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1. Introduction 
The Federal Aviation Administration (FAA) fore-

casted a 1.4% annual increase in the US air traffic vol-
ume; from currently 43.2 million aircraft to 60.3 million 
by 2040 (FAA, 2018). However, the currently available 
number of expert air traffic control specialists (ATCSs) 
might not be sufficient to handle the anticipated increase 
of air traffic volume. Additionally, the current training 

completion time of the air traffic controllers takes many 
years of intensive training (Hampton, 2016). Therefore, 
the FAA has been trying to find ways to efficiently train 
the FAA Academy candidates.   

One of the critical tasks of ATCSs is to detect and 
mitigate possible aircraft conflicts (i.e. possible colli-
sions) through visually scanning the radar screen. The 
ATCSs look for conflicting situations between aircraft 
pairs (or groups) to resolve it and guide them to their 
destination in a safe/timely manner. Thus, the ATCS’s 
task involves a significant amount of visual scanning of 
the radar display and, subsequently, cognitive processing 
of the observed information to take necessary actions. 
Eye-mind hypothesis (Just & Carpenter, 1976) showed 
there exists high correlation between the eye movement 
(EM) data and the cognitive process of an observer. Kang 
and Landry (2014) demonstrated that exposing novice 
controllers to the visual scanpath of the expert ATCSs 
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improved their overall scanning efficiency by reducing 
their false positive cases of conflict detection among 
aircraft. On Similar lines, Rudi, Kiefer and Raubal (2018) 
demonstrated that visualization of EM data of pilot’s 
working in a cockpit might prove useful for flight instruc-
tion purposes. Therefore, if we could effectively analyze, 
visualize, and interpret experts’ eye movement character-
istics, we might be able to use those findings to train the 
candidates or novices. 

 
(a) Aircraft changing their shape on the radar display 

 

 
(b) Overlapping aircraft on the radar display 

Figure 1: Dynamic aspects of aircraft representation on the 
radar display of an ATCS: (a) Location of the data blocks 
changes relative to the aircraft location. (b) Two overlapping 
aircraft.  

 
Effective analysis of ATCSs’ visual scanning pro-

cess is challenging. The Radar display has, a large num-
ber of dynamic targets (i.e. aircraft on radar display) 
which have dynamic properties (e.g. radar representation 
of an aircraft can change their shape and position with 
time). Figure 1 represents the dynamic aspect of the radar 
representation of aircraft.  

Visualization of ATCSs’ EM data includes two 
steps. The first step involves developing a time-ordered 
mapping between the eye fixations (EFs) and the aircraft 
on the display. The second step consists of 
characterization of the developed scanpath sequences. To 
develop the mapping function in case of moving and 
overlapping targets, Dynamic Areas of Interest (AOIs) 
can be created which are dynamic convex boundaries that 
fits the moving targets and considers the visual angle 
accuracy (Kang & Bass, 2014; Kang, Mandal, Crutch-
field, Millan, & McClung, 2016; Papenmeier & Huff, 
2010). However, as the number of targets increases, visu-
alization of the scanpath sequences becomes challenging 

using the widely used visualization methods such as point 
based and AOI based methods (Blascheck, Kurzhals, 
Raschke, Burch, Weiskopf, & Ertl, 2014) (explained 
below in Background section), since these methods might 
create visual clutter when numerous targets are visual-
ized. In addition, air traffic has a dynamic nature, mean-
ing that an aircraft can dynamically move within the 
radar display for a certain amount of time, and/or two or 
more aircraft can overlap on one another. As a result, any 
aircraft’s relevance from the visual scanning point of 
view evolves with time. The prevalent visualization 
methods are unable to handle this dynamic aspect of the 
ATCS’s visual scanning process.  

In addition, other existing pivotal researches 
(Blascheck, Raschke, & Ertl, 2013; Burch, Beck, 
Raschke, Blascheck, & Weiskopf, 2014; Goldberg & 
Kotval, 1999) focus more on EF numbers and EF dura-
tions or simpler forms of scanpaths (explained in Back-
ground section); however, for a dynamic task such as air 
traffic control task, how the multiple targets (e.g. aircraft) 
are observed as a network (using the various EM transi-
tion characteristics) can also be important, meaning that 
even if there were fewer number of EFs or less durations, 
a target can be considered important if it plays a crucial 
role in the EM flow among multiple targets or acts as a 
bridge between two disconnected groups of targets. Fur-
thermore, if we only consider the number of EFs on the 
aircraft, it might produce an incorrect interpretation about 
the important aircraft. For example, consider a case when 
an aircraft has just entered the radar display. There is 
high chance that this new entrant aircraft might receive a 
substantial amount of EF duration, as the ATCSs might 
want to know about its destination, altitude, and other 
details; however, this new aircraft might not be important 
in terms of conflict resolution with the already existing 
set of aircraft on the display. As a result, the ATCSs will 
not fixate again on this aircraft, rendering it unimportant 
in terms of the overall scanning strategy. Zhang, Ren and 
Wu (2014) provided valuable findings using static net-
works in the air traffic control domain, but the dynamic 
aspects and the issues raised above were not addressed.  

Therefore, we need an improved analysis framework 
which will help us (1) develop visualization methods 
which can represent the EM data with a large number of 
targets with less visual clutter, (2) find measures that can 
accommodate the dynamic aspects of the moving targets, 
and (3) integrate the visualizations and measures for 
effective analyses and interpretations.  

In this paper, we provide several approaches to ad-
dress the issues raised above. First is to adapt the dynam-
ic network (DNet) approach (Burch et al., 2014) and 
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modify its structural components for visualizing the EM 
data of the ATCSs. A DNet is a collection of time-
ordered static networks. The DNet visualization enables 
easy handling of a large number of targets, thereby reduc-
ing visual clutter. Being a collection of several networks, 
the DNet can easily represent the evolution of a target’s 
importance over time and the dynamics of visual scan-
ning characteristics. The adapted DNet is aligned with 
three “vertex importance measures” such as “indegree,” 
“closeness,” and “betweenness” (Freeman, 1978) to bet-
ter determine important targets. Furthermore, two types 
of normalization procedures (i.e. percent normalization 
and distance normalization) are introduced that calculate 
the relative amount of visual attention given to a target in 
comparison to the maximum values obtained for a 
specific task. Finally, we adapted the dot plots and bar 
plots to either better represent the evolution of the 
important targets or compare the vertex importance 
measures among the participants. Note that we will re-
place the term “vertex” with “target” or “AOI” for easier 
understanding.  

 
2. Background 

2.1 Eye movement (EM) visualizations: Point 
based, area of interest (AOI) based, and hy-
brid 

Blascheck et al. (2014) have categorized the various 
EM visualization methods into point based, AOI based, 
and hybrid visualizations. Summaries and issues are as 
follows. 

