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Abstract

Background: Membrane proteins (MPs) play key roles in signal transduction. However, understanding their function at a
molecular level is mostly hampered by the lack of protein in suitable amount and quality. Despite impressive developments
in the expression of prokaryotic MPs, eukaryotic MP production has lagged behind and there is a need for new expression
strategies. In a pilot study, we produced a Drosophila glutamate receptor specifically in the eyes of transgenic flies,
exploiting the naturally abundant membrane stacks in the photoreceptor cells (PRCs). Now we address the question
whether the PRCs also process different classes of medically relevant target MPs which were so far notoriously difficult to
handle with conventional expression strategies.

Principal Findings: We describe the homologous and heterologous expression of 10 different targets from the three major
MP classes - G protein-coupled receptors (GPCRs), transporters and channels in Drosophila eyes. PRCs offered an
extraordinary capacity to produce, fold and accommodate massive amounts of MPs. The expression of some MPs reached
similar levels as the endogenous rhodopsin, indicating that the PRC membranes were almost unsaturable. Expression of
endogenous rhodopsin was not affected by the target MPs and both could coexist in the membrane stacks. Heterologous
expression levels reached about 270 to 500 pmol/mg total MP, resulting in 0.2–0.4 mg purified target MP from 1 g of fly
heads. The metabotropic glutamate receptor and human serotonin transporter - both involved in synaptic transmission -
showed native pharmacological characteristics and could be purified to homogeneity as a prerequisite for further studies.

Significance: We demonstrate expression in Drosophila PRCs as an efficient and inexpensive tool for the large scale
production of functional eukaryotic MPs. The fly eye system offers a number of advantages over conventional expression
systems and paves the way for in-depth analyses of eukaryotic MPs that have so far not been accessible to biochemical and
biophysical studies.
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Introduction

Membrane proteins (MPs) represent more than 30% of the cell

proteome [1] and play key roles in signal transduction.

Dysfunction often leads to major disorders or death and therefore,

MPs account for more than 50% of the current drug targets [2].

However, drug discovery as well as detailed biochemical and

structural studies are still hindered by a number of problems

already encountered in the production of eukaryotic MPs. It is

therefore not surprising that the majority of eukaryotic MPs found

in the structural database (Membrane Proteins of Known 3D-

Structure, http://blanco.biomol.uci.edu) are naturally abundant

[3,4] and that their structures were determined using material

from wild-type organisms. Most of them are localized in

specialized cells from i.e. the retina for rhodopsin, the lens for

aquaporins, the sarcoplasmic reticulum for calcium ATPases and

the electric organ of Torpedo for the nicotinic acetylcholine

receptor pore. These cells are adapted to the massive production

of MPs, which are often densely packed in their respective

membrane environment.

In contrast to eukaryotic MPs, our understanding of prokaryotic

MPs has tremendously increased in the past decade due to the

optimization of bacterial strains and expression tools for MP

production [4], as well as by the use of extremophilic organisms

(e.g. Archaea) as a source for MPs of increased stability [5].

Bacteria enriched in membranes are widely used for MP

expression as they seem to offer increased membrane surface as

well as an optimized insertion machinery [6]. The crystal

structures of close prokaryotic homologs provided relevant models

for many mammalian MPs. However, some eukaryotic MPs which

are of prime interest in neuropharmacology, like the sodium-

dependent serotonin transporter (SERT or 5HTT), do not have

close bacterial homologs [7]. Importantly, differences in the active

sites have been observed e.g. in rhodopsin [8] or potassium
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channels [9] that distinguish the pro- and eukaryotic proteins. The

precise architecture of these binding sites can be difficult to model

which leads to controversies in the perception of their reaction

mechanisms. For MPs regulated by allosteric mechanisms [10],

focusing on the ligand binding site is not sufficient. Among G

protein-coupled receptors (GPCRs), metabotropic glutamate

receptors (mGluRs) are prototypes for allosteric regulation and

have been subjected to random high-troughput ligand screens for

drug design as well as structure-based virtual screening [11,12].

Both, high-throughput pharmacological and structural analyses of

MPs require amounts of material which are often not provided in

sufficient quality and quantity by conventional expression systems.

Eukaryotic cells in culture, like insect cells and yeast are

commonly used for the overexpression of eukaryotic MPs [3].

