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Abstract

Proteins are under tight evolutionary constraints, so if a protein changes it can only do so in ways that do not compromise
its function. In addition, the proteins in an organism evolve at different rates. Leveraging the history of patristic distance
methods, a new method for analysing comparative protein evolution, called Mean Protein Evolutionary Distance (MeaPED),
measures differential resistance to evolutionary pressure across viral proteomes and is thereby able to point to the proteins’
roles. Different species’ proteomes can also be compared because the results, consistent across virus subtypes, concisely
reflect the very different lifestyles of the viruses. The MeaPED method is here applied to influenza A virus, hepatitis C virus,
human immunodeficiency virus (HIV), dengue virus, rotavirus A, polyomavirus BK and measles, which span the positive and
negative single-stranded, doubled-stranded and reverse transcribing RNA viruses, and double-stranded DNA viruses. From
this analysis, host interaction proteins including hemagglutinin (influenza), and viroporins agnoprotein (polyomavirus), p7
(hepatitis C) and VPU (HIV) emerge as evolutionary hot-spots. By contrast, RNA-directed RNA polymerase proteins including
L (measles), PB1/PB2 (influenza) and VP1 (rotavirus), and internal serine proteases such as NS3 (dengue and hepatitis C virus)
emerge as evolutionary cold-spots. The hot spot influenza hemagglutinin protein is contrasted with the related cold spot H
protein from measles. It is proposed that evolutionary cold-spot proteins can become significant targets for second-line
anti-viral therapeutics, in cases where front-line vaccines are not available or have become ineffective due to mutations in
the hot-spot, generally more antigenically exposed proteins. The MeaPED package is available from www.pam1.bcs.uwa.
edu.au/michaelw/ftp/src/meaped.tar.gz.

Citation: Wise MJ (2013) Mean Protein Evolutionary Distance: A Method for Comparative Protein Evolution and Its Application. PLoS ONE 8(4): e61276.
doi:10.1371/journal.pone.0061276

Editor: Ying Xu, University of Georgia, United States of America

Received August 16, 2012; Accepted March 8, 2013; Published April 15, 2013

Copyright: � 2013 Michael J. Wise. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No external funding supported this research.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: Michael.Wise@uwa.edu.au

Introduction

Proteins are under tight evolutionary constraints because they

are the main agents of the processes required by all organisms.

Therefore, if a protein changes it can only do so in ways that do

not compromise its function. This is particularly true for the small

viruses that lack the levels of redundancy available to their

eukaryote (or even bacterial) hosts. Viruses make up for this by

having high levels of adaptability, driven by high mutation rates.

For example, while E. coli has as mutation rate of 6|10{10

muations/bp/replication [1], the dsDNA virus Bacteriophage

T2’s rate is 2:8|10{8 [1] and RNA viruses have mutation rates in

the range 10{3 to 10{5 [2]. However, not all the genes in a virus –

or any other organism – vary at the same rate. In phylogenetic

analyses one, or perhaps several, known genes or proteins from a

range of species are typically used to make inferences about the

evolutionary histories of the source species, or to calculate the

genetic distances between species. Indeed, these efforts predate the

use of DNA or protein sequence data, e.g. Faith (1992) [3].

Differential rates of evolution bedevils the choice of which genes to

use for these analyses; see, for example, the discussion in D’Erchia

et al. (1996) [4]. However, I propose to turn this sort of analysis on

its head and instead use comparisons of the rates of evolution

evident across the proteins from a single species to yield significant

insights about those proteins. To motivate the description of the

method, Figure 1 shows phylogenetic trees that have been created

based on an initial set of 43 avian influenza M1 matrix proteins

and a set of 43 neuraminidase proteins from the same isolates.

From the initial sets, 100% identical proteins were deleted and

multiple sequence alignments were created from the remaining 17

(M1) and 43 (neuraminidase) sequences using Muscle [5]. Phyml

version 3.0 [6], bootstrapped 100 times, was then used to create

phylogenetic trees. The first thing to note from Figure 1b

(neuraminidase) is that the clades formed during tree construction

correspond to the designated neuraminidase types. The more

important thing to note in each of the graphs is the scale bar; For

the M1 set the scale bar is 0.007, while for the neuraminidase set

the scale bar is 0.2. In other words, if the neuraminidase tree were

drawn to the same scale as the M1 tree it would be 29 times larger.

The inference is that despite strong purifying selection operating

on both proteins, neuraminidase functional requirements neces-

sitate a much higher evolutionary rate and hence greater protein

diversity (43 unique neuraminidase proteins versus 17 for M1

protein, in this small example). In other words, we see in

neuraminidase a greater resistance to evolutionary pressure. If

evolutionary pressure is seen as the centripetal force that restricts

genomic change through purifying selection – here measured at

the protein level – then resistance to evolutionary change is the

countervailing (centrifugal) force for change.
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Leveraging the large numbers of isolates from single viral

species that are increasingly becoming available, using a phylo-

genetic-tree based method described below we can now examine

the differential evolutionary rates of proteins within a single

species. The underlying idea is not new; minimising patristic

distance – the distance between taxa in phylogenetic trees –

underlies the Neighbour-Joining algorithm [7], and Farris (1972)

[8] proposes the use of patristic distances (which he calls patristic

differences) from taxa to a putative root taxon as a measure of

evolution in a single protein. Here the idea will be extended to

facilitate the comparison of proteins from isolates of a single

species, and ultimately comparisons between species. The new

method, called Mean Protein Evolutionary Distance (MeaPED),

fits into the considerable literature on protein evolution; see, for

example the review Pàl et al. (2006) [9]. However, the preeminent

current method for measuring evolutionary pressure is the ratio of

nonsynonymous to synonymous substitutions (v~dN=dS)– also

known as Ka/Ks – which is discussed in Yang (2006) [10]. The

MeaPED method will be compared with dN=dS. Despite

misgivings expressed in Kryazhimskiy and Plotkin (2008) [11]

about the applicability of dN=dS to single populations, at least for

the viral species discussed below the results suggest that

comparisons with this method are reasonable.

