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Abstract

There is evidence that multiple sclerosis (MS) pathology leads to distinct patterns of

volume loss over time (VLOT) in different central nervous system (CNS) structures.

We aimed to use such patterns to identify patient subgroups. MS patients of all clas-

sical disease phenotypes underwent annual clinical, blood, and MRI examinations

over 6 years. Spinal, striatal, pallidal, thalamic, cortical, white matter, and T2-weighted

lesion volumes as well as serum neurofilament light chain (sNfL) were quantified.

CNS VLOT patterns were identified using principal component analysis and patients

were classified using hierarchical cluster analysis. 225 MS patients were classified

into four distinct Groups A, B, C, and D including 14, 59, 141, and 11 patients,

respectively). These groups did not differ in baseline demographics, disease duration,

Abbreviations: D9HPT, dominant hand 9-hole peg test; EDSS, expanded disability status scale; LMER, linear mixed effect models; MPRAGE, magnetization-prepared rapid gradient-echo;
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disease phenotype distribution, and lesion-load expansion. Interestingly, Group A

showed pronounced spinothalamic VLOT, Group B marked pallidal VLOT, Group C

small between-structure VLOT differences, and Group D myelocortical volume

increase and pronounced white matter VLOT. Neurologic deficits were more severe

and progressed faster in Group A that also had higher mean sNfL levels than all other

groups. Group B experienced more frequent relapses than Group C. In conclusion,

there are distinct patterns of VLOT across the CNS in MS patients, which do not

overlap with clinical MS subtypes and are independent of disease duration and

lesion-load but are partially associated to sNfL levels, relapse rates, and clinical wors-

ening. Our findings support the need for a more biologic classification of MS subtypes

including volumetric and body-fluid markers.
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1 | INTRODUCTION

Increasing evidence suggests that relapsing–remitting, secondary pro-

gressive and primary progressive MS patients share multiple clinical

and paraclinical features, challenging the established phenotypical dis-

tinction. For example, even early relapsing–remitting MS patients

demonstrate clear signs of progressive clinical worsening independent

of relapses (Kappos et al., 2020). Numerous previous studies have

shown contradictory results on volume loss differences over time

(VLOT) in various CNS structures between clinical phenotypes

(De Stefano et al., 2010; Eshaghi et al., 2018; Tsagkas et al., 2018b;

Tsagkas et al., 2020). Furthermore, a recent post-mortem study identi-

fied a separate patient group, named myelocortical MS, with demye-

lination restricted to the cortical gray matter and the spinal cord,

which included patients from all clinical phenotypes (Trapp

et al., 2018). Thus, a classification that better reflects underlying

pathology is still needed and might be crucial for the effective selec-

tion of disease-modifying treatments (Coetzee & Thompson, 2018).

In healthy adults, brain volume changes over time vary both

across individuals and CNS regions (Raz et al., 2005). In previous stud-

ies, longitudinal atrophy measures have displayed a large variance

between MS patients (De Stefano et al., 2010; Eshaghi et al., 2018;

Tsagkas et al., 2018b). Apart from these between-patient heterogene-

ities, several studies have shown dissociation in the progression of

atrophy among different CNS compartments, suggesting an additional

spatiotemporal within-subject heterogeneity (Eshaghi et al., 2018;

Tsagkas et al., 2018b). This indicates that volume loss, progresses

independently across CNS regions. Hence, we hypothesized that the

anatomic patterns of atrophy progression over time could distinguish

patient groups with different underlying pathomechanisms.

In this study, we aimed to reveal the presence of distinct patterns

of VLOT between different CNS-structures and use these to identify

patient subgroups in a large MS-cohort. We then explored the clinical,

radiological, and serological features of the identified patient groups.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

Clinical and MRI data of an ongoing large-scale cohort of MS patients

(260 patients in total) from a single center (Multiple Sclerosis Center,

University Hospital, Basel, Switzerland) were analyzed, retrospec-

tively. All of the patients participating in our study have been previ-

ously reported (Magon et al., 2020; Tsagkas et al., 2018a; Tsagkas

et al., 2018b; Tsagkas et al., 2020). Patients were followed for up to

6 years. The MS diagnosis was made in accordance with international

panel established criteria (McDonald et al., 2001). The local ethics

committee approved the study (EKBB-46/04) and all patients pro-

vided written informed consent.

2.2 | Procedures

All patients underwent yearly standardized neurological examinations

including the Expanded Disability Status Scale (EDSS; www.

neurostatus.org) by trained and certified examiners, the dominant

hand and non-dominant hand 9-hole peg test (D9HPT and ND9HPT)

as well as the timed 25-ft walk test (T25fwt). The occurrence of new

relapses was recorded at every visit. Serum samples were collected on

the same day as the clinical visit and serum neurofilament light chain

(sNfL) levels were measured by Simoa assay as previously described

(Barro et al., 2018).

All MRI scans were performed on the same 1.5 T Magnetom

Avanto MR scanner (Siemens Healthineers, Erlangen, Germany). The

MRI-protocol included a high-resolution three-dimensional T1-

weighted magnetization-prepared rapid gradient-echo (MPRAGE)

sequence of the brain, acquired in sagittal orientation (TR/TI/

TE = 2080/1100/3.0 ms; flip angle = 15�, 160 slices, resolution:

0.98 × 0.98 × 1 mm3), which also covered the upper-cervical spinal
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cord. Additionally, a double echo SE proton density/T2-weighted

sequence was acquired (TR/TE1/TE2 = 3980/14/108 ms; flip

angle = 180� , 40 slices, 3 mm slice thickness without gap with an in-

plane resolution of 1 × 1 mm2).

2.3 | MRI analysis

2.3.1 | Lesion segmentation

All brain white matter lesions were segmented on T2-weighted and pro-

ton density images by trained expert observers according to the standard

operating procedures used at the Medical Image Analysis Center for the

analysis of clinical phase II and phase III trials (Magon et al., 2014).

T2-weighted lesion volume (T2LV) was calculated for the whole brain.

2.3.2 | Volumetry of CNS structures

All morphological analyses were performed on the T1-weighted

MPRAGE brain images.

Brain white matter was computed with the fully automated tool

SIENAX (version 2.6) (Smith et al., 2004). Cortical gray matter was

fully automatically segmented using CIVET (version 2.1.0) (Zijdenbos,

Forghani, & Evans, 2002), as also used previously in the context of

several longitudinal studies (Bhagwat et al., 2018; Makowski et al.,

2016; Redolfi et al., 2015; Tsagkas et al., 2020). Before segmentation

with CIVET, the T1-weighted images were linearly registered to the

standard stereotaxic space defined by the MNI ICBM 152 model

(Mazziotta et al., 2001). The images were then corrected for intensity

nonuniformity using N3 (Sled et al., 1998) and a linear registration to

the model (Collins et al., 1994) was applied.

The volume of the deep gray matter nuclei including thalamus,

striatum, and globus pallidus was estimated based on an established

nomenclature using MAGeT as previously described (Chakravarty

et al., 2013) and deployed in previous cross-sectional studies (Magon

et al., 2015). Data pre-processing and detailed MAGeT application

was described in a previous study (Magon, Chakravarty, et al., 2014).