However, a major drawback is the often limited capacity of these

cells for trafficking, folding and membrane insertion of the target

MPs and therefore, a significant portion of immature MPs remain

trapped in internal membranes [13]. In a pilot study, we

engineered a transgenic fly overexpressing a recombinant

Drosophila metabotropic glutamate receptor (DmGluRA) specifi-

cally in the eyes [14]. The idea was to target the receptor to the

naturally abundant membrane stacks in the photoreceptor cells

(PRCs), the rhabdomeres, housing the GPCR-prototype rhodop-

sin. Drosophila melanogaster was chosen because fly genetics offers the

possibility of regulating ectopic expression in intensity, kinetics and

localization using specific promoters (drivers). The DmGluRA

production in fly eyes gave higher yields than the baculovirus

overexpression system in Sf9 cells and the receptor was functional.

In addition, the purified protein was clearly superior in

homogeneity compared to protein obtained from Sf9 membranes

[14] which typically suffers from the presence of immature

receptors [3]. The receptor could be purified in mg amounts [14]

and biochemical analysis suggested cholesterol as an allosteric

regulator that switches the receptor to a high affinity state [15].

Recently, the expression protocol was improved by the use of

GFP-fusion constructs [16]. However, the question remained

whether overexpression in fly eyes would be also applicable to the

heterologous expression for MPs like transporters and channels

which are often difficult to express in conventional systems.

In this study, we show the exceptional properties of the PRCs in

offering seemingly unsaturable membrane space for target MP

insertion. We describe the heterologous expression of functional

MPs including mammalian GPCRs, neurotransmitter transporters

and the channelrhodopsin ChR2. We establish overexpression in

fly eyes as a general, efficient and inexpensive method for large

scale production of functional eukaryotic MPs and exemplify our

findings with an in depth analysis of mGluR5 and SERT.

Results

Photoreceptor cells have a large capacity for
recombinant MPs

The successful expression of a functional Drosophila metabotro-

pic glutamate receptor DmGluRA in fly eyes recommended this

system for the production of eukaryotic MPs [14] (see Supporting

Information: Primer of the fly eye system (Primer S1)). We now

addressed the question whether overexpression in the eyes is

superior to overexpression e.g. in the whole fly or other body parts.

DmGluRA was expressed in transgenic flies under the control of

different drivers [17] inducing specific expression in the eyes

(GMR- or Rh1-GAL4) or ubiquitous expression (Tubulin-, Actin-

or Armadillo-GAL4). The expression driven by eye-specific

promoters was impressive compared to the insignificant levels

obtained with ubiquitous promoters (Figure 1A). Using an eye-

specific driver was a prerequisite for high expression.

The green fluorescent protein (GFP) was fused to the C-

terminus of all MP-targets in this study for efficient monitoring

[18], e.g. to select the best expressing flies, for quantification,

localization of expression and for quality control of large-scale

cultures. GFP fluorescence indicates also correct folding of the N-

terminally fused partner protein [19]. Flies expressing different

GPCR-GFP fusion constructs under the control of GMR-GAL4

were generated (for technical details see [16]). Quantification by

fluorescence-scanning of native gels (Figure 1B) showed that e.g.

DmGluRA expression levels reached about 50% of endogenous

rhodopsin (Rh1) present in the PRCs (Table 1). Recombinant Rh1

could be expressed at similar levels (502 pmol/mg MP or 18 ng/

eye) as endogenous Rh1 (3 to 66107 Rh1 molecules/rhabdomere,

corresponding to 10 to 20 ng/eye [20,21]) and similar to

recombinant Rh1 not fused to GFP (15 ng/eye [22]) (Table 1).

A number of rhodopsin-type GPCRs (Class A GPCRs [23]) were

tested for heterologous expression. Among them, the mammalian

Figure 1. Recombinant expression of Drosophila and mammalian GPCRs in fly eyes. (A). Western blot analysis of DmGluRA expression
using eye-specific (GMR, Rh1) or ubiquitous (Armadillo, Actin, Tubulin) promoter elements. DmGluRA was detected with the 7G11 antibody. b-tubulin
was used as a loading control (not shown). (B). Quantification of DmGluRA-GFP expressed under the control of the GMR driver. Intrinsic fluorescence
signal of DmGluRA-GFP (1) compared with the GMR driver fly (2)(lower inset). The heads of three flies were analyzed. The GFP standard curve shown
as graph was obtained by fluorescence scanning of a clear-native gel (using 5, 10, 25, 50, 75 ng GFP; upper inset). Fluorescence signals were
integrated with the ImageJ software. (C). Typical fluorescence image of a transgenic Drosophila expressing the human vasopressin receptor V2R-GFP
under the control of the eye-specific GMR1104 driver. The inset shows the fluorescence signals of V2R-GFP (3) and Rh1-GFP (4) from three fly heads.
doi:10.1371/journal.pone.0018478.g001
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vasopressin receptor (V2R) was one of the best expressing test

cases (.1 mmol/mg MP; Table 1, Figure 1C). V2R is involved in

the regulation of water homeostasis by the kidney and in X-linked

nephrogenic diabetes insipidus [24]. The expression level of V2R

in PRCs is higher than the best ones previously reported using

conventional overexpression systems optimized for eukaryotic MPs

[4,25]. Human CCR5, a chemokine receptor currently serving as

a major therapeutic target against HIV cell-entrance [26], was

expressed at levels similar to Drosophila Rh1 (555 pmol/mg MP;