The New Approach
Mean Protein Evolutionary Distance (MeaPED) is a way of

measuring differential resistance to evolutionary pressure across

sets of proteins from a single viral species. The MeaPED process

begins with collecting complete proteomes from isolates of the

species of interest, such as influenza A virus, where the aim is to

sample as much of the sequence diversity within the species as

possible. The protein sequences are grouped, e.g. haemagglutinin

(HA), neuraminidase (NA), etc., An important technical point is

that care must be taken to ensure that each set contains the same

gene from the different isolates, i.e. true orthologues, and that

paralogues are only found in their own sets, e.g. only E1 in the E1

set, only E2 in the E2 set (from hepatitis C virus). (Paralogues arise

due to gene duplication; alpha and beta haemoglobin are a well

known example of paralogous genes in vertebrates. Gene

duplications are common in the large dsDNA viruses, e.g.

mimivirus [12].) In practice, this means the one-to-one mapping

of positional (i.e. syntenic) orthologues [13].

For each protein, an unrooted phylogenetic tree is constructed

from the set of unique sequences. The choice of phylogenetic tree

building engine and amino acid substitution matrix will be

discussed below. For each leaf node (i.e. taxon) in the resulting

phylogenetic tree the mean patristic distance is computed between

it and every other leaf node. Then the mean of these means is

calculated – a single value representing the mean evolutionary

distance for that protein computed across the set of unique

sequences. An adjusted mean-of-means (AMM) is also computed,

where the denominator is the original count of sequences rather

than the final count of sequences once duplicates have been

deleted. This reflects the fact that duplicate sequences add no new

information, i.e. no additional variability. While a reduced

number of sequences due to deletion of duplicates can imply

over-sampling of that strain and gene during sample collection, it

can also imply that there is a limited number of amino acid

encodings of the corresponding protein which are viable, i.e. still

are able to perform that protein’s function. As a final step, the

adjusted mean of means for a set of sequences is divided by the

median input sequence length, times 100, giving the adjusted

mean distance per 100 aa (AMM100), to facilitate comparisons

between proteins with different average sequence lengths. Sorting

the list of proteins by decreasing AMM100 value reveals both

evolutionary hot-spot proteins (higher average evolutionary rates)

and evolutionary cold-spot proteins.

One issue with the use of patristic distances to measure protein

evolution, e.g. as proposed in Farris (1972) [8], is that branches

close to the designated root are counted multiple times. By

averaging patristic distances using each taxon in turn as the root,

there is no difference in the number of times leaf branches are

counted. However, internal branches will be counted more times

than leaf branches, particularly branches linking ‘‘clades’’ (i.e.

subtrees of highly similar proteins that are substantially different to

proteins in other subtrees). The effect – a weighted mean, with the

Figure 1. Phylogenetic trees based on avian influenza M1 matrix and neuraminidase proteins. Phylogenetic trees have been created
based on small sets of M1 matrix proteins (a) and corresponding neuraminidase proteins (b) taken from complete influenza proteomes. The trees
were created using Phyml and the figures drawn using FigTree. Notice that the neuraminidase tree forms clades largely corresponding to influenza
type. Notice also that the scale bar is much larger for the neuraminidase tree.
doi:10.1371/journal.pone.0061276.g001
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impact blunted by averaging – is desirable because it is the internal

branch lengths, particularly those between ‘‘clades’’, that reflect a

requirement in certain proteins for higher evolutionary rates

despite strong purifying selection. By contrast, using a simple mean

of patristic distances, for example, would result in evidence from

the small number of significant internal branches (inter-clade)

being lost among the much larger number of intra-clade distances.

Results

Table 1 below shows the results of a MeaPED analysis of

human influenza A virus, hepatitis C virus (type 1), human

immunodeficiency virus type 1 (subtype b), dengue virus (type 1),

measles, polyomavirus BK and rotavirus A. (The analyses of these

plus swine and avian influenza A virus, HIV1 subtypes c and d,

dengue virus types 2,3,4 and hepatitis C virus types 2,3,4,6

comprise Table S1.) The viral species, spanning the positive and

negative single-stranded, doubled-stranded and reverse transcrib-

ing RNA viruses, and double-stranded DNA viruses, are

summarised in Table 2.

Influenza
In Table 1, the proteins for the different viruses are sorted by

decreasing AMM100 value (column 7), with dN=dS values for the

corresponding genes being found in column 8. Looking in Table 1

specifically at influenza virus, the fact that the antigenically

exposed haemagglutinin (HA) and neuraminidase (NA) show the

most variation comes as no surprise. The appearance of PB1-F2 as

an evolutionary hot-spot in human (and also avian and swine)

influenza is more controversial. First described in Chen et al.