In short, both the medical imaging netCDF (MINC) toolkit (version 2)

and the advance normalization tools (ANTs) were deployed as follows:

(1) bias field correction using N4-correction algorithm (Tustison et al.,

2010); (2) non-local means denoising (Manjón et al., 2010); (3) affine

registration using a normalized mutual information objective function

(Studholme et al., 2001); and (4) brain extraction using the BEaST

algorithm (Eskildsen et al., 2012). The preprocessed data were then

used as input for the MAGeT algorithm. The MAGeT registration pro-

cedure is also similar to CIVET, which should at least reduce potential

biases between these two algorithms that calculated the cortical, tha-

lamic, pallidal, and striatal volumes used in this study. Quality assess-

ment was performed on each T1-weighted image by a trained

researcher to ensure segmentation correctness.

MAGeT, CIVET, and SIENAX were performed on T1-weighted

images after lesion filling using the approach previously proposed by

our group (Magon et al., 2014) in order to reduce biases related to tis-

sue misclassification and improve the registration step (Sdika &

Pelletier, 2009). The SIENAX baseline volume-correction factor was

used for normalizing cortical gray matter, white matter, and deep gray

matter nuclei regarding variations of head size. All analyses were per-

formed on these corrected volumes.

Spinal cord volume analysis was performed using the established

CORDIAL semi-automatic software, as described in previous method-

ological and clinical studies (Amann et al., 2016; Tsagkas et al.,

2018b). Shortly, the segmentation was carried out over a 35 mm long

spinal cord segment, starting 27 mm below the cisterna pontis, which

corresponds roughly to the spinal cord volume between the Foramen

magnum and the C2/C3 intervertebral disk. Segmentations were visu-

ally inspected for quality and excluded from further statistical analysis

in case of segmentation errors.

2.4 | Statistical analysis

2.4.1 | Clustering of MS patients

The mean annual loss rate of cortical gray matter, brain white matter,

thalamus, striatum, globus pallidus, and the spinal cord over a maxi-

mum follow-up time of up to 6 years was determined as the average

percentage of the annualized changes between all available time-

points for every patient. In order to correct for the effect of age on

the mean annual atrophy rates of those regions, we calculated the

residuals from a regression analysis between the atrophy rate of each

region and age. Subsequently, a principal component analysis was per-

formed on these residuals of the mean annual loss rates using the sin-

gular value decomposition method (Husson, Josse, & Pages, 2010).

Principal components represent different parts of the between-

structure covariance and, thus, reflect between-structure patterns of

CNS VLOT. Each principal component extracted using this approach

highlighted the difference or similarity between volume changes

across individual CNS regions.

Principal components kept in further statistical analysis had to

meet the following criteria: (1) >90% of total variance retained,

(2) eigenvalue >0.7, (3) “broken stick rule,” (4) scree plot “elbow rule”
(Jolliffe, 2002). Hierarchical clustering was then performed using

Ward's-criterion on the selected principal components (Husson

et al., 2010). Extraction of the resulting groups was done after visual-

izing the cluster dendrogram (Figure 1). In order to validate the stabil-

ity of the resulting clusters, we repeated the principal component

analysis and subsequently the hierarchical clustering analysis

10,000-fold, using the same methods described above. In every repe-

tition, a contribution weight of 0.0001 to the principal component

analysis was ascribed to a random 10% of our patients and a contribu-

tion weight of 2 to another random 10%, leaving the rest 80% with a

uniform contribution weight of 1. This allowed “suppression” of a

smaller subject number—thus, avoiding bias against smaller clusters—

but inserted significant data modifications for reliable cross-validation

of our classification. After each repetition, the adjusted Rand index
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(Rand, 1971) and Meila's variation of information distance (Meil�a,

2007) were calculated to measure the similarity between the new

clustering outcome and our initial classification.

2.4.2 | Group comparisons

In order to approximate a normal distribution, logarithmic transforma-

tions were performed for the EDSS, D9HPT and ND9HPT, whereas

an inverse transformation was performed for the T25fwt. Baseline

MS severity score (Roxburgh et al., 2005), mean annual relapse num-

ber and the mean sNfL concentration were calculated. Comparisons

of baseline demographic factors, clinical measurements, and number

of follow-ups between groups were made using Welch's two sample

t-tests and Pearson's chi-squared test with Yates's continuity correc-

tion. Between-group differences in regard to baseline MRI measures

and annual rates of VLOT were performed using analyses of covari-

ance, while correcting for age, sex, and disease duration.

Statistical analysis of the patients' MRI metrics and clinical out-

comes (EDSS, D9HPT, ND9HPT, T25fwt) over 6 years was performed

using separate linear mixed effect models (LMER) in order to explore

between-group differences. For both model types, this was done

using a random intercept and a random time-slope for each subject to

allow for within-subject and between-subject variance. Independent

variables were entered blockwise keeping the following sequence:

first demographics, then disease duration and finally the aforemen-

tioned classification result. Each variable was tested both for its corre-

lation to the intercept as well as to the slope over time of the

dependent variable. All independent variables without statistical sig-

nificance were excluded from the final model. Within-group compari-

sons between CNS structures were performed using paired sample t-

tests, whereas respective effect sizes were computed as Cohen's d for

paired samples.

We performed a Cox regression analysis in a backwards stepwise

fashion including sex, age, disease duration, and the classification out-

come of our analysis to evaluate differences between the identified

MS patient groups in terms of disease progression and time-to-

disease progression. Clinical disease progression was defined

according to the following conventions: (1a) an increase of 1 point in

the EDSS if the baseline EDSS score was ≤5.5 or (1b) an increase of

0.5 point in the EDSS if the baseline EDSS score was >5.5, and (2) no

relapse in the last 12 months.

3 | RESULTS

3.1 | Results of clustering analysis

After excluding MRI sessions with segmentation failures or errors

(162 of 1,271 MRI) in either of the quantified CNS regions and

patients with availability of only 1 MRI dataset (in total, 29 patients

excluded due to missing values) as well as patients diagnosed with

clinically isolated syndrome that did not convert to clinically definite

MS during follow-up (5 patients in total), a total of 226 patients, and

1,080 examination datasets (including clinical, sNfL, and MRI data)

were entered in the statistical analysis.

In a first step, we performed a regression analysis between the

annual atrophy rates of the spinal cord, striatum, globus pallidus, thal-

amus, cortical gray matter, and brain white matter on one side and

age on the other. Subsequently, we performed a principal component

analysis using the residuals from each regression analysis. The first

four principal components accounted cumulatively for 92% of the

total data-variance and were kept in further statistical analysis.

Table S1 displays Pearson's correlation coefficients between the

residuals of the mean annual atrophy rates of the analyzed CNS

regions after correcting for age. Detailed results of those four princi-

pal components are displayed in Table 1.

The dendrogram of the hierarchical clustering is shown in

Figure 1. 225 out of 226 patients were classified in four different

groups, which are from now on referred to as Groups A (14 patients),

B (59 patients), C (141 patients), and D (11 patients). One patient

(male, baseline age 21 years, baseline disease duration 10 years,

relapsing–remitting MS of pediatric onset) was not classified in any of

these four groups and was therefore excluded from further analysis as

an outlier. The groups' demographic and baseline clinical and volumet-

ric characteristics are displayed in Table 2. Groups did not differ in

age, sex, disease duration, and clinical phenotype distribution. Patients

of Group A had a higher number of untreated patients compared to

Group C, whereas the distribution of treatments used in Group C was

different compared to Group D.