Table 1). These examples suggest that heterologous expression in

the fly eye can be applied to most class A GPCRs. Since fly Rh1 is

the predominant MP in rhabdomere membranes [27], it is

remarkable that the overexpression of recombinant MPs did not

affect the amount of endogenous Rh1 as analyzed by Western blot

(not shown). On the other hand, the high level of endogenous Rh1

does not seem to limit the expression of recombinant MPs. The

rhabdomere membranes appear to have seemingly unsaturable

capacity to accommodate MPs.

A rhodopsin knock-down is not required for high
expression levels

The capacity of the PRCs to host large amounts of recombinant

MPs in the presence of endogenous Rh1 indicates that there is no

need to down-regulate Rh1 in order to increase the expression levels.

In contrary, a fly knock-out for Rh1 would alter the biogenesis of the

rhabdomere membrane [28,29]. Moreover, the expression of algal

channelrhodopsin ChR2 which contains retinal as a cofactor [30]

was shown to directly correlate with the levels of endogenous Rh1

(Figure 2). Chlamydomonas reinhardtii ChR2 was expressed under the

control of different drivers including GMR drivers of diverse origins.

Briefly, the use of a GMR driver (Bloomington #1104) [31]

constructed on a gl60j genetic background missing the glass protein

[32] and therefore Rh1 [33] gave a surprisingly strong eye-

phenotype (Figure 2A) not seen i.e. for V2R-expressing flies (not

shown), and ChR2 was barely detectable (Figure 2B, lane 1). Two

other GMR drivers (Bloomington #9146 and #8605) expressing

higher amounts of Rh1 (Figure 2B, lane 2 and 3, respectively)

induced also a higher expression of ChR2 (Figure 2B, lanes 2 and 3,

respectively). A correlation with Rh1 levels was not observed for

other MPs targets e.g. the V2R (not shown). Therefore, expression of

Rh1 and ChR2 are somehow linked. ChR2 expression reached

200 pmol/mg MP (Table 1). In the presence of Rh1, the channel

localized in the rhabdomeres (Figure 2C) and the eye morphology

was normal (Figure 2C, Inset). The observed retinal (Figure S1A)

and Rh1 dependence for the proper processing of recombinant

ChR2 indicated that the photoreceptor cells are specially adapted for

the expression of retinal-binding membrane proteins.

Heterologous and homologous expression of glutamate
receptors give similar amounts

We have shown that GPCRs can be expressed in high amounts in

the fly eyes. In order to compare heterologous and homologous

expression we choose mGluRs. Mammalian mGluR5 is involved in

antipsychotic medication and subject of intensive pharmacological

and structural characterization [34,35]. Expression of mGluR5

gave strong eye fluorescence (not shown) with expression levels

similar to DmGluRA according to Western blot and fluorescence-

scanning analyses (Figure 3A; Table 1). For functional tests fly heads

were collected as previously described [16] and membranes were

prepared for radioactive glutamate binding assays. mGluR5 had an

affinity for glutamate (3162 mM) (Figure 3B) in the same range as

reported previously for DmGluRA (54 mM) [15] suggesting proper

folding of the heterologously expressed receptor. The results showed

that heterologous expression of functional GPCRs was efficient and

reached similar levels as homologous expression.

Heterologous expression of neurotransmitter
transporters

Encouraged by the success with heterologous expression of

GPCRs and channelrhodopsin ChR2, we set out to test the fly eye

system also for membrane transporters. For eukaryotic neurotrans-

mitter transporters low level expression and heterogeneity have

been reported from classical overexpression systems. The serotonin

transporter (SERT) seems to require rather sophisticated overex-

pression systems i.e. with engineered chaperones [36]. We tested

serotonin transporters from human (HsSERT) and Drosophila

(DmSERT). Strong expression was detected by epifluorescence

microscopy and by Western blot analysis for HsSERT (Figure 3C).

DmSERT and HsSERT expression quantified by fluorescence

scanning of native gels was 493 and 220 pmol/mg MP, respectively

(corresponding to 43 and 20 ng SERT/eye, respectively; Table 1).

These expression levels are in range with endogenous rhodopsin.