(2001) [14], PB1-F2 is understood to induce apoptosis through

interactions with mitochondrial membrane adenine nucleotide

translocator 3 (ANT3) and outer mitochondrial membrane

voltage-dependent anion channel 1 (VDAC1) [15]. However,

there are no single nucleotide polymorphisms (SNPs) in the exons

of VDAC1 and at most one in the exons of ANT3 (see Methods),

so variability in these interacting proteins cannot be driving the

evolution of PB1-F2. PB1-F2 has also been found to interact with

PB1, a subunit of the RNA polymerase complex [16]. Here again,

Table 1 shows that there is two orders of magnitude less variability

in PB1 than in PB1-F2. PB1-F2 has recently been shown to be

natively unfolded, form amyloids and be able to perforate cell

membranes [17]. On the other hand, it is argued in Trifonov et al.

(2009) [18] that because PB1-F2 accumulates stop-codons and is

therefore often truncated – and generally shows little evidence of

selection – it does not play a significant evolutionary role. Clearly

further research is needed to determine the role of PB1-F2 in vivo.

Looking further down the AMM100 list for influenza virus, the

NS1 protein AMM100 score is an order of magnitude less than

haemagglutinin, neuraminidase and PB1-F2, and is known to play

a role in immune evasion [19]. At the bottom of the list are

polymerase proteins PB1 and PB2, whose AMM100 scores are an

order of magnitude less again. It is also of interest to note that

AMM100 values are higher in avian and swine influenza than in

human influenza, indicating greater resistance to evolutionary

pressure.

Hepatitis C Virus
Scanning the AMM100 values for hepatitis C virus it is clear

that the resistance to evolutionary pressure on its genes is generally

higher than for influenza virus, with the top three values being for

p7, NS2 and envelope protein E1. The p7 is a short (63 aa) non-

structural protein that oligomerises and becomes resident in the

endoplasmic reticulum. It has been found to have ion channel

activity and to be involved in the release of infectious hepatitis C

virus [20]. (Indeed, VPU – another viroporin found in HIV – has

the highest AM100 score for all three of the HIV1 subtypes

examined in this study.) Envelope glycoproteins E1 and E2

dimerise to gain entry into host cells [21]. The E1, E2 and p7

proteins have also been shown to be immunogenic [22,21]. In view

of that it is interesting to note the lower AM100 value for the

longer E2 protein (363 aa) versus the shorter E1 protein (192 aa),

though their adjusted mean scores are similar, suggesting that

while some portions of the E2 protein provide evidence of higher

evolutionary rate, other parts are relatively conserved. The

evidence for NS2 as an evolutionary hot-spot for hepatitis C virus

is mixed, for although it has a high AMM100 score for hepatitis C

virus type 1 and type 4, it has a more middling score for the other

hepatitis C virus types. While it has been known for some time that

NS2 works cooperatively with NS3 to cleave the peptide bond

linking NS2 and NS3, the function of the mature NS2 protein is

still uncertain. However, NS2 has been shown in vitro to inhibit

host cell gene expression [23] and to interfere with CIDE-B

induced, caspase mediated apoptosis [24]. At the other end of the

scale, NS5b (RNA-dependent RNA polymerase), NS3 (serine

protease/helicase) and the C (core) protein – involved in capsid

formation – [25] are cold spot proteins across the hepatitis C virus

types.

Fast and Slow: HIV versus Dengue Virus and
Polyomavirus

Analysis of HIV1 reveals a very similar picture to hepatitis C

virus – even the most slowly varying protein, the POL reverse

transcriptase/integrase polyprotein, is evolving at a rate similar to

the mid-range NS1 of influenza, while most of the remaining genes

are evolving at a rate similar to, or faster than, influenza’s

haemagglutinin or neuraminidase. By contrast, dengue virus and

polyomavirus present the opposite picture. Being a mosquito-

borne pathogen, dengue virus has to survive in both the mosquito

and human hosts, implying a double constraint on the evolution of

its proteins, which is reflected in AMM100 values that are

comparable with M1 at the highest and then drop an order of

magnitude. The polyomavirus proteins have a similar AMM100

score profile to dengue virus, though for a somewhat different

reason. After primary acute infection, the dsDNA polyomavirus

can persist for a along period in its host, only reappearing in

immunocompromised hosts [26]. Indeed, long term persistence of

dsDNA viruses in their hosts, to which they are generally closely

adapted, is a hallmark of these viruses and it has been argued that

this persistence has contributed to virus-host coevolution [27].

Analysis of the MeaPED Method
An obvious question is whether MeaPED analyses are robust or

dependent on the choice of phylogenetic tree building application,

and then the choice of amino acid substitution matrix. One

practical constraint is that whichever phylogenetic-tree building

method is chosen, it must be able to deal with large data-sets; the

largest used here (human influenza) has more than 3,300

sequences for each protein. One such application is the Maximum

Likelihood method Phyml version 3.0 [6], which was used for the

analyses described above, in combination with the default LG

amino acid substitution matrix [28]. To test the robustness of

MeaPED, the Neighbour-Joining applications Protdist (default

JTT amino acid substitution matrix) and Neighbor (from the

Phylip suite [29]) were substituted for Phyml and the experiments

were repeated. Spearman Rank Correlations where computed

comparing the Phyml-based and Neighbor-based calculations for

each species/subtype across the sets of proteins. The coefficients of

Mean Protein Evolutionary Distance
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Table 1. Protein Evolutionary Distances - Initial and Final counts of sequences following deletion of duplicates, Mean PED,
Adjusted Mean PED and Adjusted Mean PED per 100 aa, and mean dN=dS.