Cross-validation of the clustering process with 10,000-fold repe-

tition showed a clustering agreement with a mean adjusted Rand

F IGURE 1 Dendrogram of hierarchical clustering of multiple
sclerosis patients using Ward's criterion. Y-axis displays the

observations' height, which is a measure of proximity of either
individual data points and/or clusters. The turquoise box contains all
patients classified in Group A. The red box contains all patients
classified in Group B. The blue box contains all patients classified in
Group C. The black box contains all patients classified in Group
D. The green line signifies the single outlier excluded from further
analysis
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index of 0.72 ± 0.17 (with 0 corresponding to random clustering

results and 1 to absolute agreement between clustering outcomes)

and a Meila's variation of information distance of 0.57 ± 0.30

(with 0 corresponding to absolute agreement and 2.35—equal to

log(225)—corresponding to absolute disagreement between cluster-

ing outcomes).

3.2 | Within-group patterns of VLOT

Mean annual atrophy rates of the spinal cord, striatum, globus

pallidus, thalamus, cortical gray matter, and brain white matter vol-

umes as well as within-group differences between the atrophy rates

of all CNS-structures and the respective size effects are reported in

Table 3 and Figure 2. Group A showed a more prominent spinal cord

(−3.82%/year) and thalamic (−2.65%/year) VLOT compared to all

other CNS-structures (absolute Cohen's d of spinal cord and thalamus

compared to all other structures: 0.56–1.11 and 0.40–1.46). Group B

was characterized by a more prominent pallidal (−0.93%/year) VLOT

compared to all other structures (absolute Cohen's d between globus

pallidus and all other structures: 0.20–1.02). Between-structure differ-

ences of VLOT were generally rather small in Group C. Finally, Group

D demonstrated an increase of spinal cord (1.29%/year) and cortical

gray matter (2.82%/year) volume over time and a more prominent

brain white matter VLOT (−1.37%/year) (absolute Cohen's d of corti-

cal gray matter, spinal cord and brain white matter compared to all

other structures: 0.39–3.05).

3.3 | Longitudinal analysis of MRI measurements
between groups

Detailed results for each analyzed CNS structure and T2LV are dis-

played in Table 4. Summarizing the most important results, Group A

demonstrated significantly greater spinal cord and thalamic VLOT

compared to all other groups. Group B showed significantly greater

pallidal VLOT compared to groups C and D. Group C showed lower

VLOT in all CNS structures compared to Groups A and B. Group D

showed a significant cortical gray matter volume increase compared

to all other groups and a significant spinal cord volume increase com-

pared to Groups A and B; additionally, a significantly greater white

matter VLOT than in Group C was shown. T2LV increase over time

did not differ between groups.

3.4 | Longitudinal analysis of clinical outcomes
between groups

Trends of raw values of EDSS, T25fwt, and 9HPT in Groups A, B, C,

and D over 6 years are displayed in Figure 3.

3.4.1 | EDSS

Between-group differences of the average logEDSS were assessed

using LMER analyses after correcting for sex, age, and disease dura-

tion. Group A had worse average logEDSS compared to Groups B (dif-

ference: 0.36 ± 0.10; p < .01) and C (difference: 0.48 ± 0.10;

p < .001), but a similar average logEDSS compared to Group D. The

average logEDSS also did not differ between Groups B, C, and

D. LogEDSS change over time did not differ between all groups.

3.4.2 | T25fwt

Between-group differences of the average T25fwt−1 were assessed

using LMER analyses after correcting for age and disease duration.

Group A had worse average T25fwt−1 compared to all other groups

(differences vs.: Group B—0.09 ± 0.02; p < .001; Group C—0.10

± 0.02; p < .001; Group D—0.07 ± 0.03; p < .05). The average

T25fwt−1 did not differ between Groups B, C, and D. Moreover,

TABLE 1 Results of principal component analysis of multiple
sclerosis patients

PC1 PC2 PC3 PC4

Total data variance (%) 38.9 26.1 15.8 11.2

Eigenvalue 2.69 1.81 1.09 0.77

SC

Coordinate 0.95 −0.16 −0.76 −0.48

QoVR 0.52 0.02 0.33 0.13

Contribution (%) 29.5 1.29 39.6 29.3

Striatum

Coordinate 0.43 0.43 −0.01 0.23

QoVR 0.31 0.30 0.00 0.09

Contribution (%) 6.13 8.65 0.00 6.97

Globus Pallidus

Coordinate 0.53 0.77 0.77 −0.42

QoVR 0.18 0.39 0.03 0.12

Contribution (%) 9.03 27.9 30.4 22.8

Thalamus

Coordinate 0.80 0.13 −0.22 0.52

QoVR 0.58 0.02 0.04 0.24

Contribution (%) 20.9 0.85 3.27 34.9

Cortical GM

Coordinate 1.02 −0.65 0.58 0.13

QoVR 0.55 0.23 0.18 0.01

Contribution (%) 33.8 20.7 22.6 2.17

Brain WM

Coordinate 0.14 0.93 −0.24 0.17

QoVR 0.02 0.75 0.05 0.03

Contribution (%) 0.68 40.6 4.06 3.88

Abbreviations: GM, gray matter; PC, principal component; QoVR, quality

of variable representation; SC, spinal cord; WM, white matter.
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TABLE 2 Demographics and baseline clinical and volumetric characteristics of patients with MS per group

Characteristics Group A Group B Group C Group D p-value

Number of patients 14 59 141 11

Baseline age (years) n.s.

Mean ± SD 40.6 ± 8.83 45.6 ± 11.2 44.5 ± 10.7 46.7 ± 13.8

Range 30–56 21–67 19–65 22–66

Sex (female/male) 7 / 7 36 / 23 97 / 44 10/1 n.s.

Clinical classification 8 RR, 3 SP, 3

PP

39 RR, 13 SP, 1 PP, 4 RR ! SP,

2 CIS ! RR

102 RR, 21 SP, 7 PP, 10 RR ! SP,

1 CIS ! RR

7 RR, 4 SP n.s.

Baseline disease duration

(y)

n.s.

Mean ± SD 10.6 ± 8.26 12.4 ± 9.89 13.4 ± 8.89 14.1 ± 3.81

Range 1–30 0–37 0–47 7–19

Baseline MSSS A vs. B: *

A vs. C: ***

A vs. D: *
Mean ± SD 6.15 ± 2.24 4.53 ± 2.02 3.79 ± 2.03 4.04 ± 2.17

Range 1.18–9.70 0.70–8.32 0.21–7.81 1.54–7.34

Baseline EDSS A vs. C: *

Median 3.75 3.0 2.5 3.0

Range 1.0–7.5 0.0–6.5 0–6.5 1.5–6.0

Baseline T25fwt (s) n.s.

Mean ± SD 8.35 ± 7.01 8.55 ± 13.9 6.61 ± 7.84 7.97 ± 5.54

Range 3.65–28.2 3.25–93.3 2.15–82.7 3.50–22.3

Baseline D9HPT (s) n.s.