Existing point based visualization methods, e.g. 
timeline visualization (Kurzhals, Heimerl, & Weiskopf,   
2014), scanpath visualization (Goldberg & Helfman, 
2010), attention maps (Kurzhals & Weiskopf, 2013), 
space-time cubes (Kurzhals & Weiskopf, 2013) represent 
the time-ordered horizontal and vertical coordinates of 
the EFs occurring on the display. These methods are 
effective on visualizing the exact EF locations to unravel 
important regions (in absence of predefined targets) when 
given static stimuli. However, due to the visual angle 
error of the eye trackers, it is challenging to map the EFs 
with small and dynamic multi-element targets making it 
difficult to apply the point based methods (Mandal, Kang, 
& Millan, 2016). In addition, our interest is in investigat-
ing which moving targets were focused upon rather than 
the physically fixed area within a display. 

On the other hand, existing AOI based visualization 
methods allows EM analysis based on either pre-defined 

region or target on the display. The AOI based methods 
have been categorized into timeline and relational AOI 
visualizations (Blascheck et al., 2014). Timeline AOI 
visualizations such as parallel scanpath (Raschke, Chen, 
& Ertl, 2012), scarf plot (Kurzhals, Fisher, Burch, & 
Weiskopf, 2015), and AOI river plot (Burch, Kull, & 
Weiskopf., 2013) focus on developing effective methods 
to represent the AOIs that have been fixated upon at vari-
ous time intervals. However, these methods are challeng-
ing to apply for long duration tasks having large number 
of targets (e.g. twenty or more targets) and frequent EF 
transitions between them (e.g. air traffic control task). 

Relational AOI visualization methods are more ap-
propriate to handle the issues raised above through visu-
alizations using circular heat map transition diagram 
(Blascheck et al., 2013), transition matrix (Goldberg & 
Kotval, 1999) and network visualization (Burch et al., 
2014). These methods visualize the aggregated EM data 
by showing the relationship that exists between he AOIS 
in terms of the EF transitions between them, unlike the 
timeline approaches. Relational AOI based approaches do 
not represent the physical location of the AOIs on the 
display. In detail, in circular heat map visualization 
(Blascheck et al., 2013), AOIs are represented as seg-
ments of a circular layout (using different colors and 
sizes) and the EF transitions are shown by directed ar-
rows between the circular segments. Transition matrix 
visualization (Goldberg & Kotval, 1999) represents the 
EF transitions among the AOIs in a tabular fashion. The 
most appropriate approach to address the issues of a dy-
namic task is through the network visualization that 
shows the AOIs as vertices and the EF transitions be-
tween AOIs as the directed edges between the vertices of 
a network (Burch et al., 2014; Holmqvist, Holsanova, 
Barthelson, & Lundqvist, 2003; Mandal et al., 2016; 
Tory, Atkins, Kirkpatrick, Nicolaou, & Yang, 2005).  

However, if we try to apply the relational AOI visu-
alization methods, we often run into possible visual clut-
ter issues if there are large number of targets and it can be 
difficult to represent all the EM characteristics using the 
existing network approach. The following subsections 
2.2. and 2.3 provide summaries of the DNet mathematical 
framework and how various EM network characteristics 
can be integrated based on time intervals. 

 
2.2. Mathematical framework of DNet 

A DNet is as a sequence of static networks (also 
called networks), where each constituent network is asso-
ciated with a time interval (Beck, Burch, Diehl, 
Weiskopf, 2014). If the total time duration of the collect-
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ed EM data is divided into 𝑇 time intervals, then a DNet 
representing such a data is written as 𝐷𝑦𝑛𝑁 =
{𝑁!,𝑁!, . .𝑁! , . . ,𝑁!}, where 𝑁!  is the network for time 
interval 𝑡, where 𝑡 = 1,2, . . ,𝑇.  

A network 𝑁!  is written as 𝑁! = (𝑉! ,𝐸! ,𝑀! ), 
where, 𝑉!  is the set of vertices (AOIs for the present 
study), 𝐸!  is the set of edges (EF transitions for the pre-
sent study) between the vertices, and 𝑀!  is the adjacency 
matrix which contains all edge weights (amount of EF 
transitions between AOI pairs).  

The set of vertices is written as 
𝑉! = (𝑣! , 𝑣!,… , 𝑣!! ), where 𝑚! is the number of verti-
ces for time interval 𝑡. A network can either have directed 
or undirected edges, although for EM visualization we 
only consider directed edges. The set 𝐸!  consists of or-
dered pairs of vertices (𝑣! , 𝑣!) showing that there exists a 
directed edge from the vertex 𝑣! towards vertex 𝑣!. Thus, 
𝐸! = 𝑒!"(𝑡) 𝑣! , 𝑣! ∈ 𝑉! , 𝑖 ≠ 𝑗}. Lastly, the adjacency 
matrix is written as 𝑀! = [𝑤!"(𝑡)]!! ×!! , where, 𝑤!"(𝑡) 
is the weight of the edge 𝑒!"(𝑡) (Newman, 2004; 
Newman, 2010).  

 
2.3 DNet for EM visualization 

Beck et al. (2014) provided an exhaustive list of var-
ious DNet visualization approaches representing EM 
data. Depending on the representation of the time varia-
ble, various visualization approaches have been catego-
rized into two groups: Animation, and timeline visualiza-
tion. Animation visualization refers to representing a 
DNet as an animated sequence of networks. Timeline 
visualization refers to representing a DNet as a sequence 
of networks in a single image showing the complete se-
quence of interactions between the targets. In the present 
work, we have applied the node-link based timeline ap-
proach for representing the DNet, because this visualiza-
tion helps to preserve the mental map and reduces the 
cognitive load of the observer (Beck, Burch, & Diehl, 
2013).   

As noted by various researchers (Archambault & 
Purchase, 2013; Ghani, Elmqvist, & Yi, 2012;  Purchase, 
Hoggan, & Görg, 2006), preserving the mental map (i.e. 
the abstract structural information layout about a net-
work’s elements that an analyst develops in their mind as 
they visually scan the visualization) helps in tracing the 
change in vertex properties and edge paths across differ-
ent time intervals. Additionally, the timeline visualiza-
tion, using the node-link approach, provides an intuitive 
and efficient framework for analyzing the change of 

states of multiple vertices over time (Saraiya, Lee, & 
North, 2005; von Landesberger et al., 2011).  

However, the existing DNet approach only uses the 
number and duration of EFs on the AOI to measures the 
AOI importance. As noted in the introduction, these two 
raw measures may lead to misleading results in case of 
dynamic targets. Therefore, it is required to consider 
other target importance measures to address the 
highlighted issue.  

The next section discusses the three target im-
portance measures (from the network science domain) 
that can be adapted for analysing AOI importance for 
dynamic scenarios.  

 
2.4 Target (or AOI) importance measures 

The three most popular target importance measures 
in a given network are indegree, closeness, and between-
ness (Freeman, 1978; Newman, 2004; Opsahl, 
Agneessens, & Skvoretz, 2010). Mandal et al. (2016) 
have shown some possibilities in applying the above-
mentioned measures to build a basic foundation for the 
proposed approach in this article. It is noted that we 
introduce the “time” element (“t”) within the three vertex 
importance measures to consider the dynamicity.  