Dengue virus type 1

Protein Med.Len. Init N Final N Mean Adj. Mean
Adj. Mean per
100 aa dnds

NS2a 654.0 651 323 0.0394 0.0196 0.0090 0.0925

M 221.3 651 186 0.0219 0.0063 0.0086 0.0622

NS4a 381.0 649 246 0.0254 0.0096 0.0076 0.0592

C 300.0 651 149 0.0297 0.0068 0.0068 0.1883

NS2b 390.0 651 258 0.0219 0.0087 0.0067 0.0415

2K 69.0 622 60 0.0158 0.0015 0.0066 0.0336

NS1 1056.0 651 392 0.0288 0.0174 0.0049 0.0560

NS4b 747.0 651 304 0.0158 0.0074 0.0030 0.0383

E 1489.4 651 435 0.0195 0.0130 0.0026 0.0525

NS5 2697.0 633 472 0.0212 0.0158 0.0018 0.0512

NS3 1857.0 651 465 0.0131 0.0093 0.0015 0.0281

Hepatitis C virus type 1

Protein Med.Len. Init N Final N Mean Adj. Mean Adj. Mean per
100 aa

dnds

p7 189.0 804 749 0.3524 0.3283 0.5211 0.1158

NS2 651.0 804 778 0.5698 0.5514 0.2541 0.0974

E1 576.1 804 764 0.4907 0.4663 0.2428 0.0878

NS4a 162.0 804 733 0.1388 0.1265 0.2343 0.0698

E2 1089.3 804 780 0.7518 0.7294 0.2009 0.0761

F 485.0 630 581 0.3161 0.2915 0.1810 4.6603

NS4b 783.0 804 774 0.3403 0.3276 0.1255 0.0397

NS5a 1342.8 804 779 0.4860 0.4709 0.1051 0.0859

NS5b 1769.7 743 733 0.2824 0.2787 0.0471 0.0866

NS3 1893.0 804 782 0.3045 0.2962 0.0469 0.0349

C 573.0 804 754 0.0481 0.0451 0.0236 0.0482

HIV1 subtype b

Protein Med.Len. Init N Final N Mean Adj. Mean Adj. Mean per
100 aa

dnds

VPU 247.9 1018 700 0.5390 0.3706 0.4575 0.2750

VPR 290.9 1001 692 0.5365 0.3709 0.3863 0.3525

NEF 626.6 795 624 0.9122 0.7160 0.3459 0.3616

TAT 306.1 1021 722 0.4233 0.2993 0.2963 0.9970

REV 351.0 1023 724 0.3848 0.2723 0.2348 0.8367

VIF 579.2 1016 754 0.3996 0.2966 0.1545 0.4192

ENV 2575.5 975 875 0.7628 0.6845 0.0799 0.4389

GAG 1509.0 996 810 0.3543 0.2881 0.0575 0.1367

POL 3015.8 984 896 0.2816 0.2564 0.0256 0.1336

Human Influenza

Protein Med.Len. Init N Final N Mean Adj. Mean Adj. Mean per
100 aa

dnds

HA 1697.3 3368 2159 1.5015 0.9625 0.1701 0.1042

NA 1407.3 3357 1777 1.1722 0.6205 0.1323 0.1258

PB1_F2 237.8 1932 344 0.6240 0.1111 0.1235 1.3072

NS1 680.7 3364 1140 0.2652 0.0899 0.0391 0.2740

Mean Protein Evolutionary Distance
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Table 1. Cont.

