
techniques [59]. The number of peaks and their approximate

positions are first identified from the minima observed in

second derivative spectra. The spectral region of interest is

then modeled using a corresponding series of initial band

shapes. The peak maximum frequency, peak height, width,

and shape (Gaussian, Lorentzian, or mixed) are then allowed

to vary until a best fit is obtained.

With large data sets, a statistical approach to data analysis

can be undertaken. Quantitative regression analysis is no

longer limited to the association between a dependent vari-

able and a single independent variable. The use of full spectra

or specifically selected regions is now commonly carried out

using multi-variant approaches, such as principal component

regression (PCR) [60] and partial least squares (PLS) regression

[61]. The applications of these techniques are generally pre-

ceded by the pre-processing of the data sets. Common

methods applied include taking second derivatives and

normalization based on either total area or peak intensity.

PCR is a regression analysis that uses principal component

analysis (PCA) when estimating the regression coefficients.

PCA uses an orthogonal transformation to decompose the

spectral data set into a set of linearly uncorrelated variables or

principal components (PCs) and a set of scale factors or scores.

The size of the new data set is usually significantly smaller

than the original one. The PCs are often called factors or

loadings. The factors are defined in such a way that the first

one represents the largest possible amount of variance within

the data set. Subsequent factors account for less and less of

the variance. The original spectra can generally be recon-

structed by summing a minimal number of these factors after

they have been scaled by the scores. In PCR, instead of

regressing the spectral intensities (dependent variables) on

the Raman shifts (independent variables) directly, the PCs or

factors of the independent variables are used instead. PLS is

another spectral decomposition technique that is closely

related to PCR. In PLS, the sample concentration information

is used during the decomposition process, resulting in the

spectra containing higher constituent concentrations to be

weighted more heavily. The factors and scores calculated

using a PLS approach are different from those determined by

PCR. In both PLS and PCR, care must be taken to prevent

overfitting the data by using too many factors, as the ability of

the model to predict new data will likely be compromised.

Qualitative information can be extracted from sets of

spectra using unsupervised and supervised pattern recogni-

tion methods. Unsupervised methods, often referred to as

cluster analysis, seek to find natural groupings of objects

allowing the presence of any patterns to be identified. No

classification knowledge is required and no assumptions of

such are made. Applications include model fitting, hypothesis

testing, data exploration, and data reduction. One of the most

commonly used approaches is hierarchical clustering, which

is based on the correlation coefficient matrix. The results are

shown graphically as dendrograms [57]. Similarity measures

such as Mahalanobis and nearest-neighbor distances [62] are

often found to be less limiting, as they take into account

nonlinear relationships and the absolute magnitude of vari-

ates. Cluster analysis can also be carried out using the PCs

determined through PCA. By plotting the scores for the various

factors against each other in two or three dimensional space, a

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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scatter plot is obtained. The points comprising this plot can be

grouped or clustered based on the distances between them. It

is often found that the chemical differences between samples

which serve as the basis of the observed separations can be

obtained through detailed spectroscopic interpretation of the

factors. In a more recently developed approach, fuzzy cluster

analysis, objects are assigned a membership function indi-

cating their degree of belonging to a particular group or set

[63].

In supervised pattern recognition, often referred to as

classification or discriminant analysis, the number of parent

groups is known in advance and representative samples of

each group are available. The problem is then to assign an

unclassified object to one of the parent groups using an

appropriate function or set of rules. Soft independent

modeling for class analogies (SIMCA) [64] is such a method for

supervised classification of data. The method requires a

training data set consisting of spectra obtained from samples

with a set of attributes and their class membership. The term

soft refers to the fact that the classifier can identify samples as

belonging to multiple classes and not necessarily producing a

classification of samples into non-overlapping classes. The

samples belonging to each training set class are analyzed

using PCA, with only the significant PCs retained. The result-

ingmodel for a given class is described by a line (one PC), plane

(two PCs), or hyperplane (more than two PCs). For each

modeled class, the mean orthogonal distance of the training

set spectra from the line, plane, or hyperplane is used to

determine a critical distance for classification. Unknown

spectra are projected into each PC model and the residual

distances calculated. A spectrum is assigned to the model

class when its residual distance from the model is below the

critical distance for the class. For data sets where the distri-

bution is unknown, or known not to be normal, the K-nearest

neighbors algorithm is one of the most widely used for clas-

sification [65]. In recent years, considerable use has also been

made of artificial neural networks [66].
4. Literature review

4.1. Raman spectra of food nanomaterials

4.1.1. Previous reviews
There has recently been a significant number of reviews

published covering the determination of nanomaterials in

food. These are very broad, covering many scientific tech-

niques andmethods and thus Raman spectroscopy appears as

a minor element. Tiede and co-authors [67] described the

detection and characterization of engineered NPs in food and

in the environment, whereas Duncan [68] reviewed applica-

tions of nanotechnology in food packaging and food safety,

with a focus on materials, antimicrobials, and sensors. Luykx

et al [69] reviewed analytical methods for the identification

and characterization of nano delivery systems in food. Dei-

singh and Thompson [70] reviewed the use of biosensors for

the detection of bacteria. Lin [71] presented an overview of

traditional and novel detection techniques for melamine and

its analogues in foods and animal feed. He also reviewed [72]

the SERS detection of various peptides and veterinary drugs,
of which some may be related to food safety. Zamborini et al

[73] described recent advances in the use of NPs in measure-

ment science.

A number of reviews have also appeared focusing on

Raman spectroscopy as applied to food and food safety, but

not specifically on nanomaterials. Yang and Ying [74] recently

reviewed the applications of Raman spectroscopy in agri-

cultureal products and food analysis. Craig et al [75] provided

an outlook on work done and a perspective on the future di-

rections of surface-enhanced Raman spectroscopy applied to

food safety. In a recent review on determining nanomaterials

in food, Blasco and Pico [76] divided nano applications in food

and the food industry into four areas: processing, products,

materials, and food safety and biosecurity. The first two areas

represent nanoproducts as subjects of control, whereas in the

second two areas, nanodevices are used as tools for control.

Raman spectroscopy has been applied to both of these areas

as illustrated in some of the examples presented below.

4.1.2. Nanomaterial contamination of food
In their study into the uptake, translocation, and transmission

of carbon nanomaterial in rice plants, Lin and co-workers [77]

used FT-Raman spectroscopy to confirm that aggregates

observed optically in second generation plant leaf cells were

composed of C70 fullerenes and their derivatives. Carbon

nanomaterial, including fullerenes as well as multi-walled

carbon nanotubes (CNTs), was suspended in natural organic

matter (NOM) solutions and used to treat newly harvested and

sterilized rice seeds. The detection of the Raman signature of

the hydrophobic carbon nanomaterial aggregates in the plant

material demonstrated how its mobility was enhanced by the

NOM, enabling dynamic uptake, integration, and trans-

mission to progeny through seeds.

In another study carried out by He et al [78], fractal-like

gold nanostructures were developed for use as SERS sub-

strates, with the target being the detection of crystal violet,

malachite green, and their mixture, all common prohibited

contaminants found in imported seafood. The fractal struc-

tures were fabricated through a self-assembly process using

30e50 nm gold NPs formed by the hydrothermal citrate-

reduction method [79,80] as building blocks. Particle aggre-

gation was induced by the addition of a small quantity of

cetyltrimethylammonium bromide. Spectra were processed

using the multivariate approach including second derivative

transformation and PCA analysis. An enhancement factor of

the order of 4 � 107 was achieved and the lowest detectable

concentration was w0.2 ppb.

In a study on the uptake of nanoscale metal oxides by fish,

Johnston et al [81] used CARS to detect the presence of ionic

titanium in the gut of rainbow trout that were exposed

through diet. CARS is a third-order nonlinear optical process

involving three laser beams: a pump beam, a Stokes beam,

and a probe beam. The three beams interact with the sample

and generate a coherent anti-Stokes signal. This signal is

resonantly enhanced when the frequency difference between

the pump and the Stokes beams coincides with the frequency

of a Raman resonance, thus providing an intrinsic vibrational

contrast mechanism [82]. CARS can be used as a three-

dimensional imaging technique that can provide chemical

information from biological structures at depths up to several

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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Fig. 8 e Classification of pesticides using the first two

principal components (PCs). Note. From “Detection of

pesticides in fruits by surface-enhanced Raman

spectroscopy coupled with gold nanostructures.,” by B. Liu,

P. Zhou, X. Liu, et al, 2013, Food Process Tech, 6, p. 710e8.

Copyright 2012, Springer Science and Business Media.

Reprinted with permission.
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100 mm. CARS spectrometers are custom built as it is consid-

ered a specialty technique. Metal oxides have strong CARS

signals due to the two phonon electronic resonance of the

semiconductor band gap. The technique was used to localize

TiO2 aggregates as large as 3 mm on the surfaces of the gill

epithelium and the primary and secondary lamellae. The

CARS image of TiO2 NPs on a section of the lamellae is shown

in Fig. 7.