Indegree of a vertex is defined as the sum of all in-
coming weights to it from all other vertices in the net-
work. For the present study, incoming weights can be 
interpreted as the incoming EF transitions to a given AOI. 
Thus, indegree for the 𝑗!! AOI is given as 𝐼! = 𝑤!"!

!!!  
(Newman, 2004), where, 𝑤!" is the number of EF transi-
tions from the 𝑘!!AOI to the 𝑗!!AOI, and 𝑚 is the total 
number of AOIs on the display.  

We should note that the indegree measure, shown 
above, is static in nature. As a result, we modified it to 
develop the dynamic analogous, where the indegree for 
an AOI is defined for each of the time interval considered 
in the DNet framework. Thus, the modified indegree 
measure for the 𝑗!!AOI for time interval 𝑡 is calculated 
as: 
𝐼!(𝑡) = 𝑤!"(𝑡)

!!
!!!
!!!

                                   (i) 

Where, 𝑤!"(𝑡) is the number of EF transitions com-
ing for the 𝑘!!AOI to 𝑗!!AOI and 𝑚! is the number of 
unique AOIs in the AOI fixation sequence for time inter-
val 𝑡. Large indegree value suggests higher importance 
for an AOI, as it received large number of EFs. Thus, 
indegree can be interpreted as a measure of direct atten-
tion received by an AOI.  

However, indegree measure only considers the local 
structure (direct EF transitions) around a vertex but ne-
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glects the global structure of the network (Borgatti, 2005; 
Opsahl et al., 2010). This issue is addressed by the two 
measures named “closeness” and “betweenness.” 

Note that the network science (or graph theory) in-
cludes the concept of “outdegree” however, the indegree 
values and outdegree values are always the same within 
the EM network since there is no possibility of an inward 
single EM transition dividing into two or more outward 
transitions.  

Before we understand the two measures, we need to 
define the concept of distance between AOIs in a network 
visualizing EM data. In the present case, we define the 
distance from one AOI (e.g. ‘A’) to another AOI (e.g. 
‘B’) as the inverse of the number of EF transitions from 
AOI A towards B. Thus, a large number of EF transitions 
between AOIs results in a smaller distance between them 
in terms of the visual scanning strategy.  

The closeness of a vertex measures its distance from 
all other vertices in the network. Thus, higher closeness 
value for a given vertex means it is easier to access any 
part of the network from it. In the present study, higher 
accessibility of an AOI can be interpreted as a greater 
association (both direct and indirect) with other AOIs in 
the network. High closeness value suggests that the AOI 
lies in the central location in terms of the observer’s visu-
al scanning strategy. The closeness for the 𝑗!! AOI is 
given as 𝐶! = ! !!"

∗!
!!!  (Opsahl et al., 2010), where, 

𝑑!"
∗ is the minimum distance from the 𝑗!!AOI to the 

𝑘!!AOI (if multiple paths exist) and 𝑚 is the total num-
ber of AOIs on the display. Like the previous indegree 
measure case, the static closeness measure is also modi-
fied to develop its dynamic analogous. Thus, the modi-
fied closeness measure for the 𝑗!! AOI for time interval 𝑡 
is defined as follows: 
𝐶!(𝑡) =

!
!!"

∗(!)
!!
!!!
!!!

                                             (ii) 

Where, 𝑑!"
∗(𝑡) is the minimum distance from the 

𝑗!!AOI to the 𝑘!!AOI (if multiple paths exist) and 𝑚! is 
the number of unique AOIs in the AOI fixation sequence 
for time interval 𝑡.  

In a dynamic scenario, there are instances where due 
to visual scanning strategy of the observer, an AOI de-
spite receiving small amount of direct attention (low 
indegree measure) and being present in a non-central 
location (low closeness value) can still play a significant 
role by connecting (acting as a bridge between) two 
groups of AOIs. Such an AOI plays a crucial role in con-
trolling the flow of attention among the other AOIs on the 
display, and this aspect is measured through the concept 
of betweenness explained below. 

Betweenness for the 𝑗!! AOI is defined as 
𝐵! = 𝑆𝑃!"

! 𝑆𝑃!"
!
!!!,!!!!!  

!
!!!  (Opsahl et al., 2010), 

where 𝑆𝑃!" represents the total number of shortest paths 
(if multiple paths exist) from the 𝑘!!AOI to the 𝑙!!AOI, 
and  𝑆𝑃!"

!  represents the number of such shortest paths 
that pass through the 𝑗!!AOI. Thus, the modified be-
tweenness measure for the 𝑗!! AOI for time interval 𝑡 is 
defined as follows: 

𝐵!(𝑡) =
!"!"

! (!)

!"!"(!)
!!
!!!

 !!!!!

!!
!!!                   (iii) 

Where, 𝑆𝑃!"(𝑡) represents the total number of shortest 
paths (if multiple paths exist) from the 𝑘!!AOI to the 
𝑙!!AOI, and  𝑆𝑃!"

! (𝑡) represents the number of such 
shortest paths which pass through the 𝑗!!AOI for the time 
interval 𝑡.  
 

3. Proposed approach 

Figure 2 represents the various steps in the proposed 
methodology for analyzing ATCS’s EM data.  

 
3.1 STEP 1. Collect observer’s EM and tar-
gets’ location data 

The input for the first step is the simulation experi-
mental data. As output for this step, two types of data are 
obtained: (a) EM data, that consists of horizontal and 
vertical coordinates of the EF and its associated fixation 
duration, and (b) target location data, that consists of the 
pixel coordinates of the various targets on the display.  
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Figure 2. Flowchart showing the various steps of the proposed 
methodology for analyzing time interval based EM data.  
 
3.2 STEP 2. Divide the experiment time into 
several smaller time intervals 

The input for step 2 is the time duration (in minutes 
or hours) for which the experiment has been conducted, 
and the output are several equal (unequal) sized time 
intervals which sum to the experimental time duration. 
For example, consider that the total experiment duration 
is divided into four equal time intervals (i.e. 𝑇 = 4, see 
section 2.2).  Note that the time intervals can be chosen 

based on the task characteristics or the researcher’s 
judgment (i.e. fixed or event-based time intervals).   

 
3.3. STEP 3. Select first time interval 

The inputs for this step are the various time intervals 
obtained in the previous step 2. The intervals are indexed 
and arranged in a time-order sequence. In this step, we 
start with the the first time interval to initiate developing 
the AOI fixation sequence.  
 