Median 25.6 ± 9.08 23.4 ± 7.73 21.0 ± 5.51 23.2 ± 6.57

Range 16.0–49.3 13.5–47.0 14.5–53.3 16.3–34.4

Baseline ND9HPT (s) A vs. B: ***

A vs. C: ***

A vs. D: *
Median 32.6 ± 13.0 24.1 ± 8.7 22.2 ± 7.00 24.0 ± 5.85

Range 18.8–65.2 15.7–71.6 14.5–80.0 16.0–32.6

Treatment (treated/

untreated)

4 / 10 38 / 21 96 / 45 8 / 3 A vs. C: *

Azathioprin — — 5 — C vs. D: **

Interferon-1β/1a 3 32 73 6

Glatiramer-acetate 1 7 19 —

Mitoxantrone — 1 3 2

Number of follow-ups A vs. B: *

A vs. C: **

B vs. C: ***

B vs. D: **

C vs. D: ***

Mean ± SD 3.00 ± 1.18 4.19 ± 1.82 5.34 ± 1.43 2.64 ± 0.81

Range 2–6 2–7 2–7 2–6

Maximum follow-up time

(years)

A vs. B: *

A vs. C: ***

B vs. C: ***

B vs. D: **

C vs. D: ***

Mean ± SD 2.29 ± 1.59 3.76 ± 2.08 4.94 ± 1.38 1.91 ± 1.22

Range 1–6 1–6 1–6 1–6

Baseline SC volume (cm3) n.s.

Mean ± SD 2.41 ± 0.28 2.40 ± 0.30 2.38 ± 0.33 2.18 ± 0.29

Range 1.89–2.89 1.70–3.05 1.61–3.07 1.75–2.58

Baseline striatum volume

(cm3)

n.s.

Mean ± SD 20.0 ± 1.87 20.9 ± 2.48 21.0 ± 2.40 20.3 ± 2.22

Range (min; max) 16.7–23.5 15.9–26.7 15.1–29.0 17.3–24.7
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T25fwt−1 worsening over time was faster for Group A compared to all

other groups (differences vs.: Group B—0.019 ± 0.005/year, p < .001;

Group C—0.019 ± 0.005/year, p < .001; Group D—0.019 ± 0.007/

year, p < .05). T25fwt−1 changes over time did not differ between

Groups B, C, and D.

3.4.3 | 9HPT

Between-group differences of the average logD9HPT were assessed

using LMER analyses after correcting for sex and age. Group A had

worse average logD9HPT compared to Groups B (difference: 0.36

± 0.9; p < .001) and C (difference: 0.46 ± 0.9; p < .001), but a similar

average logD9HPT compared to Group D. The average logD9HPT did

not differ between Groups B, C, and D. Moreover, the logD9HPT

worsening over time was faster for Group A compared to Group B

(difference: 0.06 ± 0.02/year; p < .05) and Group C (difference: 0.07

± 0.02/year; p < .05), but similar compared to Group C. Changes of

logD9HPT over time did not differ between Groups B, C, and D.

Between-group differences of the average logND9HPT were

assessed using LMER analyses after correcting for sex, age, and dis-

ease duration. Group A had worse average logND9HPT compared to

all other groups (differences vs.: Group B: 0.54 ± 0.10, p < .001,

Group C: 0.65 ± 0.10, p < .001; Group D: 0.52 ± 0.14, p < .01). The

average logND9HPT did not differ between Groups B, C, and

D. Moreover, the logND9HPT worsening over time was faster for

Group A compared to all other groups (differences vs.: Group B: 0.10

± 0.02/year, p < .001, Group C: 0.12 ± 0.02/year, p < .001; Group D:

0.11 ± 0.03/year, p < .01). LogND9HPT worsening over time was sim-

ilar between GROUPs B, C, and D.

3.4.4 | Relapses

The mean annual number of relapses was higher for Group B (0.45

± 0.57 relapses/year) compared to Group C (0.24 ± 0.36 relapses/

year) (p < .05), but did not differ between all other groups (Group A:

0.42 ± 0.63 relapses/year; Group D: 0.22 ± 0.28 relapses/year).

3.4.5 | Disease progression

In our Cox analysis no differences between Groups A, B, C, and D

were found in terms of disease progression and time-to-disease

progression.

3.5 | sNfL across groups

After correcting for age, mean sNfL of all available time points was

higher for Group A (51.4 ± 27.5 pg/mL) compared to all other groups

(Group B: 40.2 ± 17.7 pg/mL, p < .001; Group C 33.7 ± 14.5 pg/mL,

TABLE 2 (Continued)

Characteristics Group A Group B Group C Group D p-value

Baseline Globus Pallidus

volume (cm3)

n.s.

Mean ± SD 3.01 ± 0.37 3.18 ± 0.34 3.24 ± 0.36 3.17 ± 0.29

Range (min; max) 2.31–3.66 2.45–4.07 2.35–4.60 2.65–3.57

Baseline thalamus volume

(cm3)

A vs. C: *

Mean ± SD 11.9 ± 1.89 13.0 ± 1.86 13.2 ± 2.04 12.3 ± 2.47

Range (min; max) 8.33–14.5 8.55–17.1 7.35–17.3 9.20–17.5

Baseline cortical GM

volume (cm3)

n.s.

Mean ± SD 650.5 ± 34.5 652.2 ± 60.7 644.2 ± 54.0 620.5 ± 47.7

Range (min; max) 591.8–731.6 529.9–781.2 513.7–793.6 528.3–701.2

Baseline brain WM volume

(cm3)

n.s.

Mean ± SD 727.9 ± 42.4 730.9 ± 47.4 735.5 ± 51.2 730.3 ± 52.2

Range (min; max) 644.2–806.5 596.4–831.7 603.2–844.7 528.2–701.2

Note: Between-group comparisons were performed using Welch's two sample t-test and Pearson's chi-squared test with Yate's continuity or Bonferroni's

correction where appropriate. Comparisons of baseline volumes between groups were performed with analysis of covariance (ANCOVA), after correcting

for sex, age, and disease duration.

Abbreviations: CIS ! RR, clinically isolated syndrome transitioned to relapsing remitting multiple sclerosis; D9HPT, dominant hand 9-hole peg test; EDSS,

expanded disability status scale; GM, gray matter; MSSS, multiple sclerosis severity score; n.s., not significant for any pairwise comparisons between

Groups A, B, and C; ND9HPT, non-dominant hand 9-hole peg test; PP, primary progressive; RR, relapsing remitting; RR ! SP, relapsing remitting

transitioned to secondary progressive multiple sclerosis; SC, spinal cord; SD, standard deviation; SP, secondary progressive; T25fwt, timed 25-foot walk

test; WM, white matter.
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TABLE 3 Annual volume changes as well as within-group differences and effect size of within-group differences of MRI measures in patients
with multiple sclerosis

Annual volume changes of
MRI measures Group A n = 14 Group B n = 59 Group C n = 141 Group D n = 11