4.1.3. Pesticides and fungicides in food
Liu and co-workers [83] developed a SERS-based method to

detect three different pesticides extracted from the surfaces of

apples and tomatoes. Small volumes (0.3e0.5 mL) of filtered

acetonitrile/water (1:1) fruit skin extracts were dropped onto

commercially available gold-based nanostructures fabricated

on a silicon wafer. SERS spectra were recorded using 785 nm

diode laser excitation through the �50 objective of a micro-

Raman spectrometer. Using multivariate statistical methods

including PLS and PCA, both quantitative and qualitative

analysis of the data was carried out. The detection limits were

found to vary with the specific fruit, but in general were as

follows: Carbaryl w5 ppm, phosmet w6 ppm, and azinphos-

methyl w3 ppm. The classification of the pesticides using

the first two PCs is shown in Fig. 8.

Conventional Raman spectroscopy has also been used to

study the antifungal activity of zinc oxide NPs against Botrytis

cinerea and Penicillium expansum [84]. These fungal pathogens

are the main causes of economic loss during the postharvest

handling of fruit. In Raman spectra obtained from ZnO NP-

treated B. cinerea the intensities of nucleic acid and carbohy-

drate bands increased significantly, whereas no intensity
Fig. 7 e Coherent anti-Stokes Raman (CARS) image of TiO2

nanoparticles on a section of the primary lamellae (main

panel) and three-dimensional projection showing a

nanoaggregate on the secondary lamellae (inset). NP with

arrow [ TiO2 nanoparticles; PC [ pillar cell; PL [ primary

lamellae; PV [ pavement cell (epithelium); SL [ secondary

lamellae. Note. From “Bioavailability of nanoscale metal

oxides TiO2, CeO2, and ZnO to fish,” by B.D. Johnston, T.M.

Scown, J. Moger, et al, 2010, Environ Sci Technol, 44, p.

1141e51. Copyright 2010, American Chemical Society.

Reprinted with permission.
changes were observed for bands associated with proteins

and lipids. These findings were verified by the results of PCA-

based cluster analysis. The increase in nucleic acid content

may be a stress response, whereas the increase in carbohy-

drates may be a self-protecting mechanism against the ZnO

NPs.

Müller et al [85] investigated the use of SERS to detect and

monitor the chemical fungicide thiabendazole (TBZ) which is

used in the food industry against mold and blight on citrus

fruit and bananas. Using a compact, portable mini-Raman

spectrometer, they reported the first complete vibrational

characterization of TBZ over a large pH and concentration

range. The estimated total amount of TZB in a 5 g citrus peel

sample was found to be 78 mg/kg, 13 times higher than the

maximum allowed by current regulations.

Saute and Narayanan [86,87] developed gold nanorods and

Saute et al [88] developed dogbone shaped gold NPs for use in

SERS detection of fungicides at ultra-low levels in solutions.

Nanorods (Fig. 9) with an aspect ratio of 2.19 and a length of

38 nm were used in the detection of the dithiocarbamate

fungicides thiram, ferbam, and ziram in acetonitrile-water

solutions. A PLS approach was taken for development of

quantitation, whereas PCA was used for discrimination. For

thiram, the LODwas 11.0 nM and the limit of quantitationwas

34.4 nM. The Environmental Protection Agent (EPA) tolerance

for this material is 16.6 mM. When small (43 nm average size)

dogbone shaped NPs [86] were used, the LOD was 44 nM. This

was reduced to 12 nM when larger (65 nm) dogbone shaped

NPs were used. In an extension of this work, the dogbone

shaped NPs were used to detect the dithiocarbamate fungi-

cides in real-world matrices including tap water, apple juice,

and vegetable juice [87]. The LODs and limits of quantitation

for thiram decreased from that in tap water by factors of w3

and w6 for apple and vegetable juice, respectively. These

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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Fig. 9 e Transmission electron microscope (TEM) micrograph and size distribution of gold nanorods. Note. From “Gold

nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of

dithiocarbamate pesticides,” by B. Saute, R. Premasiri, L. Ziegler, et al, 2012, Analyst, 137, p. 5082e7. Copyright 2012, The

Royal Society of Chemistry. Reprinted with permission.
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levels were still well below the EPA tolerance, demonstrating

that SERS is an excellent technique for detection of these

fungicides at ultra-low concentrations, even in complex

solutions.

4.1.4. Bacteria in food
Jarvis and Goodacre [89] published an early tutorial review

reporting on the advances made in bacterial studies through

the application of SERS. This included the characterization,

discrimination, and identification of microorganisms, as well

as assessing how they respond to abiotic and biotic stress. It

was concluded that SERS is a very beneficial technique for the

rapid analysis of bacteria where the ultimate goal can poten-

tially be achieved without the need for a lengthy cell culture.

Fan and co-workers [90] used SERS coupled with silver

nanosubstrates to develop a sensitive method to rapidly

detect food and waterborne bacteria. Escherichia coli O157:H7,

Staphylococcus epidermidis, Listeria monocytogenes, and Entero-

coccus faecalis, all pathogens important to food and water

safety, were used in this study. The bacteria were deposited

with intercellular silver by sequentially exposing the cells to

solutions of silver nitrate and sodium borohydride. SERS

spectra were collected from two or three drops of the treated

bacteria placed on a gold plate. Single cell detection level could

be reached and PCA could be used to classify mixtures of

bacteria at both species and strain levels. The same research

group also investigated the SERS detection of seven different

food and waterborne viruses in phosphate buffered saline

(PBS) [90]. It was found that the solutions had to be diluted

with deionized water to minimize the interference from the

PBS. SIMCA was able to classify w95% of the virus samples

with and without envelopes, whereas PCA could classify and

identify different virus samples at the strain level.

The quantitative SERS detection of Bacillus bacterial spores

using a portable Raman spectrometer was reported by Cow-

cher et al [91]. The method developed was based on the
extraction of the biomarker dipicolinic acid from spore sus-

pensions. Citrate-reduced silver colloid was prepared using

the Lee and Meisel method [92] and used as the SERS active

agent. Raman spectra were collected using a spectrometer

equipped with a 633 nm, 3 mW HeNe laser and related to

actual spore counts using univariate and multivariate

methods. The lowest detection limit of 100 spores/20 mL of

sample for complex sample extracts obtained using a PLS

approach is higher than desirable. The limitation was deter-

mined to lie in the extraction method.

SERS has been collected from intracellular and extracel-

lular bacteria locations [93]. SERS spectra obtained from the

bacterium Geobacter sulfurreducens measuring no more than

0.5 mm� 1.5 mmwas facilitated by the precipitation of colloidal

gold within the cells. Scattering was also collected from the

same organism after reduction of ionic silver, which resulted

in colloidal silver deposition on the cell surface. Although

conventional Raman detected only two unassigned bands at

1032 cm�1 and 1069 cm�1, the SERS spectra exhibited over 10

well defined bands between 1400 cm�1 and 200 cm�1. These

bands have been assigned to protein, phospholipids, RNA/

DNA, and polysaccharides.

Conventional Raman spectroscopy has been used in a

number of studies involving nanomaterials in the food supply.

Nicolaou et al [94] investigated its use as well as that of FT-IR

spectroscopy to study the spoilage trajectory ofmilk caused by

the bacteria S. aureus and Lactococcus lactis ssp. cremoris. Milk

inoculated with each bacteria as well as a mixture of both was

incubated at 37 �C for 24 hours. Samples taken over the growth

period were deposited on stainless steel plates and allowed to

dry at room temperature over 3 hours. Raman spectra were

obtained using 785 nm excitation in order to minimize fluo-

rescence. Data was collected from seven different viruses

processed using PLS and PCA-discriminant function analysis

(PCA-DFA) approaches. Although the IR approach provided

very reasonable quantification results for viable bacteria

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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counts (R2 values ranging from 0.64 to 0.76 depending upon

the bacteria), the Raman results were found to exhibit a high

degree of error and poor correlation. Spoilage trajectory

analysis using PCA-DFA produced similar trends with both IR

and Ramandata sets, but the Raman results exhibited a lack of

precision in comparison. Bacterial quantitation by PLS using

the Raman data was also not satisfactory. It is possible that a

SERS approach to this problem would have produced better

correlations.

4.2. Raman spectra of pharmaceutical materials and
nanomaterials

4.2.1. Previous reviews
There have recently been a number of broadly focused re-

views published in this area. An exhaustive review by Wil-

liams [95] has included the pharmaceutical applications of

Raman spectroscopy in the period 1978e1999. In a short re-

view paper, Pinzaru and coworkers [96] highlighted different

Raman techniques applied in pharmaceutical investigations.

They have also presented several Raman applications in

pharmaceutical science, such as fundamental structural in-

vestigations, quantitative analysis, drug-excipient interac-

tion, drug formulation, LOD, pH-dependent pharmaceutical

species, adsorption geometry at a given surface, and func-

tional groups involved in adsorption for several widely used

pharmaceutical compounds. Pinzaru and Pavel [97], in a re-

view, have presented SERS data of pharmaceutical com-

pounds from the widely used anatomical therapeutic

chemical classification such as antipyretics, analgesics, anti-

malarial drugs, antibiotics, antiseptics, and other classes such

as anticarcinogenic and antimutagenic drugs. West and Halas

[98] reviewed the ever expanding array of nanostructured

materials with unique and powerful optical properties. These

included the use of quantum dots for fluorescent biological

labels and silver plasmon resonance particles for bioassay

applications. Yao et al [99] wrote a featured article covering

new horizons for sensing, imaging, and medicine using

graphene-based nanomaterials. Lee and his coworkers [100]

reviewed the recent work on the applications of the conjuga-

tion of nanomaterials and aptamers for biosensing and di-

agnostics using fluorescence, colorimetry, magnetic

resonance, electrochemical detection, and SERS. In the

following sections we focus on Raman specific applications to

pharmaceutical materials.