3.4 STEP 4. Develop AOI fixation sequence 
(i.e. scanpath sequence) for the selected time 
interval 

As input, step 4 receives three things, the time inter-
val selected in step 3, and the EM and target location data 
for this time interval. As output from this step, we obtain 
the AOI fixation sequence for the time interval consid-
ered. The size of the AOI fixation sequence is directly 
proportional to the number of EFs in the time interval. 
The AOI fixation sequence is created for the selected 
time interval by adapting the approach suggested by 
Kang et al. (2016). Creating the AOI fixation sequence 
involves mapping the EFs with the AOIs. Only those EFs 
falling within any of the AOI boundaries are considered 
for AOI fixation sequence development, else they are 
ignored. AOIs are coded by assigning uppercase letters 
followed by lowercase alphabets (i.e. A, B, …, a, b). The 
developed AOI fixation sequence is the collapsed form of 
a raw AOI fixation sequence. In the collapsed form of the 
sequence, multiple consecutive fixations of the same AOI 
is collapsed to a single fixation case (e.g. AAA is col-
lapsed into A). Thus, a raw AOI fixation sequence 
AABCC is collapsed to ABC. In addition, an overlapping 
AOI case is shown in parenthesis with individual constit-
uent AOIs separated by a semi-colon. For example, if an 
EF falls within the overlapped region of AOIs A and B, it 
is represented as (A; B). After mapping all the EFs to the 
AOIs, we obtain a time-ordered sequence of AOIs, that 
shows which AOIs were fixated and in which order. 
Table 1 shows a sample AOI fixation sequence for four 
time intervals in a hypothetical scenario with seven AOIs. 

 
3.5 STEP 5. Develop AOI transition matrix 
for the selected time interval 

Step 5 receives the AOI fixation sequence developed 
in step 4 as input. Afterwards, the AOI fixation sequence 
is transformed, as per the approach suggested by Noton 
and Stark (1971), for developing the associated AOI 
transition matrix, which is the output of this step. The 
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size of the transition matrix depends on the number of 
unique AOI states (single and overlapped both) in the 
fixation sequence. The AOI transition matrix shows, in a 
tabular manner, how many transitions have occurred 
between various AOIs pairs. For example, Table 2 repre-
sents the AOI transition matrix associated with the AOI 
fixation sequence for time interval 1 in Table 1. The 
sequence shows there are three EF transitions from AOI 
A to B highlighted in grey within Table 2. A different 
AOI transition matrix is required for each time interval; 
thus, before moving to the next step, we need to create 
the associated AOI transition matrix for each time inter-
val.  

 
Table 1. Samples AOI fixation sequences having overlaps 

Time interval AOI fixation sequence 
1 ABABABEBAEAEACACAEA 
2 EAEAEAEABABCBC(D; G)C(D;G) 
3 C(D;G)C(D;G)C(D;G)CEAEAEFEF 
4 EFEFEFCFC(D;G)C(D;G)FC(D;G) 

 

Table 2. AOI transition matrix developed from the AOI fixation 
sequence for time interval 1 within Table 1. 

From 
AOI 

To AOI 
A B C E 

A 0 3 2 3 
B 3 0 0 1 
C 2 0 0 0 
E 3 1 0 0 

 
3.6 STEP 6. Develop DNet visualization 

The inputs for step 6 are the AOI transition matrix 
for all the time intervals obtained in step 2. As output 
from this step, we obtain the DNet representation of the 
EM data. Developing the DNet involves two steps. First, 
developing a static network for each of the time intervals 
considered in STEP 2. Second, arranging the static net-
works in a time-based order to visualize the DNet. The 
details of both the steps are given below.  

 
3.6.1 Develop static network for each time 
interval 

The static network is developed by adopting the de-
sign principles suggested by Mandal et al. (2016). Thus, a 
network’s vertex size is drawn proportional to the number 
of EFs received by the corresponding AOI and the ver-

tex’s color is based on a sequential multihued color scale, 
where red color means high EF duration and yellow color 
means low EF duration occurring on the associated AOI. 
The thickness of an edge between a vertex pair is propor-
tional to the number of EF transitions occurring between 
the vertices in the edge’s direction. Therefore, for the 
example shown in Table 1, we have four time intervals, 
thus the DNet is written as 𝐷𝑦𝑛𝑁 = {𝑁!,𝑁!,𝑁! ,𝑁!}, 
where 𝑁! is the static network for time interval 
𝑖 (𝑖 = 1,… ,4).  
 
3.6.2 Visualize the DNet 

Before visualizing the DNet, the vertices of the com-
ponent static networks are to be arranged in a specific 
layout for mental map preservation. We have used the 
rectangular grid layout for this purpose; in which, we 
start from the left bottom corner and move towards the 
right, ending at the top right corner. We sort the AOI 
positions using the natural ordering of English letters and 
putting uppercase AOI groups first and then lowercase 
AOI groups. The single AOIs are followed by overlapped 
AOI cases in the grid layout. The overlapped AOI cases 
are arranged in an increasing order of constituent AOI 
numbers, i.e. an overlapped AOI case with two AOIs 
comes before a case with three AOIs. For example, over-
lapped AOI (A;B) comes before (A;B;C), which comes 
before (A;B;C;D), and so on.  

Consider an AOI fixation sequence that has 𝑛 unique 
AOI states (including both single and overlapped AOIs). 
Therefore, the number of columns (number of AOIs in a 
single row) in the grid layout will be the smallest integer 
greater equal to 𝑛. Figure 3 represents a sample order-
ing scheme of six AOIs in a rectangular grid layout.  

Once the component static networks are arranged in 
a grid layout, we visualize the DNet by arranging the 
static networks in a time-ordered sequence. Figure 4 
represents a sample DNet visualization of the EM data 
for a hypothetical scenario (see section 3.4). Note that the 
relative location of all AOIs in Figure 4 remains constant 
in each of the networks corresponding to various time 
intervals. For example, AOI A is placed at the bottom 
row first column in all the constituent networks. This 
constant relative position of each AOI helps in their navi-
gation across various time intervals and thus helps to 
preserve the mental map of the observer. The DNet has 
four time intervals, and the AOI fixation sequences for all 
these intervals is shown in Table 1. We should note that, 
due to the dynamic nature of the AOIs and typical scan-
ning strategy of ATCSs, some AOIs may not be fixated 
upon despite being present on the display. In addition, the 
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overlapped AOI cases arise in the AOI fixation sequence 
only if they are fixated upon by the ATCSs. Theoretical-
ly, there can be many possible overlapped AOI cases as 
compared to what is observed in real life experimental 
data. For example, with 𝑛 unique AOIs, theoretically, we 
can have !

! = !!
!! !!! !

!
!!!

!
!!!  possible AOIs cases 

(including both single and overlapped cases) on the dis-
play. Although, not all overlapped AOI states will appear 
on the display and even if they occur not all of them will 
be fixated upon by the ATCSs. This is also the case with 
single AOI cases.  

Thus, it is computationally expensive and inefficient 
approach to consider all those AOI states which have not 
being fixated at all and thus does not appear in the AOI 
fixation sequence. Consequently, we only consider those 
AOI states for visualization and analysis which appear at 
least once in the AOI fixation sequence of the ATCS’s. 
As a result, we ignore those AOIs which, despite being 
present on the display, received no EFs from the ATCSs. 
Therefore, not all AOIs appear in the DNet visualization 
for each of the ATCSs, which results in a change in the 
relative position of each AOI in the grid structure of the 
DNet visualization. In addition, for comparing various 
visual scanning strategies, we only consider the AOI 
cases which are common to all the AOI fixation sequenc-
es of various ATCS’s.  