Between-group

differences p-
value

SC (%/years) A vs. B: ***

A vs. C: ***

A vs. D: ***

B vs. C: **

B vs. D: ***

C vs. D: ***

Mean ± SD −3.82 ± 1.97 −0.67 ± 0.97 −0.18 ± 0.66 1.29 ± 1.32

Range (min; max) −8.81; −0.58 −2.81; 1.68 −2.40; 1.94 −1.53; 3.90

Striatum (%/years) A vs. B: **

A vs. C: ***

B vs. C: ***

C vs. D: **

Mean ± SD −1.27 ± 1.04 −0.54 ± 0.84 0.15 ± 0.53 −0.58 ± 0.80

Range (min; max) −2.60; 0.83 −3.03; 1.71 −1.43; 3.03 −1.97; 0.42

GP (%/years) A vs. C: ***

A vs. D: *

B vs. C: ***

B vs. D: **

Mean ± SD −1.65 ± 2.37 −1.61 ± 1.09 −0.33 ± 0.79 −0.55 ± 1.50

Range (min; max) −6.26; 2.66 −4.97; 0.89 −2.20; 3.16 −3.54; 2.01

Thalamus (%/years) A vs. B: ***

A vs. C: ***

A vs. D: ***

B vs. C: ***

Mean ± SD −2.65 ± 1.59 −0.67 ± 0.87 0.05 ± 0.57 −0.28 ± 1.10

Range (min; max) −5.00; 0.05 −3.18; 1.57 −1.49; 1.99 −2.11; 1.71

Cortical GM (%/years) A vs. C: ***

A vs. D: ***

B vs. C: ***

B vs. D: ***

C vs. D: ***

Mean ± SD −1.03 ± 1.42 −1.28 ± 1.05 −0.06 ± 0.61 2.82 ± 1.41

Range (min; max) −4.33; 1.40 −4.18; 0.87 −1.83; 1.77 1.41; 5.83

Brain WM (%/years) A vs. B: ***

A vs. C: ***

B vs. C: **

B vs. D: **

C vs. D: ***

Mean ± SD −1.50 ± 1.61 −0.40 ± 1.01 0.03 ± 0.54 −1.37 ± 1.02

Range (min; max) −4.58; 0.49 −3.34; 2.07 −1.45; 1.90 −3.13; 0.79

Within-group differences

between annual volume

changes of MRI-

measures

Group A n = 14 Group B n = 59 Group C n = 141 Group D n = 11 Within-group

differences p-

value

Cortical GM–Brain WM B:***

D:***Mean differences (%)

[95% CI (min; max)]

0.47 [−0.80; 1.73] −0.88 [−1.31; −0.45] −0.08 [−0.23; 0.06] 4.18 [3.26; 5.11]

Mean Cohen's d

[95% CI (min; max)]

0.21 [−0.57; 0.99] −0.53 [−0.91; −0.16] −0.09 [−0.33; 0.14] 3.05 [1.74; 4.36]

Thalamus–Brain WM A:**

D:*Mean differences (%)

[95% CI (min; max)]

−1.15 [−1.97; −0.33] −0.30 [−0.61; 0.02] 0.02 [−0.08; 0.13] 1.09 [0.32; 1.86]

Mean Cohen's d

[95% CI (min; max)]

−0.81 [−1.62; −0.01] −0.24 [−0.61; 0.12] 0.04 [−0.20; 0.27] 0.95 [0.01; 1.89]

Thalamus–Cortical GM A:**

B:**

D:***
Mean differences (%)

[95% CI (min; max)]

−1.62 [−2.51; −0.72] 0.58 [0.20; 0.97] 0.11 [−0.01; 0.23] −3.10 [−3.83; −2.36]

Mean Cohen's d

[95% CI (min; max)]

−1.04 [−1.87; −0.22] 0.40 [0.03; 0.77] 0.15 [−0.09; 0.39] −2.82 [−4.10; −1.57]

GP–Brain WM B:***

C:***

D:*
Mean differences (%)

[95% CI (min; max)]

−0.15 [−1.78; 1.48] −1.21 [−1.52; −0.90] −0.36 [−0.49–0.23] 0.81 [−0.58; 2.20]

Mean Cohen's d

[95% CI (min; max)]

−0.05 [−0.83; 0.72] −1.02 [−1.40; −0.63] −0.46 [−0.69; −0.22] 0.39 [−0.51; 1.29]
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TABLE 3 (Continued)

Annual volume changes of
MRI measures Group A n = 14 Group B n = 59 Group C n = 141 Group D n = 11

Between-group

differences p-
value

GP–Cortical GM C: ***

D:***Mean differences (%)

[95% CI (min; max)]

−0.62 [−1.91; 0.67] −0.33 [−0.73; 0.07] −0.28 [−0.44; −0.12] −3.37 [−4.31; −2.43]

Mean Cohen's d

[95% CI (min; max)]

−0.28 [−1.05; 0.50] −0.21 [−0.58; 0.15] −0.29 [−0.52; −0.05] −2.40 [−3.57; −1.24]

GP–Thalamus B:***

C:***Mean differences (%)

[95% CI (min; max)]

1.00 [−0.45; 2.46] −0.91 [−1.35; −0.48] −0.39 [−0.54; −0.23] −0.27 [−1.48; 0.94]

Mean Cohen's d

[95% CI (min; max)]

0.40 [−0.39; 1.18] −0.55 [−0.92; 0.18] −0.42 [−0.66; −0.19] −0.15 [−1.04; 0.74]

Striatum–Brain WM C:*

D:*Mean differences (%)

[95% CI (min; max)]

−0.23 [−0.49; 0.96] −0.14 [−0.41; 0.13] 0.12 [0.02; 0.21] 0.79 [0.14; 1.43]

Mean Cohen's d

[95% CI (min; max)]

−0.19 [−0.59; 0.97] −0.13 [−0.50; 0.23] 0.20 [−0.03; 0.44] 0.82 [−0.10; 1.75]

Striatum–Cortical GM B:***

C:***

D:***
Mean differences (%)

[95% CI (min; max)]

−0.23 [−1.16; 0.70] 0.74 [0.41; 1.08] 0.20 [0.08; 0.32] −3.40 [−4.34; −2.45]

Mean Cohen's d

[95% CI (min; max)]

−0.14 [−0.92; 0.63] 0.58 [0.20; 0.95] 0.28 [0.05; 0.52] −2.42 [−3.59; −1.25]

Striatum–Thalamus A: ***

C:*Mean differences (%)

[95% CI (min; max)]

1.39 [0.84; 1.94] 0.16 [−0.13; 0.45] 0.09 [0.01; 0.17] −0.30 [−0.89; 0.29]

Mean Cohen's d

[95% CI (min; max)]

1.46 [0.59; 2.33] 0.14 [−0.22; 0.51] 0.18 [−0.05; 0.42] −0.34 [−1.23; 0.56]

Striatum–GP B:***

C:***Mean differences (%)

[95% CI (min; max)]

0.38 [−1.05; 1.82] 1.07 [0.76; 1.38] 0.48 [0.36; 0.60] −0.03 [−1.29; 1.24]

Mean Cohen's d

[95% CI (min; max)]

0.15 [−0.62; 0.93] 0.91 [0.53; 1.29] 0.66 [0.42; 0.90] −0.01 [−0.90; 0.88]

SC–Brain WM A: **

C:**

D: **
Mean differences (%)

[95% CI (min; max)]

−2.32 [−3.76; −0.88] −1.28 [−1.67; 0.11] −0.20 [−0.34; −0.07] 2.65 [1.34; 3.96]

Mean Cohen's d

[95% CI (min; max)]

−0.93 [−1.75; 0.11] −0.19 [−0.56; 0.18] −0.25 [−0.48; −0.01] 1.36 [0.37; 2.35]

SC–Cortical GM A:**

B: **

D:*
Mean differences (%)