4.2.2. Drugs and drug tablet quality control
Some pharmaceutical compounds give very good Raman

spectra even in diluted conditions. Commercial drugs are

often used in very low doses and are formulated in an inert

matrix or excipient to make them into a tablet form, or to

modify the release rate into the patient’s system. Raman im-

aging of tablets can provide information about the distribution

and relative amounts of active agent, additives, and binders

present (see Fig. 4). The spectrum of the pure pharmaceutical

agent can be obtained by subtracting the matrix spectrum

from that of the commercial drug. Useful spectra may some-

times be obtained without subtraction when the pharma-

ceuticals are strong Raman scatters and the fillers are weak

Raman scatters [101,102]. As pharmaceuticals can be analyzed
directly inside their polymer packaging, the application of

Raman spectroscopy for quality control of manufacturing and

formulation results in significant time and cost savings. Eli-

asson and Matousek [103] have demonstrated the use of

spatially offset Raman spectroscopy (SORS) in the identifica-

tion of counterfeit pharmaceutical tablets and capsules

through different types of packaging. This technique offers a

higher sensitivity than that of conventional backscatter

Raman spectroscopy and enables chemical information to be

obtained from different depthswithin the sample. Davies et al

[104] studied a number of polymeric biomaterials and drug

delivery systems. With good quality spectra, drugs such as

promethazine, diclofenac, theophylline, and indomethacin

can bemonitored down to the 5% (w/w) concentration level in

inert polymer matrices such as sodium alginate.

SERS is known for its high sensitivity in garnering molec-

ular signals for chemical identification. By applyingmetal NPs

in SERS drug analysis, Cunningham and coworkers [105]

designed an optical device to identify and measure the drug

contents of the fluid in an intravenous line in real time. To

observe the SERS signals of the drugs, they incorporated into

the tubing a nanostructured gold surface containing millions

of tiny “nano-domes” separated from each other by 10 nm.

Preliminary results obtained for drugs including morphine,

methadone, phenobarbital, promethazine, and mitoxantrone

found that concentrations 100 times lower than those usually

delivered could be detected. The system has also proved its

capability for the fast analysis of two-drug combination so-

lutions, thus improving the patient’s safety during

intravenous drug administration. It is expected that the sys-

tem will also be useful in urinary catheters, in hospital care,

and in pharmaceutical manufacturing.

Raman spectroscopy has been applied to the analysis of

Chinese medicines. Feng et al [106] dealt with the methodol-

ogy for detecting components in Chinese decoctions by SERS,

but no spectrum of specific medicine components were given

in the report. Huang et al [107] reported Raman and SERS

spectra of the traditional Chinese medicine “Atractylodis

macrocephalae rhizome” pieces (AMRP). Very intense SERS

bands were observed due to the strong interaction of the

AMRP with the silver colloid. It was suggested that the SERS

technique has a great potential for quick, effective, accurate,

and non-destructive analysis of Chinese medicine without

complicated sample extraction and separation. For thera-

peutic significance, Huang et al [108] collected confocal micro-

Raman spectra of chick embryo vasculature with and without

the antiangiogenic drug thalidomide. The results showed

relative Raman intensity variations for some characteristic

peaks. PCA was used to distinguish these two kinds of

vasculature, showing the effectiveness of the Raman method

in detecting the mechanism of vascular changes.

4.2.3. Antibiotics
Antibiotics are common drugs used to treat human infections.

They are also effective in treating various bacterial deceases in

animal husbandry and aquaculture. Antibiotic residues in

food products are a cause of great concern due to the possible

development of antibacterial resistance to the drugs. Conse-

quently, the detection and quantification of antibiotic by SERS

should be considered in both food and drug applications. He
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Fig. 11 e Schematic of sandwich immunoassays. Note.

From “Magnetic-field-assisted rapid ultrasensitive

immunoassays using Fe3O4/ZnO/Au nanorices as Raman

probes,” by X. Hong, X Chu. P. Zou, et al, 2010, Biosens

Bioelectron, 26, p. 918e22. Copyright 2010, Elsevier.

Reprinted with permission.
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et al [109] reported the SERS analyses of three restricted an-

tibiotics, enrofloxacin, ciprofloxacin, and chloramphenicol, by

using silver nanosubstrates prepared from the replacement

reaction of AgNO3 with zinc metal. The silver dendrites

formed in this way could be stored for 6 months without loss

of SERS activity. In thiswork, NIR laser excitation (785 nm)was

used, but as aqueous suspensions of the dendritic silver

absorbed broadly from 400 nm to 800 nm, there should be a

wide choice of laser excitation possible for the SERS mea-

surements. Based on the experimental SERS data, a linear

relationship was obtained from a log-log plot of sample con-

centration and SERS intensity. The LOD for the antibiotics

reached the ppb level (see Fig. 10).

4.2.4. Antitumor drugs
To study the interaction of antitumor drugs with DNA,

microfluorescence, X-ray diffraction, and IR spectroscopic

methods are generally used. Microfluorescence is applicable

only when the drugs have high fluorescence quantum yields

[110,111]. X-ray diffraction and IR spectroscopy provide

structural information on DNA-antitumor complexes in vitro,

but the collection and analysis of X-ray data takes a long time

[112] and the selectivity and sensitivity of IR spectroscopy are

low [113]. Because of the high sensitivity of SERS, it may pro-

vide useful pharmacological information from antitumor

drugs at the single cell level. Sequaris et al [114] first reported

the SERS spectra of complexes of some antitumor Pt-

coordinate compounds with DNA. In this study, they corre-

lated the antitumor activity of these complexes with their

ability to intercalate inside the DNA double helix.

Two groups measured SERS spectra of some other anti-

tumor drugs and their DNA complexes in vitro [115e117].

Nabiev and coworkers [118] reported SERS spectra of the

antitumor drugs, Doxorubicin, 40-O-tetrahydropyranyl-dox-

arubicin, and aclacinomycin A, and their complexeswith DNA
Fig. 10 e Surface enhanced Raman scattering (SERS) spectra

of a series of concentrations of ciprofloxacin (20e200 ppm).

Note. From [109]. Copyright 2009, John Wiley & Sons, Ltd.

Printed with permission.
in aqueous solutions collected with non-activated and acti-

vated silver hydrosols. The strong quenching of fluorescence

and the high sensitivity of SERS make it possible to measure

the drugs at concentrations down to 10�10 M and to detect the

drugs in living cells. The analysis of the SERS spectra of anti-

tumor drugs and their complexes with DNA on different silver

hydrosols has provided a way for constructing structural

models which correlate well with the result obtained from X-

ray diffraction.

SERS is a useful and sensitive technique for quantitative

analysis. Further enhancementswould be achieved if analytes

can provide molecular resonance in addition to surface

enhancement. For this reason, SERRS should provide ultra-

high sensitivity for quantitative analysis. Based on the

mechanism of surface enhancement and the theory of RR,

Smith et al [119] pointed out several approaches for obtaining

high sensitivity in Raman spectroscopic analysis: (1) choice of

wavelength for excitation; (2) types of assay for scattering

signal accumulation and average; (3) choice of substrates for

effective and reproducible enhancement; and (4) choice of

analytes for strong adherence onto the substrate surface. The

anticancer drug, mitoxantrone, is a good example in fitting

these conditions. SERRS analysis of mitoxantrone in serum

and plasma was conducted by McLaughlin and coworkers

[120] by using a flow cell and silver colloid as a substrate.

Without prior sample manipulation, the LOD could reach

10�10 M or 0.06 ng/mL and the analysis time was 2 minutes

compared with 4 hours by high-performance liquid chroma-

tography (HPLC). Results from the SERRS analysis of a series of

samples taken from patients at different times agreed well

with those obtained by HPLC.

4.2.5. Drugs of abuse
In the analysis of drugs of abuse, Sulk et al [121] detected

amphetamine andmethamphetamine by the use of SERS. The

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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amines were derivatized using coupling agents. The LOD was

found to be w18 ppm. To rapidly identify illicit drugs, Sag-

muller et al [122] used a matrix-stabilized silver halide as a

substrate to obtain SERS and Raman spectra of amphetamine

and its derivatives at mM levels in methanolic solutions.

Faulds et al [123] carried out the SERS detection of amphet-

amine sulfate using colloidal sols, depositing films of both

silver and gold. It was found that a drug concentration from

10�5 M to 10�6 M could be semi-quantitatively detected with

the use of an Au colloid. Employing a fractional factorial

design, Mabbott et al [124] recently developed a new optimi-

zation of parameters for the SERS quantitative detection of

mephedrone using a portable Raman system. The LOD was

estimated to be 1.6 mg/mL (or 9.06 � 10�6 M), which is well

below that of conventional Raman and is extremely low for

fast in-field determination. The quantitation measurement of

morphine in Ag sols by SERS was reported by Feng et al [125].

The LOD was determined to be 1.5 ng/mL.