 

 
Figure 3. Sample AOI ordering scheme for the grid layout used 
in designing the networks in the DNet framework. 

3.7 STEP 7. Calculate target (or AOI) im-
portance measures  

Step 7 involves calculating the measures using equa-
tions (i), (ii), and (iii). As a result, we provide the DNet 
as the input to this step, and as output we obtain all three 
importance measure values for each of the AOIs with 
respect to all the time intervals considered in the DNet. 
For example, consider the DNet visualization in Figure 4, 
where the indegree value of AOI B changes from 4 to 3 
as we move from the time interval 1 to 2 (Figure 4 (a)-
(b)). For the given DNet in Figure 4, to calculate the 
closeness and betweenness value for AOI B, we first 
demonstrate how to calculate the distance between the 

AOIs. For example, in the first time interval, the distance 
from AOI B to A is given by 𝑑!" 𝑡 = 1 𝑤!" 𝑡  and 
substituting 𝑡 = 1, we get 𝑑!" 1 = 1 3.  

To calculate the minimum distance between two 
AOIs consider Figure 4 (a), where there are two EF tran-
sition paths from AOI B to E: Direct path from AOI B to 
E, which has edge weight 1; indirect path from AOI B to 
A and then to E, which has edge weights 3 and 3, respec-
tively. Thus, the shortest distance from AOI B to E is 
defined as the path having the minimum distance of 
𝑑!"

∗ 𝑡 = 𝑚𝑖𝑛 𝑑!" 𝑡 , 𝑑!" 𝑡 + 𝑑!" 𝑡 . For the first 
time interval (𝑡 = 1), we obtain 𝑑!"

∗ 1 = 𝑚𝑖𝑛 1/
1, 1/3 + 1/3  = 𝑚𝑖𝑛 1, 2/3 = 2/3. Thus, for the 
first time interval, the closeness and betweenness value of 
AOI B is given by 2.375 and 8, respectively. 

 

 
                     (a)                                                (b)  

     
                       (c)                                             (d)  
Figure 4. Sample DNet visualization of EM data for the hypo-
thetical scenario described in section 3.4. The DNet consists of 
four time intervals. The figure shows the important AOIs for 
each time interval, and how the importance of various AOI’s is 
changing with time. Sequentially: (a) Time interval 1. (b) Time 
interval 2. (c) Time interval 3. (d) Time interval 4.  
 
3.8 STEP 8. Normalize and visualize target 
(or AOI) importance measures 

The last step involves normalizing the calculated 
measures and subsequently visualizing the normalized 
measure values. Thus, the obtained AOI importance 
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measures in step 7 acts as input for this step, and as 
output we obtain the normalized measure values accom-
panied by their visualization. Equation (i), (ii), and (iii) 
shows that the three measures both depend on the number 
of AOIs and the amount of EFs. In addition, these 
measures also have different units, as a result, they are 
incommensurable. For the present dynamic scenario, both 
the number of AOIs and EFs are not constant for the 
different time intervals considered in the DNet analysis. 
In addition, to compare the AOI importance values across 
various time intervals and across multiple observers, we 
need to eliminate the units of importance measures, 
thereby bringing them to a similar scale. To address this 
issue, we present two normalization options. 
 
3.8.1 Percent normalization  

Percent normalization refers to dividing an 
importance measurement of an AOI by the sum of the 
same measurement of all the AOIs. The percent normal-
ized indegree value of an AOI shows the percentage 
share of the total number of EFs received by an AOI. 
Thus, it can be interpreted as the percentage of the total 
attention attributed to an AOI. The percent normalized 
indegree value of the 𝑗!!AOI for time interval 𝑡 is calcu-
lated as: 
𝐼!(𝑡) =

 !!(!)

 !!(!)
!!
!!! 

                                                      (iv) 

Where, 𝐼!(𝑡) is the percent normalized indegree val-
ue for time interval 𝑡. We get, 0 ≤ 𝐼!(𝑡) ≤ 1 and 

𝐼! 𝑡 = 1!!
!!! .  

 
3.8.2 Distance normalization 

Distance normalization refers to calculating how far 
away a given importance measurement of an AOI is from 
the maximum value observed for that measurement with-
in a time interval. The distance normalization process is 
defined for all the three target importance measures. The 
distance normalized measure value of an AOI can be 
interpreted as the relative amount of attention given to an 
AOI as compared to the maximum amount of attention 
given to any AOI. The distance normalized measure for 
the 𝑗!!AOI, for time interval 𝑡, is calculated as:  
∅!(𝑡) =

 ∅! ! !!"#!  ∅! !

!"#!  ∅! ! !!"#!  ∅! !
                                             

(v) 
Where, max!  ∅! 𝑡 , min!  ∅! 𝑡  and ∅!(𝑡) is the 

maximum, minimum, and distance normalized value of 
the measure  ∅!(𝑡) respectively (0 ≤ ∅!(𝑡) ≤ 1). 

 ∅!(𝑡) is applicable for representing any of the three 
target importance measures (i.e. indegree, closeness, and 
betweenness) whereas percent normalization is useful for 
only indegree due to manner in which the measures are 
calculated (see sections 2.4 and 3.7).  

 
3.8.3 Target (or AOI) importance measure 
visualization 
      Once the values of the target importance measures 
are normalized, the last step involves their subsequent 
visualization. We provide a couple of examples of visual-
ization approaches: Dot plot based on multiple time in-
tervals (for a single observer and single vertex im-
portance measure) and bar plot based on multiple partici-
pants (for a single time interval and single vertex im-
portance measure). There can be various ways to visually 
represent the combinations of importance measures, nor-
malization methods, multiple time intervals, and number 
of participants. Another example of a bar plot that com-
pares all importance measures of a single participant for a 
single time frame is also provided in the Results section. 
 
3.8.3.1 Adapted dot plot visualization 

Dot plots can better represent the evolution of the 
visual attention across various time intervals. We have 
adapted the dot plot to visualize the percent normalized 
indegree measure for all the time intervals considered in 
the DNet framework. Using the normalized measure-
ments helps in comparing the relative significance of 
AOIs within a single time interval and how an AOI’s 
importance is changing across various time intervals. 
Figure 5 shows a sample dot plot for the normalized 
indegree measure for all the AOIs presented in the DNet 
in Figure 4. In Figure 5, the size of each dot is propor-
tional to the percent normalized indegree value of the 
AOI for the given time interval.  