Dengue virus type 1

Protein Med.Len. Init N Final N Mean Adj. Mean
Adj. Mean per
100 aa dnds

M2 290.8 3359 539 0.1301 0.0209 0.0215 0.4055

NS2 363.0 3349 624 0.0995 0.0185 0.0153 0.1124

NP 1494.0 3345 1656 0.1308 0.0648 0.0130 0.0827

PA 2148.0 3339 2090 0.0691 0.0432 0.0060 0.0640

M1 756.0 3363 913 0.0542 0.0147 0.0058 0.0756

PB2 2277.0 3338 2190 0.0624 0.0409 0.0054 0.0590

PB1 2271.1 3343 2143 0.0448 0.0287 0.0038 0.0496

Measles

Protein Med.Len. Init N Final N Mean Adj. Mean Adj. Mean per
100 aa

dnds

V 900.4 23 14 0.0407 0.0248 0.0083 1.0998

C 561.0 30 16 0.0276 0.0147 0.0079 0.2756

P 1524.0 34 23 0.0387 0.0262 0.0052 0.6530

N 1578.0 34 22 0.0236 0.0153 0.0029 0.2288

M 1008.0 33 22 0.0141 0.0094 0.0028 0.3392

H 1854.5 34 23 0.0246 0.0166 0.0027 0.7055

F 1657.8 34 22 0.0126 0.0081 0.0015 0.4244

L 6552.0 34 29 0.0119 0.0101 0.0005 0.1804

Polyomavirus

Protein Med.Len. Init N Final N Mean Adj. Mean Adj. Mean per
100 aa

dnds

AGNO 199.3 528 38 0.0394 0.0028 0.0043 0.4549

VP1 1089.0 530 124 0.0425 0.0099 0.0027 0.1217

VP3 699.0 528 52 0.0334 0.0033 0.0014 0.1531

VP2 1056.0 528 57 0.0238 0.0026 0.0007 0.1554

ST 519.0 530 48 0.0109 0.0010 0.0006 0.1269

LT 2087.6 526 138 0.0089 0.0023 0.0003 0.0328

Rotavirus

Protein Med.Len. Init N Final N Mean Adj. Mean Adj. Mean per
100 aa

dnds

VP7 977.2 135 98 0.2149 0.1560 0.0478 0.0609

NSP1 1458.9 129 94 0.2253 0.1641 0.0338 0.1122

NSP4 525.0 134 84 0.0534 0.0335 0.0191 0.1037

NSP5 591.3 131 67 0.0534 0.0273 0.0139 0.1339

NSP3 931.7 118 78 0.0466 0.0308 0.0099 0.0613

NSP2 951.0 122 71 0.0488 0.0284 0.0090 0.0461

VP4 2325.2 135 102 0.0907 0.0685 0.0088 0.0401

VP3 2505.0 130 98 0.0624 0.0471 0.0056 0.0537

VP6 1189.7 130 82 0.0172 0.0109 0.0027 0.0131

VP2 2675.1 131 98 0.0307 0.0230 0.0026 0.0214

VP1 3260.5 135 113 0.0246 0.0206 0.0019 0.0345

doi:10.1371/journal.pone.0061276.t001
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determination (r2) and the associated p-values are shown in

Table 3. The results indicate that the MeaPED method is largely

independent of the choice of phylogenetic-tree building method

(and amino acid substitution matrix).

A second question is how Mean Protein Evolutionary Distance

compares with the standard approach: the ratio of nonsynon-

ymous to synonymous substitutions, v~dN=dS. To test this, the

rankings of proteins based on AMM100 values were compared

using Spearman Rank Correlations across the different virus

subtypes. A similar analysis was undertaken with the orderings

based on the mean dN=dS values computed across the

corresponding genes. Such comparisons are valid, for although

the evolutionary rates of orthologous genes can in general vary

between species, in this case the analysis is based on the identical

genes coming from different isolates of the same species, so

therefore subject to the same functional constraints. This effect is

strengthened because positional orthologues are subject to tighter

evolutionary constraints [13]. The approach appears to be borne

out by the results, shown in Table 4, where the ranking of proteins

by AMM100 score across, for example, HIV subtypes has r2 of

0.83 while the ranking of the corresponding genes by v value has

r2 of 0.86. On the other hand, Penn et al (2008) [30] would seem

to question this assumption, with the paper providing evidence

that different HIV1 subclades can have different evolutionary rates

– what they call ‘‘rate shifts’’. However, looking at the extended

results in Table S1 you can see that protein-for-protein, HIV1

subtype c, for example, has a higher AMM100 value than the

corresponding rank in HIV1 subtype d. In other words, for this

hyper-mutator virus, the evolutionary rate for a protein does

change between subtypes, but so too do the other proteins in the

corresponding subtypes, preserving the ordering. This is implicit in

Table 1 from [30], where the ranking of Proportion of Shifting

Sites approximately follows that seen due to AMM100 values, with

Pol having the lowest proportion (i.e. being the most constrained)

and Vpu having the highest proportion. In this light, a statistical

test based on ranking, rather than absolute values, is appropriate.

Turning to the AMM100 versus dN/dS based rankings, shown in

Table 4, for the dengue virus subtypes, the MeaPED approach

was somewhat better, while for the different influenza host species

subtypes, the dN=dS approach was somewhat better. For the HIV

subtypes the orderings of the genes due to MeaPED and dN=dS
were equally consistent. However, for the Hepatitis C subtypes the

MeaPED approach produced significantly more consistent results.

A third question is whether there is a correlation between

AMM100 (or v) values and the number of sequences in the input

set. This can be investigated by observing that in this study data is

provided for the subtypes of certain viruses: influenza, hepatitis C

virus, dengue virus and HIV, and the different subtypes are

represented by different numbers of sequences. For each gene in a

given virus, the AMM100 (or v) values can be correlated across

virus subtypes with the final counts of sequences after the deletion

of duplicate sequences, Si. On that basis, AMM100 scores for 8

out of 11 dengue virus genes were positively correlated with Si

across 4 virus subtypes, while scores for 8 out of 9 HIV genes were

positively correlated across 3 virus subtypes and scores for 7 out of

11 hepatitis C virus genes were positively correlated across 5 virus

subtypes. On the other hand, only 3 out of 11 influenza AMM100

scores were positively correlated with Si across 3 virus subtypes.

Given that the number of virus subtypes is small – N = 3 (influenza

and HIV), N = 4 (dengue virus) and N = 5 (hepatitis C virus) – and

therefore the possibility that the lists of values can be correlated by

chance, together with the fact that each species had some genes

yielding opposite correlations, it can be assumed that there is no

systematic correlation between AMM100 values and the counts of

sequences being examined. (Analysis based instead on v yields a

similar conclusion.)