Proper folding of HsSERT is indicated by binding the inhibitors

R,S-citalopram (nanomolar affinity; Figure 3D) and cocaine

(309638 nM, not shown) with similar affinities as reported

previously [37,38]. Similarly, the glutamate transporters DmEAAT1

and HsEAAT2 both expressed well in fly eyes (Table 1). These data

show that the fly eye system is suitable for heterologous and

homologous expression of functional neurotransmitter transporters.

SERT and Rh1 localize in distinct domains in the
rhabdomere membrane

We have shown that despite the high quantities of endogenous

Rh1, SERT is expressed in similarly high amounts. In order to test

whether HsSERT and Rh1 co-localize in the PRCs, HsSERT

localization was analyzed by 3D-laser-scanning confocal micros-

Table 1. Expression levels of target MPs.

Target MP_ Species

Expression
level [pmol/mg
total MP]

GPCRs (7 TMs)

Endogenous Rh1_Drosophila rhodopsin 272–544*

Rh1_Drosophila rhodopsin 502

V2R_Human vasopressin receptor .1000

CCR5_Human chemokine receptor 555

DmGluRA_Drosophila metabotropic glutamate
receptor

226

mGluR5_Rat metabotropic glutamate
receptor

192

Channel (7 TMs)

ChR2**_Clamydomonas channelrhodopsin 206

Transporters (12TMs)

SERT_Drosophila serotonin transporter 493

SERT_Human serotonin transporter 220

EAAT2_Human glutamate transporter 173

EAAT1_Drosophila glutamate transporter 716

*Endogenous Rh1 rhodopsin levels are 3 to 66107 Rh1 molecules/rhabdomere
[20,21] corresponding to 272 to 544 pmol/mg total MP.
**MPs were expressed under the control of the GMR1104 driver except for ChR2
(GMR9146).
doi:10.1371/journal.pone.0018478.t001
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Figure 2. High expression levels of Channelrhodopsin ChR2 correlate with endogenous rhodopsin (Rh1). (A). Fluorescence image of a
fly expressing ChR2-GFP under the control of the GMR1104 driver (Inset: bright light picture of the head). (B). ChR2-GFP expression driven by different
GMR promoter elements (GMR1104 (1), GMR9146 (2), and GMR8605 (3)) analyzed by Western blot and compared with endogenous Rh1 levels. ChR2-GFP,
Rh1 and b-tubulin were detected with GFP, Rh1 and b-tubulin antibodies, respectively. (C). Analysis of an intact head using a water-immersion
objective shows rhabdomere localization of ChR2-GFP expressed under the control of GMR9146. Magnification was 10620. Inset: the bright light
picture shows normal eye morphology. For easier recognition, the facettes of the fly eye are marked by hexagons.
doi:10.1371/journal.pone.0018478.g002

Figure 3. Heterologous expression of functional GPCRs and transporters in fly eyes. (A). Western blot analysis of Drosophila (DmGluRA-
GFP) or mammalian (mGluR5-GFP) metabotropic glutamate receptors expressed in fly eyes using a GFP antibody. The GMR driver fly is shown as a
negative control. (B). Homologous competitive binding experiment with glutamate [15] on membranes from flies expressing mGluR5-GFP. (C).
Western blot analysis of the human serotonin transporter HsSERT-GFP expressed in fly eyes using a GFP antibody. The GMR driver fly and GFP
standard are shown as negative and positive controls, respectively. (D). Competition binding experiment on membranes from flies expressing
HsSERT-GFP. Binding of [125I]-RTI55 was competed with racemic citalopram (Ki 4.562.7 nM). (E). Three-dimensional reconstruction from laser
scanning confocal microscopy images of a fly eye expressing HsSERT-GFP. GFP fluorescent signal, showing the presence of HsSERT in all rhabdomeres
of all ommatidia (in green); natural autofluorescence delimits the surface of the eyes (in blue). The scale bar represents 40 mm. Inset: Analysis of an
intact head using a water-immersion objective shows rhabdomere localization of HsSERT-GFP expressed under the control of GMR1104. Magnification
was 10620. (F–G). EM-double immunogold labeling of recombinant HsSERT-GFP and endogenous Rh1 with the GFP (10 nm gold) and the Rh1
(15 nm gold) antibodies, respectively, using purified rhabdomere membranes. (F). Typical Rh1-positive domain. (G). Typical HsSERT-labeled domain.
(H). Coomassie-stained SDS-PAGE of HsSERT-GFP purified [52] in one step using a nickel column (lane 2). MW standards are shown in lane 1.
doi:10.1371/journal.pone.0018478.g003
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copy (LSCM) of the intact fly head (Figure 3E) as well as by

epifluorescence microscopy using water-immersion objectives [39]