Immunoassays are routinely used in a wide range of clin-

ical tests including the detection of recombinant human

growth hormones by sports anti-doping laboratories. Hong
Fig. 12 e Single walled carbon nanotubes (SWNTs) with

different Raman colors. (A) schematic SWNTs with three

different isotope compositions (C13-SWNT, C12/C13-

SWNT, C12-SWNT) conjugated with different targeting

ligands. (B) Solution phase Raman spectra of the three

SWNT conjugates under 785 nm laser excitation. Different

G-band peak positions were observed. At the same SWNT

concentration, the peak height of C12-SWNT (Hipco) was

approximately two times higher than that of C13-SWNT

and approximately four times higher than that of C12/C13-

SWNT. For mixtures used in biological experiments,

concentrations of the three SWNTs were adjusted to give

similar G-band peak intensities of the three colors, as

shown in this figure. Note. From “Multiplexed multicolor

Raman imaging of live cells with isotopically modified

single walled carbon nanotubes,” by Z. Liu, X. Li, S.M.

Tabakman, et al, 2008, J Am Chem Soc, 130, p. 13540e1.

Copyright 2008, American Chemical Society. Reprinted

with permission.
and co-workers [126] developed magnetic-field assisted rapid

ultrasensitive immunoassays using Fe3O4/ZnO/Au nanorices

as Raman probes. The incorporation of ZnO into the probes

enables advantage to be taken of the RR effect. The scheme

developed for the assay, which involves three strategies, is

shown in Fig. 11. In general, Fe3O4/ZnO/Au nanorices (blue

ovals) were synthesized in a stepwise growthmethod starting

with Fe3O4 seed particles. The nanorices were coated with

goat anti-human immunoglobulin G (IgG) shown as Ys. Sub-

strates were prepared by coating cleaned silicon with the

oxide layer removed with a layer of Au by thermal evapora-

tion. The substrate was also then labeled by treatments with

the goat anti-human IgG. Remaining binding sites on both the

nanorices and substrates were blocked with bovine serum

albumin. Sandwich structures were formed between the

labeled substrates and nanorices by their exposure to a solu-

tion of the human IgG analyte (>). RR spectrawere obtained at

room temperature using a confocal Raman microscope with

325 nm excitation from a He-Cd laser. The lower LOD of the

assay was enhanced by several orders of magnitude (to 2 fM)

and the detection time was reduced from 1 hour to 3 minutes

when an external magnetic field was utilized to concentrate

the analyte/probe complexes (strategy III).

4.2.6. Isotope dilution SERS
To overcome the shortcoming of reproducibility in SERS

analysis, a method using the addition of a certain amount of

an isotope-labeled analog of the target analyte to the original

sample as an internal standard has been developed [127e130].

In this method, the quantification of the analyte can be

determined from the Raman band intensity ratio of the un-

knownwith the added isotopic analog. The uncertainty of this

method is <3%. Recently, Zakel et al [131] measured the con-

centration of creatinine in two human serum samples by

isotope dilution SERS and obtained results in excellent

agreement with those reported by participating national

metrology institutes using mass spectrometry. This has led to

the approval of this method as a higher order of reference

measurement procedure for clinical measurements in inter-

national comparison schemes.

4.2.7. Cell imaging
Raman cell imaging is useful in obtaining information about

real molecular interactions, conformational dynamics, and

intracellular pharmacokinetics. The weak Raman scattering

of living cells makes spectrometer optimization a necessity.

For recording full Raman spectra, Raman imaging requires

long measurement times, but as noted in the section on

dispersive micro-Raman, map data sets covering a 1300 cm�1

wide spectral region can now be rapidly collected. Resonant

excitation can give much better intensity in contrast to non-

resonant excitation, if the molecules being studied are stable

enough to stand the high powered laser excitation. Otherwise,

cell damage will make the RR measurements undesirable

[132]. Other shortcomings of Raman micro-spectroscopy

include the possible photo-bleaching and fluorescence of the

sample. These issues have largely been solved (see the section

on dispersive micro-Raman) in modern instruments, howev-

er, the quenching of fluorescence and increasing of the Raman

cross section in SERS would allow for a decrease in applied

http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


Fig. 13 e From left to right within each row: bright and dark-field images (203 magnification) and accompanying Raman

spectra of chronic lymphocytic leukemia (CLL) cells stained with anti-CD19 and nanoparticle conjugates. (A) CLL cells

stained with Giemsa and labeled with anti-CD19-SERS nanoparticles; (B) CLL cells stained with Giemsa and incubated with

anti-CD4 antibody-SERS conjugates; and (C) CLL cells stained with Giemsa and incubated with control SERS nanoparticles

(unconjugated particles). The Giemsa stain produces the dark features in the column of images on the left, Rayleigh

scattering produces the bright features in the column of images in themiddle, and Raman scattering produces the signals in

the spectra in right hand column. Note. From “Detection of chronic lymphocytic leukemia cell surface markers using surface

enhanced Raman scattering gold nanoparticles,” by Z. Nguyen, X. Li, S.M. Tabakman et al, 2010, Cancer Lett, 292, p. 91e7.

Copyright 2009, Elsevier. Reprinted with permission.
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excitation laser power by more than an order of magnitude,

avoiding the sample heating and photo-bleaching problems.

SERS can be applied to overcome the low efficiency of normal

Raman scattering under experimental conditions suitable for

living cells. To activate the Raman scattering enhancement

from a living cell, Kneipp and coworkers [133] deposited Au

colloidal particles inside cells and obtained information about

the native chemical constituents inside a cell and their

intracellular distribution. In a book chapter, Kneipp [134]

presented the use of nanosensors to obtain the Raman sig-

natures from the cellular components in the immediate sur-

roundings of the Au nanostructures. A review on the use of

SERS nanosensors for the in vivo probing of intracellular bio-

chemicals was published in 2008 [135]. Applying SERS micro-

spectroscopy with a silver hydrosol, Nabiev and coworkers

[118] studied the structure of doxorubicin complexes and their

distribution in living K562 cancer cell. SERS spectra of

Doxorubicin and other biomolecules adsorbed on silver island

films were also observed [136].

Raman micro-spectroscopy can provide a noninvasive

method to image cells and cellular processes [137]. The
application of this technique has recently been extended to

study intracellular drug delivery using nano-carried systems

[138,139]. Raman imaging has high multiplicity because of the

narrow Raman spectral bands. It is powerful in visualizing the

molecular composition of subcellular compartments without

the need for labeling. An optimized Raman micro-

spectrometer has been developed for the noninvasive evalu-

ation of tumors in live mice that were treated intravenously

with either single walled carbon nanotubes (SWNTs) or

arginine-glycine-aspartic acid peptide modified SWNTs [140].

Raman’s ability to noninvasively localize targeted SWNTs in

tumor models could provide the foundation for future studies

with other Raman targeted NPs. Raman images enabled CNT

localization as well as evaluation of the tumor targeting, thus

supporting the development of a new preclinical Raman

imager. The isotopically modified SWNTs shown in Fig. 12

have been used for multiplexed multicolored Raman imag-

ing of living cells [141]. Fiber optic nanoprobes based on SERS

have very high sensitivity. Near-field SERS has been used for

measuring single dye molecules and dye-labeled DNA with a

resolution on the 100 nm scale [142,143]. Lee and his

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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coworkers [100] recorded SERS spectra from aptamer-

nanomaterial conjugates. They have shown that these bio-

nanomaterials can be used not only as highly sensitive and

selective diagnostic agents, but also as targeted drug delivery

agents.

SERS relies on the use of effective substrates and the

adsorption of sample chemicals onto or near the substrate

surfaces. There are several different methods for getting the

metal NP into cells for SERS imaging. The first method is the

natural uptake of NPs by living cells conducted by incubating

the cells in the medium containing the colloidal metal. This

method is rather commonly used [144]. One disadvantage

with this procedure is the long time it takes to complete. The

second method is based on electroporation, in which a pulse

potential is applied [145]. During the electroporation process,

keeping cells at low temperature around 0e4�C is necessary.

This procedure allows for quick acquisition of SERS data. It

was noticed that the SERS spectra collected from whole-cells

using this method of NP delivery were more reproducible

than those obtained when the passive uptake method was

used. The third method is the formation of intracellular NPs

by reduction of metal ions. This method is particularly useful

when the small size (0.5 mm � 1 mm) of bacterial cells makes it

difficult to introduce NPs into this tiny environment. This

method is applicable only when the species can reduce metal

ions to zero valence metal NPs. By using this method, Jarvis

et al [93] observed SERS spectra of the bacterium Geobacter by

colloidal Au formed within the cell. However, the use of silver

ion resulted in colloidal Ag depositions on the cell surface. The

use of fiber optic nanoprobe may be regarded as the fourth

method of getting NPs into cells. With the coating of NPs onto

the tiny nanoprobe tip, the insertion of the probe into the cell

would carry theNPs in the cell. Fluorescence imaging has been

obtained with this method; it should also be applicable to

Raman imaging.