[95% CI (min; max)]

−2.79 [−4.38; −1.20] 0.60 [0.21; 0.99] −0.12 [−0.26; 0.02] −1.53 [−2.79; 0.27]

Mean Cohen's d

[95% CI (min; max)]

−1.01 [−1.84; −0.19] 0.40 [0.03; 0.77] 0.14 [−0.38; 0.09] −0.81 [−1.74; 0.11]

SC–Thalamus C:***

D:**Mean differences (%)

[95% CI (min; max)]

−1.17 [−2.77; 0.44] 0.01 [−0.31; −0.34] −0.23 [−0.36; −0.10] 1.57 [0.49; 2.65]

Mean Cohen's d

[95% CI (min; max)]

−0.42 [−1.20; 0.36] 0.01 [−0.35; 0.38] −0.29 [−0.53; −0.06] 0.98 [0.04; 1.92]

SC–GP B:***

D:**Mean differences (%)

[95% CI (min; max)]

−2.17 [−4.41; 0.07] 0.93 [0.49; 1.36] 0.16 [−0.02; 0.33] 1.84 [0.72; 2.96]

Mean Cohen's d

[95% CI (min; max)]

−0.56 [−1.35; 0.23] 0.56 [0.18; 0.93] 0.15 [0.08; 0.39] 1.10 [0.14; 2.06]

(Continues)
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p < .001; Group D: 38.5 ± 18.2 pg/mL, p < .01). Group B had a trend

to higher mean sNfL compared to Group C (p = .066). All other

between-group differences were not statistically significant. Raw

mean serum sNfL-values between groups are shown in Figure 4.

4 | DISCUSSION

In this work, we aimed to reveal distinct anatomic patterns of VLOT in

selected CNS structures and then use these patterns to identify

patient subgroups in MS. For this purpose, spinal cord, striatal, pallidal,

thalamic, cortical gray matter, and white matter volumes were mea-

sured in a large MS cohort followed-up annually over 6 years. Pat-

terns of VLOT were extracted using a principal component analysis

after removing the effect of age from the VLOT for each individual

CNS structure. These patterns were then entered in a hierarchical

clustering analysis for unsupervised identification of patient groups.

With this method, we identified four patient groups with distinct ana-

tomic patterns of CNS VLOT. Moreover, we showed that these

groups were associated with distinct clinical, radiological, and blood

biomarker characteristics.

Our statistical approach allowed to extract four distinct patterns

of VLOT. Group A was characterized by a more prominent spino-

thalamic VLOT compared to all other measured structures. In contrast,

Group B displayed a marked pallidal VLOT. Group C was generally

characterized by low volume changes and generally low between-

structure VLOT differences. Finally, Group D showed an increase in

corticospinal volume as well as a pronounced white VLOT compared

to other CNS structures. Patients in these groups did not differ by

sex, age, disease duration, and more importantly clinical phenotype.

All three clinical phenotypes (relapsing–remitting, secondary progres-

sive, and primary progressive MS) were represented in each of these

groups. The 10,000-fold cross-validation analysis showed good agree-

ment between the resulting clusters, supporting the robustness of our

TABLE 3 (Continued)

Annual volume changes of
MRI measures Group A n = 14 Group B n = 59 Group C n = 141 Group D n = 11

Between-group

differences p-
value

SC–Striatum A: **

C: ***

D: **
Mean differences (%)

[95% CI (min; max)]

−2.56 [−3.89; −1.22] −0.14 [−0.49; 0.20] −0.32 [−0.45; −0.19] 1.87 [0.71; 3.02]

Mean Cohen's d

[95% CI (min; max)]

−1.11 [−1.94; −0.27] −0.11 [−0.47; 0.26] −0.41 [−0.65; −0.17] 1.09 [0.13; 2.04]

Note: Comparisons of annual volume changes between groups were performed with analysis of covariance (ANCOVA), after correcting for sex, age,

disease duration, and baseline volume. Within-group comparisons were performed using paired sample t-tests. Effect sizes were computed as Cohen's d

for paired samples.

Abbreviations: GM, gray matter; GP, globus pallidus; n, number of subjects; n.s. = not significant for any pairwise comparisons between Groups A, B, and C

or between CNS-structures within-groups; SC, spinal cord; SD, standard deviation; WM, white matter.

F IGURE 2 (a) Boxplots of mean annual volume changes of the spinal cord, striatum, globus pallidus, thalamus, cortical gray matter (GM), and
brain white matter (WM) by group. Whiskers correspond to annual volume changes' 25th and 75th percentiles. (b) Effect size of within-group
differences in volume loss over time between CNS-structures by group. Whiskers correspond to the effect size 95% confidence intervals.
Absolute Cohen's d values are indicated with a light blue to red gradient. Shape indicates negligible, small, medium, and large effect sizes.
Abbreviations: SC, spinal cord; STR, striatum; GP, globus pallidus; THLM, thalamus; cGM, cortical gray matter; WM, brain white matter
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results in this MS-population. In summary, our findings clearly add to

the evidence currently challenging applied clinical definitions (Kappos

et al., 2020; Trapp et al., 2018) and their predictive value.

One patient of our cohort was not classified in either of the four

identified subgroups and was excluded from further statistical analy-

sis. Interestingly, this patient was the only pediatric-onset MS patient

of our study. Unfortunately, due to the lack of a larger pediatric-onset

MS group in our cohort, we could not verify if patterns of CNS VLOT

differ in this patient group compared to adult-onset MS patients. Nev-

ertheless, this could potentially be the focus of future investigations.

Interestingly, the four identified groups—resulting from distinct

patterns of VLOT across the CNS—displayed differences with regard

TABLE 4 Average CNS volumes and volume changes over time as well as between-group differences in patients with multiple sclerosis as
calculated by linear mixed effect regression models over a maximum of 6 years

Volume of CNS structures Group A n = 14 Group B n = 59 Group C n = 141 Group D n = 11 Between-group differences p-value

SC volume (mm3)

Average ± SE 2,194 ± 77.2 2,376 ± 37.7 2,407 ± 25.2 2,327 ± 88.7 A vs. C: *

Change per Year ± SE −81.6 ± 6.63 −15.8 ± 2.31 −3.86 ± 1.36 16.8 ± 8.15 A vs. B: ***

A vs. C: ***

A vs. D: ***

B vs. C: ***

B vs. D: ***

Striatum volume (mm3)

Average ± SE 18,982 ± 535 20,720 ± 261 20,851 ± 175 19,973 ± 614 A vs. B: *

A vs. C: **

Change per Year ± SE −204 ± 37.9 −67.3 ± 12.6 20.8 ± 6.92 −92.5 ± 46.7 A vs. B: **

A vs. C: ***

B vs. C: ***

GP volume (mm3)

Average ± SE 2,923 ± 88.6 3,067 ± 43.0 3,182 ± 28.9 3,090 ± 102 A vs. C: *

Change per Year ± SE −44.9 ± 8.51 −39.3 ± 2.59 −14.5 ± 1.41 −10.1 ± 10.9 A vs. C: ***

B vs. C: ***

B vs. D: *

Thalamus volume (mm3)

Average ± SE 11,003 ± 465 12,608 ± 227 12,985 ± 152 11,894 ± 534 A vs. B: *

A vs. C: ***

Change per Year ± SE −219 ± 31.6 −84.1 ± 11.0 4.42 ± 6.14 −61.3 ± 38.5 A vs. B: ***

A vs. C: ***

A vs. D: **

B vs. C: ***

Cortical GM volume (cm3)

Average ± SE 620 ± 11.6 638 ± 5.60 639 ± 3.73 638 ± 13.5 n.s.