Table 2. List of Viral Species Examined in this Study.

Species Type Genome format N proteins

Influenza virus Negative Sense ssRNA Segmented linear 11

Measles Negative Sense ssRNA Single linear 8

Hepatitis C virus Positive Sense ssRNA Single, linear forming polyprotein 11

Dengue virus Positive Sense ssRNA Single, linear forming polyprotein 11

HIV 1 Positive Sense RNA Reverse Transcribing Single linear 9

Rota virus dsRNA Segmented linear 11

Polyoma virus dsDNA Single Circular 6

doi:10.1371/journal.pone.0061276.t002

Table 3. Spearman Rank Correlation of MeaPED Analyses
Undertaken via Phyml and Neighbor.

Species N proteins Spearman r2 p-value

DENV1 11 0.964 8.40e208

DENV2 11 0.964 8.40e208

DENV3 11 0.982 3.706e209

DENV4 11 0.982 3.76e209

HIV1b 9 0.751 2.50e203

HIV1c 9 0.871 2.36e204

HIV1d 9 0.934 2.16e205

HCV1 11 0.894 1.12e205

HCV2 11 0.946 5.14e207

HCV3 11 0.946 5.14e207

HCV4 11 1.000 1.29e213

HCV6 11 0.982 3.76e209

Avian Influenza 11 0.995 7.46e212

Swine Influenza 11 1.000 1.29e213

Human Influenza 11 0.964 8.40e208

Measles 8 0.862 0.001

Polyomavirus 6 1.000 1.46e205

Rotavirus A 11 1.000 1.29e213

doi:10.1371/journal.pone.0061276.t003
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Afinalquestion iswhetherthere isarelationshipbetweenMeaPED

scores and the lengths of the input sequences, represented by the

median input sequence length for each species subtype. It is plausible

that an inverse relationship may exist – longer sequences attracting

lowerMeaPEDscores–because,assumingglobular structures, larger

proteins will have more of their residues buried and buried residues

are known to mutate more slowly than surface residues, particularly

residues occurring in loops. To investigate this, for each virus subtype

a linear regression was done between the set of Mean or AMM100

scores and the corresponding median input sequence lengths. Of the

18virus subtypes, 12returnedanegativecorrelationbetweenmedian

input sequence length and mean MeaPED score. However, none of

these was significant, the most significant being measles (r~0:478,
pvalue~0:23) and polyomavirus (r~0:485,pvalue~0:33). Linear

regression models involving AMM100 produced more significant

results – dengue virus types 1 and 2, HIV2 subtypes b and c and

hepatitis C virus (all types) were significant at the pvaluev0:05 level,

but that is to be expected because computation of AMM100 involves

the median input sequence length. (Comparisons involving v yielded

similar results to those involving the mean MeaPED score.) In

summary, there is a small affect due to input sequence length, but it is

not significant.

Discussion

Likely Roles of Hot Spot and Cold Spot Proteins
One observation evident from the Results is that relative hot

spot proteins are likely to interact with the host. Examples include:

hemagglutinin (influenza) and viroporins agnoprotein (polyoma-

virus), p7 (hepatitis C) and VPU (HIV). For measles, the protein

with the highest AMM100 score is the V protein, which is known

to inhibit alpha interferon signalling through a number of

interactions, including acting as a decoy substrate for IkB kinase

a, preventing phosphorylation of IFN regulatory factor 7 [31]. In

this context it is also interesting to contrast human influenza

hemagglutinin – AMM100 value of 0.1701, and at the top of the

list of influenza virus AMM100 values – with measles virus

hemagglutinin, which has an AMM100 value of 0.0027 and near

the bottom of the measles virus AMM100 values. Unlike influenza

virus, which has separate neuraminidase (NA) and hemagglutinin

(HA) proteins, paramyxoviruses, including measles, have the two

functions performed by the same, HN protein. However, in the

measles virus, the protein lacks neuraminidase activity (and is

therefore designated ‘‘H’’). It also does not bind sialic acid and the

binding pocket appears enlarged [32]. Instead, the H protein binds

signalling lymphocyte activation molecule (SLAM, also called

CD150) and CD46 [33]; CD46 regulates complement activation

while SLAM triggers a cascade that results in cytokine release,

including IL4 and IL13. In other words, rather binding sialic acid

as does influenza hemagglutinin, and inducing a strong immune

response [34], measles virus H protein binds to SLAM or CD46,

thereby gaining entry to cells and also performing immunosup-

pression by acting as a inhibitor of those key proteins [33].

MeaPED analysis can also highlight cold spot proteins. These

include the RNA directed RNA polymerase proteins PB1 and PB2

(influenza), NS5 (dengue virus), L (measles virus), NS5b (hepatitis

C virus), and VP1 (rotavirus), and internal serine protease NS3

(dengue and hepatitis C). The POL protein from HIV combines

an internal protease with a reverse transcriptase/integrase. The

theme that emerges is that, in contrast to hot spot proteins, cold

spot proteins are internal to the working of the virus. While the

identification of hot-spot proteins can yield useful biological

insights, the identification of cold-spot proteins, on the other hand,

can tell us which proteins are less likely to evolve should they be

targeted by anti-viral therapeutics. For this analysis, the adjusted

mean of means (AMM) score is sometimes more useful than the

AMM100 score. For example, near the bottom of the Table 1 list

for influenza A virus is the matrix protein M1, whose AMM score

Table 4. Comparing the consistency of AMM100 and dN=dS values across virus subtypes.