The functionalization of noble metal NPs makes it feasible

to target markers for the collection of SERS spectra at the

molecular level. The obtained spectroscopic information may

serve as the basis for detection. As an example, Nguyen et al

[146] functionalized Au NPs for selective SERS detection of a

hematologic malignancy, chronic lymphocytic leukemia

(CLL). The functional NPs are composed of an Au core, which

is covered with malachite green isothiocyanate dye through

electrostatic interaction and further with thio-polyethylene

glycol (HS-PEG) conjugated covalently to human anti-CD19

antibodies. The NPs would selectively target and image CLL

cells isolated from the blood samples of patients. Experi-

mentally, CLL cells were incubated with three different NPs:

(1) functionalized (dye and PEG) CD19 conjugated NPs; (2)

functionalized (dye and PEG) CD4 conjugated NPs; (3) non-

binding negative control NPs without antibody attach. The

bright and dark-field images and accompanying Raman

spectra collected for the cells incubated under three different

conditions are shown in Fig. 13. Results indicate that Au NPs

functionalized with anti-CD19 antibody selectively targeted

the specific markers.

The use of Raman spectroscopy has been extended to

visualize deep tissue in live animals. A combined magnetic

resonance imaging (MRI) and SERS imaging nanoprobe was

developed and demonstrated in vivo [147]. The nanoprobes are
gold NPs complexed with dextran-coated superparamagnetic

iron oxide NPs. Dextran-coated iron oxide NPs are known for

their value as preclinical and clinical MRI contrast agents. The

gold, which is non-toxic and has potential therapeutic value,

also serves as the substrate for a Raman active dye molecule

to generate a SERS effect. The probe was injected into the

gluteal muscle of a live mouse and imaged by placing it

directly on the Raman spectroscopy platform. The results

demonstrated a clear SERS signal both in vivo and ex vivo.

These results were also consistent with those obtained in

silico.
5. Outlook

In their paper on analytical methods for assessing NP toxicity,

Marquis and co-workers [148] stated that analytical chemists

are particularly suited to address the analytical challenges in

nanotoxicity because they are accustomed to developing new

technology, pushing forwards lower LOD, and navigating

complex samples. SERS from noble metal NPs has the poten-

tial to allow dynamic assessment of adsorbed species in vitro

or in vivo but more work is required in developing efficient

photon collection methods. The ability to dynamically

monitor NP degradation to determine if components are un-

intentionally leaching into the biological environment will

become increasingly important. The portability and cost of

detection systems will become important issues as the de-

mand for NP monitoring increases.

Yamamoto et al [149] developed an analytical system in

combination of capillary electrophoresis (CE) for a high effi-

ciency separation with a Raman microscope for sensitive

detection. This system was used to separate different sizes of

SWNTs with CE and to characterize individual SWNTs with

Raman spectroscopy. To increase the sensitivity, the CE

droplets were concentrated by evaporating the liquid solvent.

In this study, Raman spectroscopy could distinguish between

SWNTs with a diameter difference of 0.02 nm. It is expected

that this technique can be applied to the separation and

characterization of other nanomaterials, such as b-amyloids

and quantum dots. Such a coupling of two analytical tech-

niques may also apply to food and drug analysis. HPLC has

been commonly used for the analysis of drugs. Raman spec-

troscopies, such as confocal micro-Raman and SERS, could

turn out to be useful for the detection and analysis of some

drugs. Compared to conventional HPLC detection which

largely relies on retention time, Raman detection can be either

tuned to a frequency for the identification of a specific drug, or

used to collect the entire vibrational spectrum for additional

structural information. The “nano-domes” substrate used in

intravenous lines [99] is an example of a handy detection

system applicable in this development.

Cellar imaging based on Raman scattering is powerful in

visualizing the molecular composition of subcellular com-

partments without the need for labeling [137]. Fiber optic

nanosensors are useful in measuring intracellular/intercel-

lular physiological and biological parameters in

sub-microenvironments [137]. With a combination of the

nano-probe technology and SERS-based detection, it will be

possible to engage in multiplexed analysis of multiple

http://dx.doi.org/10.1016/j.jfda.2014.01.003
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biomarkers. In fiber optics nanosensing, the probe is physi-

cally inserted into cells using micromanipulators; there is no

concern regarding rates of NP uptake and rejection, opening

up a new applications in molecular biology, medical di-

agnostics, and possibly drug carrier development in the

future. Multiplexed detection of oligonucleotide targets with

labeled Au NP probes was conducted by Wei and coworkers

[150]. The Au NP probes facilitate the silver coating as an SERS

promoter for the dye-labeled particles captured by target

molecules and an underlying chip in microarray format,

providing several orders of magnitude higher sensitivity and

many orders of magnitude higher selectivity than the analo-

gous molecular fluorescence-based approach. Without opti-

mization of this method, the LOD is 20 fM. Due to the high

enhancement level, SERS has been applied to single molecule

detection [151]. The concept of SERS can be extended to two-

photon excitation by exploiting surface-enhanced hyper

Raman scattering (SEHRS), another phenomenon for extra

sensitive detection. Hyper Raman scattering is represented

schematically on the energy level diagram shown in Fig. 1. For

SEHRS, there are several advantages over the one-photo

excitation: (1) a longer wavelength laser can be used for

excitation; (2) the excitation volume in a sample is limited;

and (3) new insight into the EM enhancement mechanisms

can be provided.

Kneippandcoworkers [152] demonstratedSEHRS in the local

optical fields of Au and Ag nanostructures and reported the

effective two-photon cross sections in the range of

10�46e10�45 cm4 s. Such extra-high sensitivity makes it prom-

ising for biological and pharmaceutical applications. SERS is a

promising technique for food safety assessment and for drug

analysis, as it is rapid, sensitive, accurate, and requiresminimal

sample preparation. These featuresmake it potentially suitable

for routine on-line analysis in food processing facilities and

other analytical applications. With advancements in fiber optic

Ramanspectrometers, it isanticipated that the in situanalysisof

the applied pesticides on agricultural plant foods will become

practical. However, it is still very challenging to apply SERS for

quantitative analysis. Success in this area requires the integra-

tion of chemometricmethods into the spectral data analysis, as

well as the development of versatile and robust Raman spec-

trometers and nanosubstrates.

In concluding this review, we would like to present some

approaches that could potentially counter the issue of poor

reproducibility in applying SERS for quantitative analysis. (1)

Development and fabrication of nanostructurally uniform

substrate: Tripp and coworkers [35] stated that the oblique

angle deposition of noble metals and other nanofabrication

techniques would challenge the limitation of reproducibility

of SERS measurements. (2) Chemometric data analysis: to

access the colloidal SERS reproducibility, Jarvis et al [153]

suggested the use of suitably designed SERS experiments in

conjunction withmultivariate analysis of variance. (3) Isotope

dilution: a given amount of isotopic analyte is added to a

sample as an internal reference for SERS intensity standardi-

zation (see section on isotope dilution SERS). This method

assumes that similar chemical properties exist in different

isotopic species of the analyte. Several research groups have

applied this method in their quantitative SERS analysis and

the resulted uncertainty was reduced to <3%.
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strahlung durch atome. Z Phys 1925;31:681e708 [In
German].

[22] Dirac PAM. The quantum theory of the emission and
absorption of radiation. Proc Roy Soc Lond A
1927;114:710e28.

[23] Macjida K. Resonance Raman spectra and protonation
equilibria of azo dyes. In: Bist HD, Durig JR, Sullivan JF,
editors. Vibrational spectra and structure. Amsterdam:
Elsevier; 1989. p. 421e42.

[24] Huong PV, Plouvier SR. Copper-organic interactions in cancer
studies by resonance Raman spectroscopy. In: Bist HD,
Durig JR, Sullivan JF, editors. Vibrational spectra and
structure. Amsterdam: Elsevier; 1989. p. 497e520.

[25] Tonge PJ, Carey PR. Raman, resonance Raman and FTIR
spectroscopic studies of enzyme-substrate complexes. In:
Clark RJH, Hester RE, editors. Advances in spectroscopy.
Chichester: Wiley; 1993. p. 129e61.

[26] Austin JC, Jordan T, Spiro TG. Ultraviolet resonance Raman
studies of proteins and related model compounds. In:
Clark RJH, Hester RE, editors. Advances in spectroscopy.
Chichester: Wiley; 1993. p. 55e127.

[27] Spiro TG. Biochemical applications of resonance-Raman
spectroscopy. In: Durig JR, editor. Vibrational spectra and
structure. Amsterdam: Elsevier; 1976. p. 101e20.

[28] Peticolas WL. Quantitative characterization of the
ultraviolet resonance Raman spectroscopy of nucleic acid
components, enzymatic cofactors and their
photochemically induced transients. In: Bist HD, Durig JR,
Sullivan JF, editors. Vibrational spectra and structure.
Amsterdam: Elsevier; 1989. p. 467e84.

[29] Galluzzi F, Garozzo M, Ricci FF. Resonance Raman scattering
and vibronic coupling in aquo- and cyanocobalamin. J
Raman Spectrosc 1974;2:351e62.

[30] Ziegler LD, Hudson BS. Resonance Raman scattering of
ethylene: Evidence for a twisted geometry in the V state. J
Chem Phys 1983;79:1197e202.

[31] Houng PV. Chemical application of resonance Raman
spectroscopy. In: Durig JR, editor. Vibrational spectra and
structure. Amsterdam: Elsevier; 1981. p. 143e93.

[32] Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of
pyridine adsorbed at a silver electrode. Chem Phys Lett
1974;26:163e6.