Change per Year ± SE −8.34 ± 1.72 −4.47 ± 0.53 −0.91 ± 0.30 7.42 ± 2.21 A vs. C: ***

A vs. D: **

B vs. C: ***

B vs. D: ***

C vs. D: **

Brain WM volume (cm3)

Average ± SE 705 ± 12.2 722 ± 5.91 734 ± 3.95 717 ± 14.1 n.s.

Change per Year ± SE −5.20 ± 1.63 −2.71 ± 0.52 −0.001 ± 0.29 −7.08 ± 2.04 A vs. C: **

B vs. C: ***

C vs. D: **

T2 lesion volume (mm3)

Average ± SE 11,522 ± 1,681 5,313 ± 818 5,634 ± 539 8,693 ± 1889 A vs. B: **

A vs. C: **

Change per Year ± SE 510 ± 195 184 ± 68.6 32.5 ± 38.3 92.5 ± 227 n.s.

Note: All depicted values have been calculated using linear mixed effect regression models after correcting for sex, age, and disease duration. Comparisons

between groups with regard to average volumes changes and volume changes over time were performed with post hoc analysis using the Tukey test.

Abbreviations: GM, gray matter; GP, globus pallidus; n, number of subjects; n.s., not significant for any pairwise comparisons between Groups A, B, and C

or between CNS-structures within-groups; SC, spinal cord; SE, standard error; WM, white matter.
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to their respective clinical courses during the monitoring-period of our

study. Worsening of motor outcomes (walking speed and hand dex-

terity) was generally more severe and faster in Group A (characterized

by pronounced spinothalamic atrophy) compared to all other groups.

This finding is in line with recent studies pointing to strong correla-

tions of spinal cord and thalamic volume loss to clinical disease pro-

gression (Eshaghi et al., 2018; Magon et al., 2020; Tsagkas

et al., 2018b). In accordance to these findings, Group A, compared to

all other groups, also had a higher mean sNfL which is a specific bio-

marker of neuroaxonal damage and loss that also correlates with clini-

cal progression (Barro et al., 2018). EDSS worsening over time (as a

continuous variable in our linear mixed effect models) and definite

EDSS progression (as binary outcome in our survival analysis) was sim-

ilar between groups, which may be ascribed to the limitations of the

EDSS (e.g., non-linearity, low sensitivity for clinical changes especially

in advanced disease stages) combined with the small number of

patients included in some of the identified patient groups. Baseline

MS severity score, however, was also higher for Group A, indicating a

more aggressive disease course in this group even before the

monitoring-period of our study.

It is worth emphasizing that although average lesion-load was sta-

tistically higher for Group A compared to Groups B and C, T2LV

increase over time was similar for all groups. In addition—in contrast

to clinical progression, MRI findings, and mean sNfL levels—relapse

occurrence did not statistically differ between Group A and the other

three groups. Interestingly, Groups B and C differed in terms of

relapse rates, even though T2LV increase over time did not differ

between groups. Hence, the aforementioned longitudinal volume dif-

ferences cannot be ascribed to focal inflammatory events—at least

not to those occurring in the cerebral white matter. Apart from focal

inflammatory activity—manifesting as relapses and demonstrated as

lesions on MRI—the presence of a diffuse neurodegenerative compo-

nent in terms of neuronal and axonal loss as well as demyelination is

well established in MS (Carassiti et al., 2018; Evangelou, DeLuca,

Owens, & Esiri, 2005; Petrova, Carassiti, Altmann, Baker, & Schmierer,

2018). These two pathomechanisms have been also shown to be at

least partly independent from each other (Carassiti et al., 2018;

Evangelou et al., 2005; Petrova et al., 2018). Our results may further

support a dissociation between focal inflammation and neu-

rodegeneration, as patterns of CNS VLOT corresponded to clinical

F IGURE 3 Trends of the expanded disability status scale (EDSS), Timed 25-ft walk test (T25fwt), dominant hand and non-dominant hand
9-Hole Peg Test (D9HPT and ND9HPT, respectively) over 6 years by group. Mean trends are shown as blue lines, 95% confidence intervals are
shown in gray
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differences independently of lesion load, although a contribution of

spinal and intracortical/subpial lesions—which were not assessed in

this study—cannot be excluded.

A recent histopathologic study by Trapp et al. described a distinct

subtype of MS characterized by pronounced demyelination restricted

to the spinal cord and cortical gray matter but not affecting the brain

white matter in 12 autopsy patients, which they then named

myelocortical MS (Trapp et al., 2018). These patients were indistin-

guishable from patients with typical MS, even in light of all clinical and

radiological features including T2w hyperintense white matter areas,

which surprisingly did not correspond to demyelinated areas in histo-

logical analysis. Moreover, volumetric analysis in the MR-images of

those patients revealed a significantly higher cortical gray matter

parenchymal fraction and cortical thickness compared to “typical MS.”
Interestingly, our Group D showed a paradoxical expansion of spinal

cord and cortical gray matter and faster brain white matter atrophy

progression compared to other CNS structures (Figure 2). This was

unique in this group compared to the other three groups in our

cohort. Although increase of CNS volume is theoretically not to be

expected in MS patients (especially when assessed over large periods

of time, as in our study), a recent study examining large numbers of

patients in a longitudinal fashion has also identified a small proportion

of patients with brain volume increase (Andelova et al., 2018). Despite

the fact that our study cannot provide sufficient evidence to this end,

it could be speculated, that Group D corresponds to the described

myelocortical MS.

The majority of current therapeutic strategies in MS have an

immunomodulatory effect, which has been measured—for the greater

part—in terms of a reduction of relapses and new or enlarging lesions

(Tintore, Vidal-Jordana, & Sastre-Garriga, 2019). Our work displays a

certain deviation from this concept with groups generally having simi-

lar characteristics in the “no evident disease activity-3” framework. In

addition, a number of relapsing–remitting patients demonstrating a

fast progressing CNS atrophy, and a number of secondary progressive

and primary progressive MS patients sharing clinical and radiological

features with relapsing–remitting patients. Since evaluation of inflam-

matory activity guides clinical decisions in current daily practice

(Sloane, Mainero, & Kinkel, 2015), it might be important to evaluate

the effect and efficacy of existing and future immunomodulatory and

neuroprotective agents on these atrophy-pattern-based patient

groups.

Our work demonstrated specific non-random patterns of volu-

metric CNS changes in MS patients. Different physiologic and patho-

logic mechanisms could have contributed to this. Firstly, the extent of

cortical demyelination and presence of organized meningeal B-cell

infiltrates, possibly contributing to subpial and cortical pathology, has

been shown to vary among MS patients (Albert, Antel, Brück, &

Stadelmann, 2007; Howell et al., 2011; Kooi, Geurts, van Horssen,

Bø, & van der Valk, 2009). In addition, the blood–brain barrier displays

clear structural and functional heterogeneity in different brain regions

(e.g., gray matter, white matter, spinal cord, etc.) (Villabona-Rueda,

Erice, Pardo, & Stins, 2019), which may lead to different patterns of

CNS damage across regions due to immune cell infiltration. Finally,

microglia shows different molecular patterns and morphologies

between MS patients and across CNS regions (Lee, Hamanaka, Lo, &

Arai, 2019). Of note, analyses of active lesions and cerebrospinal fluid

profiles in MS patients support the notion of a dominating single

immune-effector mechanism in each person (Jarius et al., 2017; Metz

et al., 2014). Therefore, differences in our groups may—at least

partly—reflect distinct pathophysiologic mechanism. Future research

may be able to classify patients using single-time point biomarkers

without the need for long-term longitudinal metrics.