Dengue virus (N = 4 types)

Method mean r2 Stouffer MST Fisher MST

AMM100 0.790 4.14e210 1.93e209

dnds 0.615 7.47e207 5.55e207

Human immunodeficiency virus type 1 (N = 3 subtypes)

Method mean r2 Stouffer MST Fisher MST

AMM100 0.831 3.82e207 9.85e207

dnds 0.857 3.21e207 6.23e207

Hepatitis C virus (N = 5 types)

Method mean r2 Stouffer MST Fisher MST

AMM100 0.916 1.018e220 1.43e219

dnds 0.60 1.35e207 1.07e206

Influenza virus (N = 3 hostspecies)

Method mean r2 Stouffer MST Fisher MST

AMM100 0.900 5.59e210 1.65e209

dnds 0.946 1.57e212 4.75e212

doi:10.1371/journal.pone.0061276.t004
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is two orders of magnitude less than the top three in the list.

Multiple sequence alignment of the M1 protein reveals quite long

peptides (20–40 aa) which are identical (or very nearly so) across

the large human, swine and avian data-sets, but which may not be

‘‘drugable’’ in the conventional sense. While any anti-viral therapy

will act as a selective agent and induce increased viral evolutionary

rates, if M1 can be targeted, e.g. through peptide ligands such as

Phylomers [35], the implication is that M1 will evolve far less

rapidly than haemagglutinin or neuraminidase, which are the

targets of vaccines and drugs such as Relenaza (Zanamivir) or

Tamiflu (Oseltamivir).

Comparison with dN=dS
While the primary intention of using dN=dS has been to rank

evolutionary rates, a general observation from the dN=dS data

presented here is that, with the exception of HIV, the vast majority

of the genes have average v values of 0.1 or less, placing them in

the range – according to Kryazhimskiy and Plotkin (2008) [11] –

where strong purifying selection can be assumed, justifying the

assumption that the evolution of proteins, at least for these viruses,

is tightly constrained. The hint for why this might be the case

comes from two concepts developed in that paper: evolution over

long versus short time-scales and silent (or non-silent) mutations

versus fixations. Given short viral doubling times and high

mutation rates, one can assume that a wide range of possible

encodings for a protein will have been tried over what is a

relatively short chronological time, but representing many

generations. However, functional constraints on the proteins will

mean that only the small number of encodings leading to viable

proteins will be fixed in a population. This is very evident, for

example, in neuraminidase from influenza, where the different

clades are very distinct. It is therefore plausible that the different

clades represent quasispecies [2]. Both the average dN=dS
computations and the MeaPED analyses involve all-against-all

comparisons, which emphasise the distances between the quasis-

pecies, as most of the comparisons will be between sequences from

different clades/quasispecies rather than sequences from the same

clade/quasispecies.

In Summary
These examples illustrate that the Mean Protein Evolutionary

Distance approach is a robust method that concisely and

consistently captures an important facet of viral protein function

through their differing responses to evolutionary pressure. In doing

so it is at least as effective, if not better than, the equivalent

computation using average dN=dS values, does not suffer from

issues of interpretation highlighted by Kryazhimskiy and Plotkin

(2008) [11] and, unlike the dN=dS method, the MeaPED method

is able to make use of data from gaps in the underlying multiple-

sequence alignments, neglect of which can produce less accurate

trees [36]. The MeaPED method is also considerably quicker,

particularly for large data-sets. Finally, although MeaPED analysis

has to date only been used on viral data-sets, with the increasing

number of isolates from different microbial genomes being

sequenced the data is becoming available for the method to also

be applied to proteomes of species from other kingdoms.

Methods

Sources of Sequences Used
Seven species were examined for this study: human, swine and

avian influenza A virus, hepatitis C virus (types 1,2,3, 4 and 6),

human immunodeficiency virus type 1 (subtypes b, c and d) and

dengue virus (types 1,2,3 and 4), measles, polyomavirus BK and

rotavirus A. There were too few hepatitis C virus type 5 sequences

for analysis to be carried out. In each case, complete coding-

sequence (CDS) sets were obtained for each isolate of the given

species and type.

The influenza data-sets came from the Influenza Virus

Resource at NCBI [37] http://www.ncbi.nlm.nih.gov/genomes/

FLU/. Coding sequences for different influenza types, different

host species and different geographic locations can be obtained via

the web site. Because a very large number of sequences have been

recorded in the database, the human data-set was restricted to

isolates from China and USA, while the avian set was restricted to

isolates from duck species (wild and domesticated) from China and

USA. For the sake of consistency, the swine influenza data-sets also

used isolates from China and USA. The hepatitis C virus, measles

and dengue viruses data-sets were obtained from Biovirus.org [38]

http://biovirus.org. As with the influenza data-set, the sets of

coding sequences can be obtained from the web site. The HIV

data-sets were obtained from the Los Alamos HIV databases

http://www.hiv.lanl.gov. In this case the sets of genomes for each

HIV1 subtype (b, c and d) had to first be downloaded. Then the

Gene Cutter tool on the LANL site was used to produce a set of

aligned sequences which then had to be post-processed to remove

the gap character ‘2’. The rotavirus A data-set was obtained from

NCBI Viral Genomes as sets of segments which where first

collected as complete genomes. Complete polyomavirus genomes

were also obtained from NCBI Viral Genomes. The data-sets were

first split into subtypes (if appropriate) and then into the different

genes.