[33] Jeanmaire DL, Van Duyne RP. Surface Raman
electrochemistry. Part 1. Heterocyclic, aromatic and
aliphatic amines adsorbed on the anodized silver electrode.
J Electroanal Chem 1977;84:1e20.

[34] Albrecht MG, Creighton JA. Anomalously intense Raman
spectra of pyridine at a silver electrode. J Am Chem Soc
1977;99:5215e7.

[35] Tripp RA, Dluhy RA, Zhao Y. Novel nanostructures for SERS
biosensing. Nano Today 2008;3:31e7.

[36] Yamada H. Chemical effect and charge transfer interaction
in surface enhanced Raman scattering. In: Bist HD, Durig JR,
Sullivan JF, editors. Vibrational spectra and structure.
Amsterdam: Elsevier; 1989. p. 392e420.

[37] Chase DB, Rabolt JF, editors. Fourier transform Raman
spectroscopy from concept to experiment. San Diego:
Academic Press; 1994.

[38] Keller S, LiJchte T, Dippel B, et al. Quality control of food
with near-infrared-excited Raman spectroscopy. Fresenius J
Anal Chem 1993;346:863e7.
[39] Hutchings J, Kendall C, Smith B, et al. The potential for
histological screening using a combination of rapid Raman
mapping and principal component analysis. J Biophotonics
2009;2:91e103.

[40] Trott GR, Furtak TE. Angular resolved Raman scattering film
optic probes. Rev Sci Instrum 1980;51:1493e6.

[41] Yamada H, Yamamoto Y. Illumination of flat or unstable
samples for Raman measurements using optical fibres. J
Raman Spectrosc 1980;9:401e2.

[42] Eckbreth AC. Remote detection of CARS employing fiber
optic guides. Appl Opt 1979;18:3215e6.

[43] McCreery RL, Fleischmann M, Hendra P. Fiber optic probe
for remote Raman spectrometry. Anal Chem 1983;55:146e8.

[44] Schwab SD, McCreery RL. Versatile, efficient Raman
sampling with fiber optics. Anal Chem 1984;56:2199e204.

[45] Hendra PJ, Ellis G, Cutler DJ. Use of optical fibres in Raman
spectroscopy. J Raman Spectrosc 1988;19:413e8.

[46] Hsieh YZ, Lee NS, Sheng RS, et al. Surface-enhanced Raman
spectroscopy of free and complexed bilirubin. Langmuir
1987;3:1141e6.

[47] Hsieh YZ, Morris MD. Resonance Raman spectroscopic
study of bilirubin hydrogen bonding in solutions and in the
albumin complex. J Am Chem Soc 1988;110:62e7.

[48] Lee NS, Hsieh YZ, Paisley RF, et al. Surface-enhanced
Raman spectroscopy of the catecholamine
neurotransmitters and related compounds. Anal Chem
1988;60:442e6.

[49] Bello JM, Vo-Dinh T. Surface-enhanced Raman scattering
fiber-optic sensor. Appl Spectrosc 1990;1:63e9.

[50] Vo-Dinh T, Stoke DL, Li YS, et al. Fiber optic sensor probe for
in situ surface-enhanced Raman monitoring. In:
Lieberman RA, Wlodarczyk MR, editors. Chemical,
biochemical, and environmental fiber sensors II. San Jose,
CA, USA: SPIE-The International Society for Optical
Engineering; 1991. p. 203e9.

[51] Myrick ML, Angel SM. Elimination of background in fiber-
optic Raman measurements. Appl Spectrosc
1990;44:565e70.

[52] Ma J, Li YS. Optical fiber Raman probe with low background
interference by spatial optimization. Appl Spectrosc
1994;48:1529e31.

[53] Ma JY, Li YS. Fiber Raman background study and its
application in setting up optical fiber Raman probes. Appl
Opt 1996;35:2527e33.

[54] Angel SM, Cooney TF, Skinner HT. Applications of fiber-
optics in NIR Raman spectroscopy. In: Laserna JJ, editor.
Modern techniques in Raman spectroscopy. New York: John
Wiley & Sons, Inc; 2000. p. 387e419.

[55] Cullum BM, Vo-Dinh T. The development of optical
nanosensors for biological measurements. Trends
Biotechnol 2000;18:388e93.

[56] Scaffidi JP, Gregas MK, Seewaldt V, et al. SERS-based
plasmonic nanobiosensing in single living cells. Anal
Bioanal Chem 2009;393:1135e41.

[57] Adams MJ. Chemometrics in analytical spectroscopy. 2nd
ed. Cambridge: Royal Society of Chemistry; 2004.

[58] Savitzky A, Golay MJE. Smoothing and differentiation of
data by simplified least squares procedures. Anal Chem
1964;36:1627e39.

[59] Meier RJ. On art and science in curve-fitting vibrational
spectra. Vib Spectrosc 2005;39:266e9.

[60] Thomas EV, Haaland DM. Comparison of multivariate
calibration methods for quantitative spectral analysis. Anal
Chem 1990;62:1091e9.

[61] Wold H. Soft modeling by latent variables; the nonlinear
iterative partial least squares approach. In: Gani J, editor.
Perspectives in probability and statistics. London: Academic
Press; 1975.

http://refhub.elsevier.com/S1021-9498(14)00004-0/sref19
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref19
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref19
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref20
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref20
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref20
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref21
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref21
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref21
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref21
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref22
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref22
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref22
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref22
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref23
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref23
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref23
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref23
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref23
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref24
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref24
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref24
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref24
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref24
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref25
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref25
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref25
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref25
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref25
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref26
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref26
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref26
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref26
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref26
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref27
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref27
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref27
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref27
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref28
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref29
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref29
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref29
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref29
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref30
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref30
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref30
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref30
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref31
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref31
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref31
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref31
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref32
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref32
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref32
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref32
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref33
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref33
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref33
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref33
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref33
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref34
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref34
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref34
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref34
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref35
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref35
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref35
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref36
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref36
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref36
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref36
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref36
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref37
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref37
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref37
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref38
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref38
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref38
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref38
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref39
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref39
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref39
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref39
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref39
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref40
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref40
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref40
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref41
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref41
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref41
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref41
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref42
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref42
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref42
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref43
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref43
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref43
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref44
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref44
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref44
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref45
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref45
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref45
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref46
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref46
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref46
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref46
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref47
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref47
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref47
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref47
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref48
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref48
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref48
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref48
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref48
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref49
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref49
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref49
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref50
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref51
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref51
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref51
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref51
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref52
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref52
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref52
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref52
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref53
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref53
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref53
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref53
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref54
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref54
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref54
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref54
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref54
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref55
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref55
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref55
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref55
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref56
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref56
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref56
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref56
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref57
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref57
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref58
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref58
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref58
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref58
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref59
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref59
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref59
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref60
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref60
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref60
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref60
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref61
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref61
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref61
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref61
http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 2 ( 2 0 1 4 ) 2 9e4 846
[62] Hartigan J. Clustering algorithms. New York: J Wiley and
Sons; 1975.

[63] Kandel A. Fuzzy mathematical techniques with
applications; 1986. Wesley, New York, New York.

[64] Wold S, Sjostrom M. Simca: a method for analyzing
chemical data in terms of similarity and analogy. In:
Kowalski BR, editor. Chemometrics theory and application.
Washington, DC: American Chemical Society; 1977.
p. 243e82.

[65] Afifi A, May S, Clark VA. Computer-aided multivariate
analysis. 4th ed. Boca Raton: Chapman and Hall/CRC; 2003.

[66] Zupan J, Gesteiger J. Neural networks for chemists. 2nd ed.
Weinheim: VCH; 1999.

[67] Tiede K, Boxall ABA, Tear SP, et al. Detection and
characterization of engineered nanoparticles in food and
the environment. Food Addit Contam Part A
2008;25:795e821.

[68] Duncan TV. Applications of nanotechnology in food
packaging and food safety: barrier materials, antimicrobials
and sensors. J Colloid Interface Sci 2011;363:1e24.

[69] Luykx DMAM, Peters RJB, van Ruth SM, et al. A review of
analytical methods for the identification and
characterization of nano delivery systems in food. J Agr
Food Chem 2008;56:8231e47.

[70] Deisingh AK, Thompson M. Biosensors for the detection of
bacteria. Can J Microbiol 2004;50:69e77.

[71] Lin M. The application of surface-enhanced Raman
spectroscopy to identify and quantify chemical adulterants
or contaminants in foods. In: Li-Chan E, Griffiths P,
Chalmers J, editors. Applications of vibrational
spectroscopy in food science. Chichester: John Wiley &
Sons; 2010. p. 649e62.

[72] Lin M. A review of traditional and novel detection
techniques for melamine and its analogues in foods and
animal feed. Front Chem Eng China 2004;3:427e35.

[73] Zamborini FP, Bao L, Dasari R. Nanoparticles in
measurement science. Anal Chem 2013;84:541e76.

[74] Yang D, Ying Y. Applications of Raman spectroscopy in
agricultural products and food analysis: a review. Appl
Spectrosc Rev 2011;46:539e60.