Some considerations for future studies should be discussed. In

this proof-of-concept study, we consciously avoided to enter brain

lesion-load into our principal component analysis and subsequently

into our hierarchical clustering method in order to classify patients

solely based on CNS VLOT patterns. This was also done in order to

evaluate, whether the identified groups would differ in terms of

lesion-load changes over time. Future investigations should evaluate

any potential contribution of brain lesion-load or -number metrics and

their localization to a potential MRI-based classification of MS

patients. In addition, our dataset did not contain spinal cord MR-

images (the upper cervical spinal cord volume was extracted from

brain MPRAGE images), so that this metric could not be included in

our work. Symptomatic and asymptomatic spinal cord lesions cur-

rently have a central role in the correct diagnosis (Brownlee, Swanton,

Miszkiel, Miller, & Ciccarelli, 2016; Filippi et al., 2016; Geraldes

et al., 2018; Thompson et al., 2018; Tintore et al., 2016), prognosis

evaluation (Arrambide et al., 2018; Brownlee et al., 2017; Kantarci

et al., 2016; Sombekke et al., 2013) and disease monitoring of MS

(Zecca et al., 2016). Furthermore, spinal cord lesions correlate strongly

with disability (Brownlee et al., 2017; Kearney et al., 2015; Zecca

F IGURE 4 Boxplots of mean serum neurofilament light chain
(NfL) levels by group. Whiskers correspond to NfL 25th and 75th
percentiles
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et al., 2016). Hence, it is important that their contribution in a poten-

tial MRI-based patient classification is evaluated in future work.

Moreover, certain aspects of the statistical approach for detec-

tion of VLOT patterns across the CNS should be discussed. One alter-

native to our principal component analysis for this purpose is an

independent component analysis. Both principal and independent

component analysis are statistical transformations often used prior to

running machine learning algorithms such as classification methods as

was done in our work. Although the two methods can be used for

similar purposes, they demonstrate different features with regard to

the extraction of source signals. Principal component analysis

searches for orthogonal directions of greatest dispersion of the data

(Wold, Esbensen, & Geladi, 1987), which utilizes the commonality of

the individual components in the data to define their respective

importance. This allows for easier subsequent exclusion of potentially

irrelevant data components. On the other hand, in independent com-

ponent analysis all components are equally important, since this

method identifies signal sources independently from the dispersion of

the data by calculating a linear transformation that maximizes a crite-

rion, such as non-Gaussianity (Rutledge & Jouan-Rimbaud

Bouveresse, 2013; Rutledge & Jouan-Rimbaud Bouveresse, 2015).

This makes the use of the independent component analysis for

dimensionality reduction in biological datasets challenging compared

to the principal component analysis, and previous studies using this

method predefined the number of independent components that

were used to identify and subsequently evaluate patterns of cortical

atrophy in MS patients (Steenwijk et al., 2016). Another important dif-

ference is that independent component analysis retains the original

vectors, whereas principal component analysis only retains a linear

transformation of them. The corollary of this is that the proportions

of independent component analysis can be more easily related to the

amount of change due to a single phenomenon, while principal com-

ponents cannot as they are usually influenced by several phenomena.

As such, independent component analysis allows for greater interpret-

ability of the initial data using the initial variables (in our case VLOT in

multiple CNS regions) compared to principal component analysis.

Therefore, both methods have inherent advantages and disadvan-

tages. Recently, optimization of these methods has been attempted

with approaches such as independent principal component and com-

mon component analysis (Bouhlel et al., 2018; Rutledge, 2018; Yao,

Coquery, & Lê Cao, 2012). Future studies should evaluate, which of

these methods delivers optimal results with regard to an objective

MRI-based classification of MS patients using separate training and

validation cohorts.

A number of limitations need to be mentioned. Some patients were

lost to follow-up during the study, leading to incomplete data sets and

potential biases. Moreover, despite the fact that the examined cohort

was relatively large, two of the groups were rather small (Group A:

14 patients; Group D: 11 patients). In addition, because of the insuffi-

cient number of patients, we could not validate our results using a

training, a validation and a test dataset; therefore, the existence of

other potential groups, which could possibly be identified with our

method in a larger population, cannot be excluded. For this reason,

larger longitudinal multi-center studies would be required to validate

our results in the future. The lack of a control group to compare VLOT

between the MS-groups and healthy subjects is a clear limitation of our

study, despite the fact that we accounted for the effects of normal

aging in our statistical analyses. For this reason, we were not able to

assess differences between patterns of CNS volume loss over time in

“healthy” aging and multiple sclerosis. An effect of treatment on the

results of our classification cannot be excluded. Indeed, patients of

Group A were less commonly treated compared to Group C, whereas

the distribution of treatments used in Group C was different compared

to Group D. However, it is unclear, if and to which extent this could

influence the presence of distinct patterns of VLOT in our patients and

consequently our classification results. Nevertheless, the majority of

our patients were treated with first-line injectables, which have been

shown to have a negligible effect on CNS-atrophy (Favaretto,

Lazzarotto, Margoni, Poggiali, & Gallo, 2018). Another potential limita-

tion of our longitudinal experimental design relates to potential volu-

metric measurement variability due to methodological or physiological

factors. For the segmentation of cortical gray matter, CIVET inherently

co-registers MR-images into a halfway space before MRI analysis in

order to help “treat” all study participant data equally in the image

processing context in order to limit potential experimental biases. The

MAGeT brain algorithm used for segmentation of deep gray matter

structures accounts for this variability source by generating a template

library from the dataset under evaluation, which included MRI datasets

from all timepoints as well as representative demographic and clinical

characteristics of the whole patient sample. Hence, this approach

should mitigate bias of experimental sources across the input data set.

Furthermore, with regard to the preprocessing steps of our MRI data

prior to the segmentation of brain structures, the MAGeT registration

procedure is similar to CIVET, which should at least reduce potential

biases between these two algorithms that calculated the cortical, tha-

lamic, pallidal, and striatal volumes used in this study. However, this

step differs in SIENAX used for white matter volumes, which could

have introduced bias in our volumetric assessment. Finally, despite the

fact that our clustering analysis uniquely classified each patient in one

group, it cannot be excluded that the identified groups represent differ-

ent “states,” from or to which individual patients shift during the course

of the disease.

In summary, in this study, we identified patient groups with dis-

tinct patterns of regional volume change over time across the CNS in

a large MS-cohort. This study suggests that these patterns of longitu-

dinal CNS volume change at least partially correspond to different

patterns of clinical progression and sNfL-levels. Our work also sup-

ports the value of MRI-assessed volume change patterns in the sub-

classification of MS patients and provides proof of concept for future

studies.
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