 
3.8.3.2 Adapted bar plot visualization 

Bar plots can better assist in comparing a single im-
portance measure among multiple participants or multiple 
importance measures for a single participant.  Figure 6 
shows an example of the adapted bar plot that compares 
the indegree measurements among multiple participants 
through the distance normalization approach. 
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Figure 5. Sample dot plot showing the evolutions of 

the indegree measurements (for both single and overlap-
ping AOIs) based on time frames using the results shown 
in Figure 4. Note that the time intervals need not be fixed 
but can be determined differently (e.g. dividing the time 
intervals based on events). 
 

 
Figure 6. Sample bar plot showing the relative indegree values 
of various AOIs among multiple observers (i.e. P1, P2, and P3) 
using the results shown in Figure 4. For this example, the verti-
cal axis represents the distance normalized indegree measure 
value. Only considering the indegree measure (in this example), 
AOI A is considered as the important AOI by all participants, 
whereas AOI B is considered important by only P2.  
 

4. Experiment 

The proposed approach was implemented into an air 
traffic control task. The task involved expert ATCSs 
observing the radar display to detect possible aircraft 
collisions. Details are as follows. 

 
4.1. Participants 

Three retired ATCSs (P1, P2 and P3) with over thirty 
years of experience were participants for the experiment. 
The ATCSs were recruited with the help of FAA Civil 
Aerospace Medical Institute (CAMI). Also, three FAA 
CAMI employees were also involved in the experiment 
as pseudo-pilots. They made the necessary maneuverings 

by following the ATCS’s voice commands. A simulated 
radio connection was used as the communication channel 
between the pseudo-pilots and ATCSs. 

 
4.2. Apparatus 

Hardware: A 19.83 × 19.83-inch monitor, with a 
2048 × 2048-pixel active display area, was used for dis-
playing the simulated air traffic scenarios. Apart from 
this, an additional monitor (kept to the right of the simu-
lation monitor) was used to display textual information 
about the aircraft, e.g. trajectory and possible future con-
flicts it might encounter (also known as the Enroute Au-
tomation Modernization tool). The ATCS’s used a key-
board, placed beneath the simulation display, to provide 
necessary input commands. FaceLab 5 eye tracker with 
an accuracy in the range of 0.5 − 1.0 degree visual angle 
error and sampling rate of 60 Hz (Eyetracking.com, 
2017) was used to collect ATCSs’ EM data. A threshold 
of 100 milliseconds was used for defining fixations. The 
participants were seated within a range of 50-70 cm from 
the simulated radar display. Software:  A customized 
ISim software used by FAA CAMI was used for simulat-
ing the enroute air traffic scenario (with an update rate of 
1 sec). EyeWorks software was used to process the raw 
eye tracking data collected through FaceLabs eye track-
ers. 
 
4.3. Scenario and task  
4.3.1 Scenario  

For the experiment we used one 20 minutes long 
simulated enroute air traffic scenario, which was devel-
oped and provided by the FAA. This scenario had a total 
of thirty nine unique aircraft (named as A, B, …, Z, a, b, 
…, m) with an average of twenty aircraft per frame. The 
scenario had a minimum of seven and maximum of thirty 
aircraft per frame. Figure 7 represents a screen capture of 
the simulated scenario. The scenario update rate was 1 
second. The display shows various aircraft and a weather 
patch in blue color. The aircraft representation shows the 
direction in which the aircraft is moving (shown by the 
white line) and data block which contains information 
about the aircraft’s computer code name, altitude, current 
speed, and destination airport. For example, in Figure 7, 
the aircraft N7890 (AOI U) is flying at a constant altitude 
of 19,000 ft (as shown by 190C) with a speed of 402 
knots and it going to KGPT airport (i.e. Gulfport–Biloxi 
International Airport in Mississippi). 
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4.3.2 Task  
The task involved controlling the simulated low alti-

tude enroute airspace using the ERAM system. The 
ATCSs are required to fulfil two objectives: (1) Route the 
aircraft through the sector within the display and (2) 
avoid any conflict scenario by preventing loss of separa-
tion (vertical and horizontal separation of 1000 ft and 5 
knots respectively) between aircraft. To achieve these 
objectives, the ATCSs gave voice commands (e.g. change 
is altitudes, speed and direction of the aircraft) to the 
pseudo pilots, using the simulated radio, for necessary 
maneuvering of the aircraft. 

 
4.4. Data analysis 

For the DNet analysis, the 20 minutes simulated sce-
nario was divided manually, on trial and error basis, into 
four equal time intervals of 5 minutes. This choice was 
motivated by the fact that we observed on average an 
aircraft spends around 5 minutes on the radar display. 
Event based intervals were not applied in this research 
since many aircraft appeared and disappeared throughout.  

Matlab was used to develop the AOI fixation se-
quence for each of the four time intervals mentioned 
above. In addition, igraph package (Csardi & Nepusz, 
2006) in R software was used to create the dynamic net-
work representation of the AOI fixation sequences and 
also for AOI importance metric calculation and visualiza-
tion. 

Figure 2 shows there are eight major steps in the 
proposed methodology. The time complexity (TC) of 
steps 1-4 for one time interval can be written as 
𝑇𝐶!!! = 𝛼!𝑒!𝑛! , where, 𝑒! and 𝑛! are the number of eye 
fixations and number of AOIs in time interval 𝑡 respec-
tively, and 𝛼! is some positive constant. Due to human 
physiological limitations the value of 𝑒! cannot increase 
arbitrability. Therefore, the governing factor of the time 
complexity for steps 1-4 is the number of AOIs. Thus, we 
can approximately write 𝑇𝐶!!! = 𝑂(𝑛!). Taking the 
worst case scenario, we can find an upper bound for this 
value by taking the maximum number of AOIs across all 
time intervals. Let, 𝑛!"# be the maximum number of 
AOIs present during any of the time intervals. Thus, we 
get 𝑇𝐶!!! = 𝛼!𝑛!"!. Similarly, the time complexity of 
step 5 can be written as  𝑇𝐶! = 𝛼!𝑛!"#!, where 𝛼! is 
some positive constant. For 𝑇 time intervals the time 
complexity of step 1-4 and 5 can be written as 𝑇𝐶!!! =
𝑇𝛼!𝑛!"# and 𝑇𝐶! = 𝑇𝛼!𝑛!"#! respectively.  