[75] Craig AP, Franca AS, Irudayaraj J. Surface-enhanced Raman
spectroscopy applied to food safety. Annu Rev Food Sci
Technol 2013;4:369e80.

[76] Blasco C, Pico Y. Determining nanomaterials in food. TrAC
Trends Anal Chem 2011;30:84e99.

[77] Lin S, Reppert J, Hu Q, et al. Uptake, translocation, and
transmission of carbon nanomaterials in rice plants. Small
2009;5:1128e32.

[78] He L, Kim N-J, Li H, et al. Use of a fractal-like gold
nanostructure in surface-enhanced Raman spectroscopy
for detection of selected food contaminants. J Agr Food
Chem 2008;56:9843e7.

[79] Chen S, Carroll DL. Silver nanoplates: size control in two
dimensions and formation mechanisms. J Phys Chem B
2004;108:5500e6.

[80] Cheng W, Dong S, Wang E. Spontaneous fractal aggregation
of gold nanoparticles and controlled generation of
aggregate-based fractal networks at air/water interface. J
Phys Chem B 2005;109:19213e8.

[81] Johnston BD, Scown TM, Moger J, et al. Bioavailability of
nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ
Sci Technol 2010;44:1144e51.

[82] Tolles WM, Nibler JW, McDonald JR, et al. A review of the
theory and application of coherent anti-Stokes Raman
spectroscopy (CARS). Appl Spectrosc 1977;31:253e71.

[83] Liu B, Zhou P, Liu X, et al. Detection of pesticides in fruits by
surface-enhanced Raman spectroscopy coupled with gold
nanostructures. Food Process Tech 2013;6:710e8.
[84] He L, Liu Y, Mustapha A, et al. Antifungal activity of zinc
oxide nanoparticles against Botrytis cinerea and Penicillium
expansum. Microbiol Res 2011;166:207e15.

[85] Müller C, David L, Chis V, et al. Detection of thiabendazole
applied on citrus fruits and bananas using surface
enhanced Raman scattering. Food Chemistry
2014;145:814e20.

[86] Saute B, Narayanan R. Solution-based direct readout
surface enhanced Raman spectroscopic (SERS) detection of
ultra-low levels of thiram with dogbone shaped gold
nanoparticles. Analyst 2011;136:527e32.

[87] Saute B, Narayanan R. Solution-based SERS method to
detect dithiocarbamate fungicides in different real-world
matrices. J Raman Spectrosc 2013;44:1518e22.

[88] Saute B, Premasiri R, Ziegler L, et al. Gold nanorods as
surface enhanced Raman spectroscopy substrates for
sensitive and selective detection of ultra-low levels of
dithiocarbamate pesticides. Analyst 2012;137:5082e7.

[89] Jarvis RM, Goodacre R. Characterisation and identification
of bacteria using SERS. Chem Soc Rev 2008;37:931e6.

[90] Fan C, Hu Z, Mustapha A, et al. Rapid detection of food- and
waterborne bacteria using surface-enhanced Raman
spectroscopy coupled with silver nanosubstrates. Appl
Microbiol Biotechnol 2011;92:1053e61.

[91] Cowcher DP, Xu Y, Goodacre R. Portable, quantitative
detection of Bacillus bacterial spores using surface-
enhanced Raman scattering. Anal Chem 2013;85:3297e302.

[92] Lee PC, Meisel D. Adsorption and surface-enhanced Raman
of dyes on silver and gold sols. J Phys Chem 1982;86:3391e5.

[93] Jarvis RM, Law N, Shadi IT, et al. Surface-enhanced Raman
scattering from intracellular and extracellular bacterial
locations. Anal Chem 2008;80:6741e6.

[94] Nicolaou N, Xu Y, Goodacre R. Fourier transform infrared
and Raman spectroscopies for the rapid detection,
enumeration, and growth interaction of the bacteria
Staphylococcus aureus and Lactococcus lactis ssp cremoris in
milk. Anal Chem 2013;83:5681e7.

[95] Williams AC. Handbook of Raman spectroscopy: from the
research laboratory to the process line. In: Lewis IR,
Howell G, Edwards M, editors. Practical spectroscopy series.
New York: Marcel Dekker; 2001. p. 575e92.

[96] Pinzaru SC, Pavel I, Leopold N, et al. Identification and
characterization of pharmaceuticals using Raman and
surface-enhanced Raman scattering. J Raman Spectrosc
2004;35:338e46.

[97] Pinzaru SC, Pavel IE. SERS and pharmaceuticals. Surface
enhanced Raman spectroscopy. Berlin: Wiley-VCH Verlag
GmbH & Co. KGaA; 2010. p. 129e54.

[98] West JL, Halas NJ. Engineered nanomaterials for
biophotonics applications: improving sensing, imaging, and
therapeutics. Annu Rev Biomed Eng 2003;5:285e92.

[99] Yao J, Sun Y, Yang M, et al. Chemistry, physics and biology
of graphene-based nanomaterials: new horizons for
sensing, imaging and medicine. J Mater Chem
2012;22:14313e29.

[100] Lee JH, Yigit MV, Mazumdar D, et al. Molecular diagnostic
and drug delivery agents based on aptamer-nanomaterial
conjugates. Adv Drug Delivery Rev 2010;62:592e605.

[101] Espinosa JM, Christensen DH, Sorensen GO, et al. Low-
frequency near-infrared Fourier transform Raman studies
of ellipticines and deoxyribose nucleic acid. Spectrochim
Acta A 1991;47:1423e9.

[102] Neville GA, Shurvell HF. Fourier transform Raman and
infraredvibrational studyofdiazepamand four closely related
1,4-benzodiazepines. J Raman Spectrosc 1990;21:9e19.

[103] Eliasson C, Matousek P. Noninvasive authentication of
pharmaceutical products through packaging using partial
offset Raman spectroscopy. Anal Chem 2007;79:1696e701.

http://refhub.elsevier.com/S1021-9498(14)00004-0/sref62
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref62
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref63
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref63
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref64
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref64
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref64
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref64
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref64
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref64
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref65
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref65
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref66
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref66
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref67
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref67
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref67
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref67
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref67
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref68
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref68
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref68
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref68
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref69
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref69
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref69
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref69
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref69
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref70
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref70
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref70
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref71
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref72
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref72
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref72
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref72
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref73
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref73
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref73
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref74
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref74
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref74
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref74
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref75
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref75
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref75
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref75
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref76
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref76
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref76
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref77
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref77
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref77
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref77
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref78
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref78
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref78
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref78
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref78
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref79
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref79
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref79
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref79
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref80
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref80
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref80
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref80
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref80
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref81
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref81
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref81
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref81
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref81
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref81
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref82
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref82
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref82
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref82
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref83
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref83
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref83
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref83
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref84
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref84
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref84
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref84
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref85
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref85
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref85
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref85
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref85
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref86
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref86
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref86
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref86
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref86
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref87
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref87
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref87
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref87
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref88
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref88
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref88
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref88
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref88
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref89
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref89
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref89
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref90
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref90
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref90
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref90
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref90
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref91
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref91
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref91
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref91
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref92
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref92
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref92
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref93
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref93
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref93
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref93
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref94
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref94
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref94
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref94
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref94
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref94
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref95
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref95
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref95
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref95
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref95
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref96
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref96
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref96
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref96
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref96
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref97
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref97
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref97
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref97
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref98
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref98
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref98
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref98
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref99
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref99
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref99
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref99
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref99
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref100
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref100
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref100
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref100
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref101
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref101
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref101
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref101
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref101
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref102
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref102
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref102
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref102
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103e
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103e
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103e
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103e
http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


j o u r n a l o f f o o d and d ru g an a l y s i s 2 2 ( 2 0 1 4 ) 2 9e4 8 47
[104] Davies MC, Binns JS, Melia CD, et al. FT Raman spectroscopy
of drugs in polymers. Int J Pharm 1990;66:223e32.

[105] Cunningham BT, Choi CJ, Watkins AR. Manufacture and use
of SERS nanodome biosensor incorporated into tubing. U.S.
Pat. Appl. Pub. US 2012309080 A1 20121206.

[106] Feng S, Chen R, Lin J, et al. Method for determining
composition of Chinese medicine decoction by
surface-enhanced Raman spectroscopy. In:
Faming Zhuanli, Shenqing, editors. CN 101339132 A
20090107, People’s Republic of China; 2009.

[107] Huang H, Shi H, Feng S, et al. Quick detection of traditional
Chinese medicine ’Atractylodis macrocephalae rhizoma’
pieces by surface-enhanced Raman spectroscopy. Laser
Phys 2013;23:15601e4.

[108] Huang R, Chen R, Chen Q, et al. Raman spectral study of
anti-angiogenic drugs on the role of chick vascular. In:
Luo Q, Wang LV, Tuchin VV, et al., editors. Eighth
International Conference on Photonics and Imaging in
Biology and Medicine, Bellingham WA: SPIE; 2009. 75191F.