(Figure 3E,inset). HsSERT is expressed in all 7 rhabdomeres of

each compound eye called ommatidia. The distribution of

HsSERT (Figure 3E) and DmSERT (not shown) in the

rhabdomeres is similar to rhodopsins [29,40]. However, it was

possible to separate domains containing endogenous Rh1 from

those containing DmSERT using an Ultra-Turrax for membrane

disruption and subsequent ultracentrifugation in a density gradient

(Figure S3). This suggests that Rh1 and DmSERT are accommo-

dated in separate membrane areas of the rhabdomeres. To further

investigate this, electron microscopy with double gold-immunola-

beling using anti-Rh1- and anti-GFP antibodies was performed on

rhabdomere membranes (Figure 3F–G). 56% and 42% of the

membrane structures were either positive for Rh1 (Figure 3F) or

SERT-GFP (Figure 3G) respectively, and only 2% contained a

Rh1/SERT-GFP mixture. Therefore, Rh1 and DmSERT indeed

localize in separate membrane domains. This shows the feasibility

of further analysis of the supramolecular organization of SERT

and probably other recombinant proteins in rhabdomere mem-

branes by biophysical methods like cryo-electron microscopy [41]

or atomic force microscopy [42,43].

Large-scale purification of MP targets
Some overexpression systems like Pichia pastoris display often

impressive levels of MP production at a small scale but expression

at a larger scale is tricky and requires sophisticated devices [44]. In

order to test the scalability of the fly eye system, the fly cultures

were expanded (Figure S2) and HsSERT was subjected to large

scale purification. Fly heads were collected for membrane

preparation [16]. A volume of 4 ml (2 g) frozen fly heads gave

typically 45 mg of total MP with 0.5 mg HsSERT (1 mg

DmSERT) purified routinely using an affinity column

(Figure 3H). The transporters and receptors are now used for

detergent optimization and crystallization trials. Taken together,

the amounts obtained with the fly eye system in combination with

the superior homogeneity of the protein provide the basis for

further biochemical, pharmacological and structural analyses.

Discussion

We show that the expression of eukaryotic membrane proteins

in the eye of transgenic Drosophila is a powerful tool for the

production of functional GPCRs, neurotransmitter transporters

and channels. For SERT we demonstrate that the fly eye system

can be scaled up to the amounts needed for routine crystallization

studies and biochemical characterization. The expression levels of

a number of test cases come close to that of endogenous rhodopsin.

Using a GFP tag for monitoring allows for easy in vivo and in vitro

MP analysis and quality control of the fly cultures.

Specific properties of the fly eye system offer major advantages

compared to conventional expression systems. These include

accessibility, low cost and superior quality of the expressed

proteins [14,45]. The PRCs maintain a high turnover of rhodopsin

in their specialized membrane stacks [21,46] which relies on high-

throughput MP production, folding and targeting. Being special-

ized and polarized cells, PRCs [47,48] harbor the rhabdomeres as

an ideal storage compartment for MPs. PRC targeting of MPs that

are often toxic for the host cell might benefit from the absence of

endogenous ligand or from having only minor effects on local

metabolism. We observed that the capacity of the PRCs to host

MPs seems almost unsaturable, as in addition to endogenous

rhodopsin equivalent amounts of recombinant MP can be

accommodated. Heterologous expression can reach a similar level

as homologous expression as shown for the mammalian mGluRs

and SERT. The fly eye system is therefore particularly suited for

heterologous expression.

In conventional eukaryotic expression systems ER retention of

recombinant GPCRs and transporters can indicate improper

folding and is often a problem e.g. for expression in yeast. In the fly

eye system the majority of the target proteins were localized

entirely in rhabdomere membranes. This also demonstrates that

MPs with various intrinsic signal sequences are targeted to the

rhabdomeres. The expression of the channelrhodopsin ChR2 was

dependent on the endogenous Rh1 levels, suggesting a co-

transport to the rhabdomeres. Also, there is indication that

ChR2 expressed in PRCs binds its cofactor retinal, necessary for

folding and activity. In addition to the classical post-translational

modifications like glycosylation [49], the PRCs can efficiently

produce retinal-binding proteins, while classical eukaryotic cell

cultures or cell-free expression systems would require an

exogenous supply of cofactor [50,51].

Expression of MPs in the fly eye system is also a cheap

alternative to expensive eukaryotic cell cultures and their

requirement to work sterile. The costs for making a transgenic

fly (e.g. through collaboration or using a Drosophila injection

service) and maintaining even large scale cultures is negligible

(Note: the food being made of cornmeal, moult, yeast and sugar is

inexpensive with only around 10$/40 large vials). In addition,

making a fly can be faster than producing baculovirus stocks for

overexpression in insect cells. Due to the short life cycle of the flies,

about one month is sufficient starting from the DNA-construct of

the target MP to the first expression test with the transgenic fly.