As mentioned in section 3.6.2, in a given DNet visu-
alization, the relative location of each AOI remains con-
stant within the various constituent networks for various 

time intervals. As a result, for drawing the DNet, we need 
to consider all the unique AOI states that arise in the AOI 
fixation sequence of an ATCS. Therefore, the time com-
plexity for step 6 can be written as, 𝑇𝐶! = 𝑇𝛼!𝑛!"#$, 
where, 𝑛!"#$ is the number of unique AOI states (both 
single and overlapped) in the AOI fixation sequence and 
𝛼! is some positive constant. Step 7 consists of calculat-
ing three AOI importance measure. The time complexity 
for indegree, closeness and betweenness metric are 
𝑇𝛼!𝑛!"#, 𝑇𝛼!(𝑛!"#! − 𝑛!"#), 𝑇𝛼!𝑛!"#(𝑛!"# −
1)(𝑛!"# − 2) respectively. Thus, the time complexity for 
step 7 can be written as 𝑇𝐶! = 𝑇𝛼!𝑛!"# + 𝑇𝛼! 𝑛!"#! −
𝑛!"# + 𝑇𝛼!𝑛!"#(𝑛!"# − 1)(𝑛!"# − 2). The time 
complexity of Step 8 can be written as 𝑇𝐶! = 𝑇𝛼!𝑛!"#, 
where, 𝛼! is some positive constant. Adding all the time 
complexity for step 1-8, the total time complexity for the 
overall process can be written as: 𝑇𝐶!"! = 𝑇 𝛼!𝑛!"# +
𝛼!𝑛!"#! + 𝛼!𝑛!"#$ + 𝛼!𝑛!"# +  𝛼! 𝑛!"#! −   𝑛!"# +
𝛼!𝑛!"# 𝑛!"# − 1 𝑛!"# − 2 +  𝛼!𝑛!"# .  

On simple algebraic reorganization, we get that:       
   𝑇𝐶!"! = 𝑇[𝛼!𝑛!"#! + 𝑛!"#! 𝛼! + 𝛼! − 3𝛼! +
                      𝑛!"# 𝛼! + 𝛼! + 2𝛼!+𝛼! − 𝛼! + 𝛼!𝑛!"#$].  

Thus, neglecting the lower order terms of 𝑛!"#, the 
approx. time complexity of the overall data analysis pro-
cess reduces to the order of 𝑂(𝑇𝑛!"#! + 𝑇𝑛!"#$). Thus, 
we can see that the number of time interval, maximum 
number of AOIs within any time interval and the number 
of unique AOI states in the AOI fixation sequence do 
impact the processing time of the proposed approach.  

5. Results 
5.1. Dynamic graph visualization  

Figure 8 represents the DNet visualization of the EM 
data of one ATCS for the simulated scenario shown in 
Figure 7. In Figure 8 (a) (i.e. time interval 0-5 minutes), 
AOI F (i.e. AAL68) and U (i.e. N7890) are the most 
important AOIs as they both have most EF numbers 
(circle size) and longest EF duration (circle color). In 
addition, there are highest EF transitions between AOI F 
and AOI U (based on the thickness of the link). AOI K 
(i.e. EJA33), despite having a small number of EFs, has 
substantially longer EF duration. AOI b and AOI d can 
also be considered as important AOIs based on how a 
researcher wants to set the threshold. 

For the second time interval (i.e. 5-10 minutes) shown 
in Figure 8 (b), the important AOIs have changed to AOI
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G (newly appeared aircraft not shown in Figure 8(a) and 
AOI K. Notice that AOI F has moved out of the display 
(see Figure 7(b)) and AOI U is still within the display but 
AOI U is not visually attended any longer. 

In addition, notice that AOI d (i.e. UAL1322) has 
been receiving consistent visual attention throughout the 
two time intervals 0-5 minutes and 5-10 minutes. Similar-
ly, the important AOIs change for the next two time in-
tervals. In the last time interval, the overlapping AOI (i.e. 
AOI (J;f)) receives much visual attention. As we move 
across time intervals from 1 to 4, a visible trend is the 
increase in the complexity of the network, with increase 
in the number of AOIs and EF transitions among them. 

 
5.2. Adapted dot plot 

Figure 9 represents the dotplot visualization of the 
normalized indegree measure for all the AOIs present in 
DNet shown in Figure 8. For example, in Figure 9 (a), 
AOI F and U has high importance in first time interval 
(i.e. 0-5), although, their importance reduces drastically 
in the subsequent intervals. AOI d receives consistent 
visual attention throughout the first two intervals. The 
indegree results are in accordance with the DNet results 
in Figure 8 since indegree measures the number of EFs 
received by an AOI.  

The adapted dot plot better shows the evolution of 
important AOIs. Considering AOI K, we see that its im-
portance initially grows as we move from the first time 
interval to the second, where it reaches its maximum and 
then starts decreasing for the last two time intervals. 
Another noticeable fact is that majority of the overlapped 
AOI cases have significant importance only in one time 
interval. These trends took more time to identify when 
observing the DNet. 

 
5.3. Adapted bar plot 

Figure 10 represents the relative importance of vari-
ous AOIs present in the first time interval of participant 1 
(i.e. P1). Again, AOI F and U are important, but also, we 
can identify that AOI b (i.e. SWA340) and AOI d can 
also be important AOIs when we additionally consider 
the closeness and betweenness values. We can also ob-
serve that AOI K had small EF numbers during the first 
interval, however, it can be considered as an important 
AOI due to the long EF duration and relatively high 
closeness value. Furthermore, we can see that the AOI Q 
and AOI a might be an important AOI considering that 
AOI (Q;a) also has moderate indegree and closeness 
values.  

Figure 11 shows the measures (i.e. indegree, close-
ness, and betweenness) visualized based on participants 
for the first time interval. Although there are slight varia-
tions, we can see a consistent trend among the partici-
pants. In addition, it becomes more evident that AOI Q 
and AOI a can be important AOIs (considering the values 
of AOI (Q;a)) in addition to AOI F, AOI K, AOI b and 
AOI d. In detail, overlapping AOI (Q;a) received sub-
stantial EF duration (as shown by the vertex color in the 
DNet visualization) although it received moderate num-
ber of EFs on it (as shown by the vertex size in the DNet 
visualization). On the other hand, comparing the three 
importance measurements, AOI (Q;a), in spite of having 
moderate indegree and closeness value,  has insignificant 
betweenness value. 

This might be due to the short lifespan of the over-
lapped AOI state since AOI a (i.e. SWA2920 flying at 
21000 ft with speed 424 knots overtakes AOI Q (i.e. 
N46332 flying at 7000 ft with speed 163 knots very 
quickly on the display. As a result, it is highly unlikely 
that it will play a crucial role as a bridge for the flow of 
attention between other groups of aircraft.  

6. Discussion 
Results obtained from the DNet visualization cou-

pled with multiple time interval visualizations enabled us 
to identify which are the important targets in each of the 
time intervals and how their importance evolves as we 
move across time intervals. Application of the three 
adapted target importance measures (i.e. indegree, close-
ness, and betweenness) along with the various ways to 
visualize those values showed that we can better analyze 
target importance measures that accounts for the interac-
tion among targets. 

In addition, we could identify various EM network 
characteristics of each participant and how the relative 
importance of various targets differs among them.  

DNet was better to visualize the EM flow of the 
overall network and EF transitions, whereas the adapted 
dot plot was better to visualize the evolution of im-
portance of each AOI across various time intervals. It is 
noted that the results could have been different if we had 
used a different time interval. For example, if the time 
interval was to 10 minutes, the most important AOI 
would turn out to be AOI d and the importance of AOI F 
and AOI U would have been less substantial. However, 
such results can be misleading since AOI F and AOI U 
were important AOIs during the first 5 minutes.  
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(a) Initial display (i.e. at time 0)   

 
(b) At the end of first time interval (i.e. at 5 minutes): AOI F is moving out of the display. 