[109] He L, Lin M, Li H, et al. Surface-enhanced Raman
spectroscopy coupled with dendritic silver nanosubstrate
for detection of restricted antibiotics. J Raman Spectrosc
2010;41:739e44.

[110] Gigli M, Doglia SM, Millot JM, et al. Quantitative study of
doxorubicin in living cell nuclei by
microspectrofluorometry. Biochim Biophys Acta
1988;950:13e20.

[111] Gigli M, Rasoanaivo WD, Millot JM, et al. Correlation
between growth inhibition and intranuclear doxorubicin
and 4’-deoxy-4’-iododoxorubicin quantitated in living K562
cells by microspectrofluorometry. Cancer Res
1989;49:560e4.

[112] Wang AHJ, Ughetto G, Quigley GJ, et al. Interactions
between an anthracycline antibiotic and DNA: molecular
structure of daunomycin complexed to d(CpGpTpApCpG) at
1.2-A resolution. Biochemistry 1987;26:1152e63.

[113] Manfait M, Theophanides T. Fourier transform infrared
spectra of cells treated with the drug adriamycin. Biochem
Biophys Res Commun 1983;116:321e6.

[114] Sequaris JM, Koglin E, Valenta P, et al. Surface-enhanced
Raman scattering (SERS) spectroscopy of nucleic acids. Ber
Bunsenges Phys Chem 1981;85:512e3.

[115] Nonaka Y, Tsuboi M, Nakamoto K. Comparative study of
aclacinomycin versus adriamycin by means of resonance
Raman spectroscopy. J Raman Spectrosc 1990;21:133e41.

[116] Smulevich G, Feis A. Surface-enhanced resonance Raman
spectra of adriamycin, 11-deoxycarminomycin, their model
chromophores, and their complexes with DNA. J Phys Chem
1986;90:6388e92.

[117] Smulevich G, Feis A, Mantini AR, et al. Resonance Raman
and SERRS spectra of anti-tumor anthracyclines and their
complexes with DNA. Indian J Pure Appl Phys
1988;26:207e11.

[118] Nabiev IR, Sokolov KV, Manfait M. SERS and its biomedical
applications. In: Clark RJH, Hester RE, editors. Advances in
spectroscopy. Chichester: Wiley; 1993. p. 267e338.

[119] Smith WE, Faults K, Graham D. Quantitative surface-
enhanced resonance Raman spectroscopy for analysis. In:
Kneipp K, Moskovits M, Kneipp H, editors. Surface-
enhanced Raman scattering: physics and applications.
Berlin: Wiley-VCH Verlag; 2006.

[120] McLaughlin C, MacMillan D, McCardle C, et al. Quantitative
analysis of mitoxantrone by surface-enhanced resonance
Raman scattering. Anal Chem 2002;74:3160e7.

[121] Sulk RA, Corcoran RC, Carron KT. Surface-enhanced Raman
scattering detection of amphetamine and
methamphetamine by modification with 2-
mercaptonicotinic acid. Appl Spectrosc 1999;53:954e9.
[122] Sagmuller B, Schwarze B, Brehm G, et al. Application of
SERS spectroscopy to the identification of (3,4-
methylenedioxy)amphetamine in forensic samples utilizing
matrix stabilized silver halides. Analyst 2001;126:2066e71.

[123] Faulds K, Smith WE, Graham D, et al. Assessment of silver
and gold substrates for the detection of amphetamine
sulfate by surface enhanced Raman scattering (SERS).
Analyst 2002;127:282e6.

[124] Mabbott S, Correa E, Cowcher DP, et al. Optimization of
parameters for the quantitative surface-enhanced Raman
scattering detection of mephedrone using fractional factor
design and portable Raman spectrometer. Anal Chem
2013;85:923e31.

[125] Feng S, Chen W, Huang W, et al. Surface-enhanced Raman
spectroscopy of morphine in silver colloid. Chin Opt Lett
2009;7:1055e107.

[126] Hong X, Chu X, Zou P, et al. Magnetic-field-assisted rapid
ultrasensitive immunoassays using Fe3O4/ZnO/Au
nanorices as Raman probes. Biosens Bioelectron
2010;26:918e22.

[127] Deb SK, Davis B, Ben-Amotz D, et al. Accurate concentration
measurements using surface-enhanced Raman and
deuterium exchanged dye pairs. Appl Spectrosc
2008;62:1001e7.

[128] Stosch R, Henrion A, Schiel D, et al. Surface-enhanced
Raman scattering based approach for quantitative
determination of creatinine in human serum. Anal Chem
2005;7386e92.

[129] Zakel S, Rienitz O, Guerrler B, et al. Double isotope dilution
surface-enhanced Raman scattering as a reference
procedure for quantification of biomarkers in human
serum. Analyst 2011;136:3956e61.

[130] Zhang D, Xie Y, Deb SK, et al. Isotop edited internal
standard method for quantitative surface-enhanced Raman
spectroscopy. Anal Chem 2005;77:3563e9.

[131] Zakel S, Wundrack S, O’Connor G, et al. Validation of
isotope dilution surface-enhanced Raman scattering
(IDSERS) as a higher order reference method for clinical
measurands employing international comparison schemes.
J Raman Spectrosc 2013;44:1246e52.

[132] Greve J, Puppels GJ. Raman microspectroscopy of single
whole cells. In: Clark RJH, Hester RE, editors. Advances in
spectroscopy. Chichester: Wiley; 1993. p. 231e65.

[133] Kneipp K, Haka A, Kneipp H, et al. Surface-enhanced Raman
spectroscopy in single living cells using gold nanoparticles.
Appl Spectrosc 2002;56:150e4.

[134] Kneipp J. Nanosensors based on SERS for application living
cells. In: Kneipp K, Moskovits M, Kneipp H, editors. Surface-
enhanced Raman scattering: physics and applications.
Berlin Heidelberg: Springer-Verlag; 2006.

[135] Kneipp J, Kneipp H, Kneipp K, et al. Surface-enhanced
Raman scattering for investigations of eukaryotic cells. In:
Lasch P, Kneipp J, editors. Biomedical vibrational
spectroscopy. Hoboken, New Jersey: Wiley; 2008.
p. 243e61.

[136] Khodorchenko P, Petukhov A, Nabiev I, et al. Contributions
of short-range and classical electromagnetic mechanisms
to surface-enhanced Raman scattering from several types
of biomolecules adsorbed on cold deposited island films.
Appl Spectrosc 1993;47:515e22.

[137] Van Manen HJ, Kraan YM, Roos D, et al. Single-cell Raman
and fluorescence microscopy reveal the association of lipid
bodies with phagosomes in leukocytes. Proc Natl Acad Sci
USA 2005;102:10159e64.

[138] Zong S, Wang Z, Chen H, et al. Surface enhanced Raman
scattering traceable and glutathione responsive nanocarrier
for the intracellular drug delivery. Anal Chem
2013;85:2223e30.

http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref103
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref105
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref105
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref105
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref105
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref105
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref106
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref106
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref106
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref106
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref106
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref107
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref107
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref107
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref107
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref107
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref108
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref108
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref108
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref108
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref108
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref109
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref109
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref109
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref109
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref109
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref110
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref110
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref110
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref110
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref110
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref110
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref111
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref111
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref111
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref111
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref111
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref112
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref112
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref112
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref112
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref113
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref113
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref113
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref113
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref114
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref114
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref114
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref114
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref115
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref115
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref115
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref115
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref115
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref116
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref116
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref116
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref116
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref116
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref117
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref117
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref117
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref117
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref118
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref118
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref118
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref118
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref118
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref119
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref119
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref119
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref119
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref120
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref120
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref120
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref120
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref120
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref121
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref121
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref121
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref121
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref121
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref122
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref122
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref122
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref122
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref122
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref123
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref123
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref123
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref123
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref123
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref123
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref124
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref124
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref124
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref124
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref125
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref126
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref126
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref126
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref126
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref126
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref127
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref127
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref127
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref127
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref127
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref128
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref128
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref128
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref128
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref128
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref129
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref129
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref129
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref129
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref130
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref130
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref130
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref130
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref130
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref130
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref131
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref131
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref131
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref131
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref132
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref132
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref132
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref132
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref133
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref133
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref133
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref133
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref134
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref134
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref134
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref134
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref134
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref134
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref135
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref135
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref135
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref135
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref135
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref135
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref136
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref136
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref136
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref136
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref136
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref137
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref137
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref137
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref137
http://refhub.elsevier.com/S1021-9498(14)00004-0/sref137
http://dx.doi.org/10.1016/j.jfda.2014.01.003
http://dx.doi.org/10.1016/j.jfda.2014.01.003


j o u rn a l o f f o o d a nd d r u g an a l y s i s 2 2 ( 2 0 1 4 ) 2 9e4 848
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