While an overall comparison of different expression systems is

straightforward concerning the costs, the comparison of yields,

workload and most importantly the protein quality requires more

attention. Compared with expression systems that require liters of

sterile medium, the continuous fly cultures and the handling of

small volumes (125 ml of flies corresponding to 25 kflies or $1 mg

of pure target MP) provide important advantages. When the

workload of membrane preparation and the quality of the purified

MPs are compared with conventional expression systems, the fly

eye system is superior.

Taken together, we developed a fly eye system for the

heterologous and homologous expression of different classes of

eukaryotic membrane proteins. It offers a number of advantages

compared to conventional expression systems and is more easily

accessible than one would probably imagine. The fly eye system

opens the door for studying eukaryotic membrane proteins that

have so far not been accessible to biochemical and biophysical

studies.

Materials and Methods

Cloning strategy
MP targets: the rat mGluR5 (mGluR5), human sodium-

dependent serotonin transporter (HsSERT), glutamate transport-

ers (EAATs) and channelrhodopsin (ChR2) constructs were

generous gifts from J.-P. Pin (Montpellier, France), R. D. Blakely

(Nashville, USA), S. Birman (Marseille, France) and P. Hegemann

(Berlin, Germany), respectively. The Drosophila melanogaster

SERT (DmSERT) cDNA from the Berkeley Drosophila Genome

Project was provided by BioCat/Open Biosystems (Heidelberg,

Germany).

The general protocol for cloning of target MPs has been

described previously [16]. Typically, the gene coding for the target

MP was amplified using EcoRI and a XhoI restriction sites and

cloned in frame with eGFP (GFP) into the Drosophila pUAST

Eukaryotic Membrane Protein Expression
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vector [17]. GFP was flanked at the N-terminus by a Leu-Glu

linker encoded by the XhoI site followed by the TEV-cleavage site

ENLYFQG and at the C-terminus by a 6-his tag (TEV-GFP-6his).

The construct in pUAST was sequenced and tested for expression

in Schneider S2 cells as described [16].

Transgenic fly generation
The MP-GFP construct cloned in the pUAST vector was used

for classical P-element-mediated transformation of embryos [53] of

the Drosophila host line w1118 (carried out by Vanedis (Oslo,

Norway) or BestGene (Chino Hills, U.S.A.)). Most of the driver

lines were provided by the Bloomington center. The various driver

lines used in this study were eye-specific using either the minimal

rhodopsin promoter for the Rh1-GAL4 line or a glass-binding

enhancer element GMR (Glass Multiple Reporter or Glass

Minimum Response) for the GMR-GAL4 lines [33,54]. The

GMR driver lines used a pentameric arrangement of an enhancer

region of the Rh1 promoter (glass binding site). The GMR8506

driver (Bloomington #8506) has a longer pentameric repeat

(38 bp, ‘‘long GMR’’ driver) [55] than the GMR1104 driver

(29 bp, ‘‘short GMR’’ driver) [31]. An advantage of the GMR8506

driver is that the longer enhancer site sequence confers a strict

PRC specificity [31]. The ELAV-GAL4 driver (Bloomington

#8765) was chosen for its predominant induction of expression in

neurons [56].

Flies were reared at room temperature on standard fly food

(yeast, corn syrup and agar) in a 12 hours light/12 hours dark

cycle and stocks were kept at 18uC and 60% humidity. For scaling-

up the fly cultures, we opted for a continuous culture in vials at

room temperature instead of large cages that are difficult to handle

for fly harvesting (Figure S2). For retinal depletion experiments,

flies were reared for minimum two generations on carotenoid-free

medium (10% yeast, 10% sucrose, 0.02% cholesterol, 2% agar)

[57]. Replenishment with retinal was performed by adding 80 mg

all trans-retinal on the surface of the carotenoid-free medium [49].

Fluorescence microscopy on fly heads
For selection and sorting according to GFP fluorescence, flies

were kept anaesthetized under CO2 on a glass filter (Neolab) and

observed using a MZ 12-5 Leica stereomicroscope mounted with a

106 objective and equipped with an epifluorescence device

(illumination path: BP 480/40 nm, dichroic mirror/reflector:

505 nm, observation path: LP 510 nm).