Figure 7. Screen captures at the 0 and 5 minutes. The blue patch shows a weather feature (e.g. thunderstorm) which the aircraft needs 
to avoid. The characters and arrows in yellow color represent an AOI and the direction of the aircraft, respectively. These characters 
and arrows were not present during the experiment. Each AOI consists of an aircraft shown as a diamond shape, its direction shown 
as a vector line, and its associated data block (first line shows the aircraft ID, second line shows its altitude, third line shows its com-
puter ID and speed, and forth line shows its destination). If the altitude changes, the aimed altitude is shown followed by letter “T” 
and the current altitude. For example, AOI F is AAL68 (i.e. American Airlines 68) and flying toward northwest. Its current altitude 
is 21,300 ft (at 5 minutes) and target altitude is 23,000 ft. Its speed is 345 knots (at 5 minutes) and destination is KDEN (i.e. Denver 
international airport).  
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(a) 0-5 mins               (b) 5-10 mins 

            
(c) 10-15 mins                                  (d) 15-20 mins. 

Figure 8. DNet visualisation of the EM data of one ATCS for the simulated enroute air traffic scenario. The figure shows the 
important AOIs in terms of EF numbers and EF duration for all the four time intervals. It also shows how the importance of various 
AOIs changes as we move across various time intervals. The relative location of each of the AOIs remains constant across all the 
static networks associated with different time intervals. For example, AOI K is placed at the bottom row sixth column for all the 
constituent static networks.  
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         (a) Part 1 

 
        (b) Part 2 

 
Figure 9. Adapted dot plot visualization of the percent normalized indegree measure value for all AOIs (single and overlapped) 
present in the DNet visualization in Figure 8. 



Journal of Eye Movement Research Mandal, S. & Kang, Z. (2018) 
11(4):1 Enhancing training using dynamic network based eye movement visualization 
 
 
 

   
 
 
 

16 

    
Figure 10. Distance normalized measure value for all AOIs present in the DNet for time interval 0-5 mins for P1 (see Figure 8(a)). 
“Norm Indeg,” “Norm Close,” and “Norm Bet” refers to normalized indegree, closeness, and betweenness values, respectively. The 
vertical axis represents the distanced normalized measure value. The vertical axis ranges from 0 to 1, thus it helps to analyze the 
relative importance of all three measures at a given time interval.   
 

Selection of time interval thresholds (whether fixed 
or varied based on events/triggers) can be tricky and 
depend on the scenario characteristics. 

The adapted bar plots were better when multiple tar-
get importance measures and/or multiple participants’ 
measures were needed to be compared side-by-side. The 
normalized and adapted measure plots show that, despite 
receiving substantial amount of EFs, an AOI may not be 
significant in terms of the flow of visual attention across 
the various AOIs within the display as shown by the 
closeness and betweenness measures. The proposed ap-
proach can be useful in increasing the training efficiency 
of the novice controllers. Novice controllers can know 
which are the important targets that needs to be focused 
upon and how to move the attention across various tar-
gets as the scenario characteristics change. Furthermore, 
the trainees can better understand which targets are high-
ly correlated for conflict mitigation through observing the 
EF transition characteristics using the DNet and evaluat-
ing the closeness/ betweenness values. 
 
 

7. Conclusion 

In this research, we integrated the DNet framework 
with three target important measures (i.e. indegree, close-
ness, and betweenness). During the integration, we nor-
malized the measurements and then adapted the dot plot 
and bar plot to better visualize the outputs. The approach 
facilitated the understanding of how visual attentions 
occur on the dynamic network (i.e. EM network created 

from an aircraft conflict task) from various perspectives. 
The results obtained showed that, the traditional approach 
of using the raw EM data measures (i.e. number and 
duration of EFs) might be misleading for dynamic scenar-
ios where the targets’ lifespan on the display are non-
uniform. The proposed approach enabled us to better 
understand how the observers’ attention were devoted to 
the various targets including the overlapping targets on 
the display. In addition, in case of dynamic targets, to 
understand target importance we need to also consider 
which targets are integral in the smooth flow of attention 
across the various targets within the display. 

 
8. Limitations and Future work 

One challenging issue was determining the time inter-
vals for effective analysis. We have used five minute time 
intervals for the experiment based on trial and errors and 
we could have applied time intervals based on specific 
events (e.g. when target appears or disappears, or when a 
verbal control command is issued by an expert ATCS).  
However, event-based time intervals can create issues if 
too many events occur within very short times or too few 
events occur in very long times.  Instead, we could try 
applying shorter time intervals. For example, reducing 
the 5 minute interval to 1 minute interval).  However, we 
might be burdened with visualizing and analyzing too 
many outputs. Therefore, formal sensitivity analysis 
needs to be performed as part of future study to determine 
an optimal range of values for the intervals.  
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(a) Distance normalized indegree measure  

 
(b) Distance normalized closeness measure  

 
(c) Distance normalized betweenness measure 

Figure 11. Comparison of three ATCS’s visual scanning strategy by analyzing the distance normalized importance measure values of 
AOIs.  The Figures (a), (b), and (c) shows the relative importance of AOIs in terms of distance normalized indegree, closeness, and 
betweenness value (as shown by their zero values in the vertical axis in Figure 10).  
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In addition, we have not used pre-determined thresh-
olds to identify important AOIs and only identified them 
if all measures were relatively higher than others. There-
fore, a statistical method should be developed that clearly 
differentiate the important AOIs from the non-important 
one. 

Moreover, as a future study, we can also analyze the 
variation of the saccade length and eye fixation duration 
with time and various air traffic scenario characteristics. 
For example, we can consider how the distance between 
several aircraft on the display affects the saccade length 
of the ATCS. This might help us analyze the type of 
search behaviors undertaken by them, i.e. is the search 
goal oriented where they search for targets having similar 
characteristics or is it a random one.  

With increase in the number of AOIs and EF transi-
tion between them, the visual scalability of the DNet 
visualization gets impacted negatively, as there are more 
instances of edge crossings in the network representa-
tions. Furthermore, increase in the number of time inter-
vals also increases the number of static networks within a 
DNet framework. This leads to increase in the cognitive 
load of the observers as they have to keep track of an 
AOI across more number of network representations. 
Thus, in terms of visualization scalability, we can apply 
various graph simplification processes, also known as 
graph filtering processes, where the unimportant edges 
(i.e. edges representing low EF transitions) are not con-
sidered for visualization purpose, thus reducing the visual 
clutter.  

Furthermore, it can be valuable to analyze the com-
munity structure of AOIs (cluster of AOIs having high 
amount of EF transitions between them) and their evolu-
tion formed in the network representation of the EF data. 
Finally, we are planning to develop a mapping scheme 
between the visual scanning pattern classifications 
(Mcclung & Kang, 2016) with the DNet results. This 
might help in understanding how different visual scan-
ning strategies are related to the overall target’s im-
portance. 
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