Sequence Processing
For each of the gene data-sets, after automatically removing a

small number of faulty sequences (either clearly too long or too

short, or with predicted coding sequences whose lengths are not a

multiple of 3) the number of sequences in each set was recorded

(shown in Table 1 as Init N). Because duplicate sequences lengthen

processing times but add no additional information and can

produce artefacts in phylogenetic trees, duplicate sequences were

deleted to produce the final set of sequences for each gene. (The

final counts are listed in Table 1 under Final N). The existence of

paralogues is not a problem for the small viruses analysed here.

For each gene across all the species and subtypes, e.g. matrix M1

protein sequences from avian influenza A virus, a codon-based

multiple sequence alignment was created across using a Python

application which calls Muscle [5]. The codon-based multiple

sequence alignment then became input for both the pairwise

dN=dS calculations and, in protein form, the MeaPED analyses.

Computing MeaPED Scores and dN=dS
MeaPED analyses were undertaken by a computer program,

ave_evol_dist.py written in the programming language Python

www.python.org. MeaPED first calls Muscle to create a multiple

sequence alignment, if one is not already provided, and then calls a

phylogenetic tree building application to create a phylogenetic tree

based on the multiple sequence alignment. The phylogenetic tree

building application Phyml version 3.0 [6] was used as it is a

Maximum Likelihood method but still able to process the large

numbers of sequences found in some of the data-sets. Branch-

length optimisation was specified. For comparison, phylogenetic-

tree computations were also carried out using the Neighbour-

Joining application Neighbor (from the Phylip suite [29]). Once

the phylogenetic tree has been created, ave_evol_dist.py then

traverses the tree to create a matrix which records the evolutionary

distance between each leaf node in the tree (i.e. input sequence)

and every other leaf node. Using this information, mean distances

Mean Protein Evolutionary Distance
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between each node/sequence and all the others can be computed,

and then the mean of these means across all the (unique) sequences

in the data-set for that protein. Finally, the adjusted mean of

means (AMM) and adjusted mean of means per 100 aa

(AMM100) were computed, as described above.

The dN=dS computations were undertaking using the codeml

application from the PAML suite [10], with input from the codon-

based multiple sequence alignments and the corresponding Phyml

trees. A single v value was returned for each pairwise computation

spanning both input sequences. The mean pairwise v value was

then computed across all the pairwise comparisons.

To estimate the evolutionary pressure on the human proteins

ANT3 (gene name SLC25A6) and VDAC1, records of single

nucleotide polymorphisms (SNPs) were obtained from the

International HapMap Project www.hapmap.org [39]. The

HapMap project has undertaken a comprehensive SNP survey

across a limited number of individuals (270 in Phase II) from

diverse geographic locations. HapMap’s BioMart tool returned no

SNPs in the the exons of the genes encoding these two proteins.

Because the HapMap methodology has involved a small number

of genomes, an alternative approach was to examine the Ensembl

records for the two genes www.ensembl.org [40]. In this case, use

of Ensembl’s Population Comparison tool across the two protein

coding transcripts for the gene SLC25A6 revealed a single non-

synonymous mutation. However, use of the Population Use of the

Comparison tool across the five protein coding transcripts for the

VDAC1 did not yield a single non synonymous mutation.

Statistical Methods
The Python scipy mathematical/statistical functions suite was

used for the statistical computations. The linear regression

function linregress was used for the omparisons of MeaPED

scores (and dN=dS) with median input sequence. Statistical

comparison of the two MeaPED analyses – one using Phyml as

the phylogenetic tree building application and the other using

Neighbor – was carried out using the Spearman Rank Correlation

function function (spearmanr). In the comparison of MeaPED

versus dN=dS consistency (Table 4), an all against all set of

comparisons of gene rankings was done for all subtypes of dengue

virus, HIV, hepatitis C virus and the avian, human and swine host

influenza virus. To avoid double counting, a maximum spanning

tree was computed from the pairwise comparisons, such that each

virus subtype appears once and there are no cycles. From the

reduced set of pairwise values taken from the maximum spanning

tree mean correlations of determination r2 were computed,

together with combined p-values based on both Stouffer’s and

Fisher’s methods (see discussion in Mosteller and Bush (1954)

[41]). A final note on estimating p-values from Spearman Rank

Correlations. For rv1, the estimated p-value returned by the

spearmanr scipy function was used. However, when r~1 – a

perfect match – the p-value is 0, even when a small number of

items are being compared. This clearly overstates the significance

of the match, and prevents both Stouffer and Fisher combined p-

values being computed. Instead, the p-value for a perfect match

involving lists of length n was estimated by computing the

Spearman Rank Correlation of two sorted lists of unique integers

of length nz1, where the lists were identical except that in one list

two adjacent integers had the same value (in which case the rank

difference is averaged).
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