For rhabdomere localization experiments, flies were put asleep

in CO2 and over-anaesthetized for 10 min in diethylether vapors,

mounted on a needle and observed under water using a water-

immersion objective [39] (HCX APO, L 206/0.5 W or L 406/

0.80 W U-V-I, Leica, Germany) on a DM LFS microscope (Leica,

light source: ebq 100 dc-1 [100 W], Jena GmbH, Germany; I3

filter set (illumination path: BP 450–490 nm, dichroic mirror/

reflector: 510 nm, observation path: LP 515 nm)). The fluores-

cence was documented with a digital camera (DC200, Leica,

Germany). Confocal laser scanning microscopy was performed on

intact heads mounted in PBS between two coverslips spaced by

clay on the stage of a Nikon TE2000-E inverted fluorescence

microscope. Heads were subjected to series scan (300 z-stacks) with

a 488 nm laser over half a mm depth to build a 3D-image of a

whole eye.

Harvesting of fly heads
10 ml frozen flies in liquid nitrogen were gently shaken in a

50 ml-Falcon tube together with 5 ml of glass beads (diameter

4 mm) as described [16]. Briefly, the flies and beads were

transferred on a set of sieves with decreasing meshes (Neolab

#6-2380 (the three smaller meshes)) pre-cooled in liquid nitrogen.

After shaking, the heads were collected from the middle

compartment and stored at 280uC.

Membrane preparation
Frozen fly heads were homogenized in sucrose buffer (TRIS-

HCl 50 mM, NaCl 150 mM, MgCl2 2 mM, EGTA 1 mM,

Sucrose 250 mM, pH 7.4) and membranes were prepared as

described [16]. It is noteworthy that fly eye tissue is much easier to

homogenize than cells in culture.

Western blot analysis and quantification by fluorescence
For Western Blot, 12 ml of a sample containing 5 fly heads

homogenized in 30 ml of a classical loading buffer were analyzed

and detection was performed by classical enhanced chemilumi-

nescence (ECLTM, GE Healthcare) using an antibody against GFP

(Biovision, Mountain View), Rh1 (4C5 ascites, DSHB, Iowa), b-

tubulin (E7, DSHB, Iowa) or the Drosophila glutamate receptor

(monoclonal 7G11 [45]).

Quantification of the fluorescent recombinant proteins was

done in native gradient (4–10%)-polyacrylamide gel electropho-

resis in the presence of n-Dodecyl-b-D-maltoside (DDM) or

digitonin 0.1% in the gel [58]. Six fly heads were homogenized in

8 ml sucrose buffer complemented with the protease inhibitors (see

membrane preparation). DDM or digitonin was added (final

concentration 1%) for solubilization and left on ice for two hours.

The samples were ultracentrifuged at 4uC for 10 min and 3 ml

supernatant was mixed with 3 ml native loading buffer (TRIS-HCl

100 mM, glycerol 20%, Bromophenol blue). The samples were

loaded in parallel with a GFP standard curve (eGFP, Biovision,

Mountain View) and run at 180 V in the dark for about three

hours. The gel was analyzed using the Ettan DIGE imager (GE

Healthcare). Image J software was used to integrate the pixel

values.

Ligand binding
2.5 mg Drosophila head membranes [14] from flies expressing

HsSERT were incubated in 100 ml sodium phosphate buffer

50 mM, NaCl 100 mM, BSA 0.2% (pH 7.2) with [125I]-RTI-55

(Perkin Elmer) and increasing concentrations of racemic citalo-

pram (Sigma) or cocaine (Sigma). Bound and free were separated

by rapid filtration on a GF/B glass filter saturated with BSA 1%

and polyethylene imine 0.5% using a Brandel M-48 harvester.

GraphPad Prism 4.0 software was used for curve fitting and data

analysis.

Preparation of rhabdomere membranes
The eyes from 50 flies expressing HsSERT were dissected and

retina membranes were released using a reciprocating shaker

(Mini-Bead-Beater, GlenMills, New Jersey) in the presence of

0.1 mm zirconia/silica beads (50 mg) in 125 ml ice-cold Optiprep

10%, HEPES-NaOH 10 mM, NaCl 120 mM, KCl 4 mM,

sucrose 32 mM, pH 7,4 buffer. The resulting membranes were

collected in the 35% Optiprep-fraction of an Optiprep-gradient

(10 to 55%) after centrifugation 2.5 h at 20,000 g, 20uC. The

presence of both rhodopsin and HsSERT in this fraction was

confirmed by Western Blot using the monoclonal 4C5 and the

GFP antibody, respectively (not shown). Alternatively, the use of

an ULTRA-TURRAX disperser instead of the Mini-Bead-Beater

produced smaller membranes containing separated Rh1- and

HsSERT rhabdomere membrane sub-populations that could be

recovered on a 40% and 20% Optiprep-gradient fraction,

respectively (Figure S3).
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EM double immunogold labelling
Membranes resuspended in Ringer buffer at 0.1 mg/ml were

adsorbed on 300-mesh carbon-coated EM grids (EM Sciences,

Munich, Germany) for 2 min at RT. For immunogold labeling of

GFP fusion proteins, unspecific labeling was blocked by incubating

the grids on blocking solution (0.8% bovine serum albumin, 0.1%

fish skin gelatin in PBS) for 10 min at RT. The samples were then

double-labeled according to Slot et al. [59] except that the

antibody and protein A incubation times were reduced to 15 and

10 min, respectively. The antibody against GFP (Molecular

Probes, dil. 1/200) was used first followed by rhodopsin antibody

(4C5, DSHB Iowa, dil. 1/1000) and rabbit anti-mouse (DaKo-

Cytomation, Denmark). After the last incubation with protein A

coupled to gold (University of Utrecht, the Netherlands), the grids

were washed 5 times in PBS, 5 times in water and the samples

were embedded by looping out the grids in a mixture of 8 parts

methyl cellulose (Sigma, 25 centipoise; 2%) and 2 parts uranyl

acetate (Fluka, Heidelberg, Germany, 3% in water) and removing

excess liquid on a filter. Grids were analyzed with a Zeiss electron

microscope EM10 and images taken with a Gatan MultiScanTM

camera and Digital MicrographTM software and further processed

using Adobe Photoshop CS3.

Additional methods
Additional information on large scale fly cultures is available in

Figure S2.

Supporting Information

Figure S1 ChR2 expression depends on retinal. Like

rhodopsin, ChR2 is a retinal-binding protein1. Transgenic flies

expressing ChR2-GFP grown on carotenoid-depleted food2, which

prevents retinal synthesis, showed a clear drop in ChR2 expression

(lane 2) compared to flies grown on normal medium (lane 1).

ChR2 expression was recovered by replenishing the food with

synthetic all-trans retinal (lane 3), indicating that the observed

effect is specific for retinal. Lane 4 shows a driver fly as a control.

A Western blot using a GFP antibody with two fly heads is shown.

The same blot was analyzed with antibodies against b-tubulin as a

control of protein load and against Rh1, respectively. The well-

known dependence on retinal is observed for endogenous Rh1

expression3. The requirement of the chromophore for ChR2

expression could be a prerequisite for folding or could indicate that

it follows the endogenous Rh1 levels.

(DOC)

Figure S2 Large scale Drosophila cultures. 1. Initial

cultures: 12 crosses (in 12 vials) were made between the UAS-

MP-GFP fly line and the driver line in small 2,5 cm-diameter vials

(10 ml fly food). Alternatively, a stable expressing line GMR-

GAL4;UAS-MP-GFP can be used (described in4). 2. Egg-laying

Flies: the offspring was collected into larger vials (35 ml fly food)

i.e. flies from 4 small vials transferred in one large vial with 5 cm

diameter. Those flies of the first generation were used to lay eggs in

large vials and were passed every fourth day in new large 5 cm-

diameter vials. 3. Harvesting Tour: the vials emptied of flies and

full of larvae were used for the fly harvesting. The whole culture

consisted of 12 small vials (first generation flies), around twelve

larger vials used for laying eggs (first generation flies) and three

racks each containing 40 large harvesting-vials (third and fourth

generation flies). The time required to scale-up the culture for MP

purification in milligram amounts is about one month and the

culture is kept running continuously. Harvesting by flushing CO2

into the 3640 vials to anaesthetize the flies and freeze them in

liquid nitrogen, takes about 40 min. The harvested flies were

stored at 280uC. Note: for fly harvesting vials were better than the

large cages utilized for larvae collection5.

(DOC)

Figure S3 Endogenous Rh1 and recombinant HsSERT
localize in separate rhabdomere domains. The heads of 50

flies expressing HsSERT under the control of the GMR1104 driver

were dispersed with an Ultra Turrax in 300 ml of a buffer

containing NaCl 120 mM, KCl 4 mM, sucrose 30 mM, Hepes-

NaOH 10 mM pH 7.4, 8% OptiprepH and protease inhibitors

(CompleteH). The resulting membranes were loaded on the top of

an Optiprep gradient (10 to 55%) in the same buffer, centrifuged

2.5 h at 20,000 g, 20uC and the fractions (1 to 8 from top to

bottom, respectively) were analyzed by Western blot with an

antibody against GFP or Rh1, respectively. The results indicate

that HsSERT, which localizes in rhabdomeres (Figure 3E),

accumulates in different membrane areas than endogenous Rh1.

HsSERT-containing membranes were less dense than Rh1

domains. This difference is most likely due to the density of the

membrane proteins packed in these areas.

(DOC)

Primer S1 Primer for MP expression in fly eyes.

(DOC)
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