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Trends
The battle between microbes and their
hosts for nutrient iron is emerging as
a new front of evolutionary genetic
conflict.

Molecular arms races can emerge
between host iron-binding proteins
and microbial ‘iron piracy’ factors that
steal this nutrient for growth. Such
rapid evolution may also contribute to
the host range of pathogenic microbes.

Iron acquisition plays an important role
in evolutionary interactions between
microbes, both in the environment
and within the host. Competition for
iron can prevent infection by patho-
gens, while genetic changes in iron
acquisition systems can enhance
microbial virulence.

Evolutionary conflicts for nutrient iron
are revealing potential new genetic
mechanisms of disease resistance
as well as avenues for therapeutic
development.

1Department of Human Genetics,
University of Utah School of Medicine,
Salt Lake City, UT 84112, USA

*Correspondence:
mbarber@genetics.utah.edu
(M.F. Barber).
Review
Buried Treasure: Evolutionary
Perspectives on Microbial Iron
Piracy
Matthew F. Barber1,* and Nels C. Elde1

Host–pathogen interactions provide valuable systems for the study of evolu-
tionary genetics and natural selection. The sequestration of essential iron has
emerged as a crucial innate defense system termed nutritional immunity, lead-
ing pathogens to evolve mechanisms of ‘iron piracy’ to scavenge this metal from
host proteins. This battle for iron carries numerous consequences not only for
host–pathogen evolution but also microbial community interactions. Here we
highlight recent and potential future areas of investigation on the evolutionary
implications of microbial iron piracy in relation to molecular arms races, host
range, competition, and virulence. Applying evolutionary genetic approaches
to the study of microbial iron acquisition could also provide new inroads for
understanding and combating infectious disease.

An Evolving View of Host–Microbe Interactions
The outcome of an infection can have profound consequences for both host and pathogen
populations. Intense selective pressures make host–pathogen interactions an attractive biologi-
cal model to study evolutionary genetics over relatively short intervals of time. To date, much
work has focused on rapid evolution involving canonical host immune defenses or antibiotic
resistance [1,2]. However, we now know that hosts possess numerous additional means to
restrict pathogens, including factors engaged in other core physiological functions. Nutrient iron
sequestration provides one such alternative mode of host defense against bacteria and eukary-
otic pathogens [3]. Iron is an essential micronutrient for microbes, as well as their hosts, due to its
ability to readily shift between ferrous (Fe2+) and ferric (Fe3+) oxidative states for redox catalysis or
electron transport. This ability to readily accept and donate electrons also makes iron highly
volatile, necessitating a well-coordinated iron transport and storage system in metazoans to
prevent the production of toxic free radicals [4]. The sequestration of free iron by host proteins
simultaneously prevents acquisition by microbes, a protective effect termed nutritional immu-
nity (see Glossary) [5,6]. While appreciation has grown for the role of nutrient metals in infection,
these ‘battles for iron’ and other trace metals provide intriguing cases for investigation from an
evolutionary perspective. Here we discuss emerging questions on the control of iron in microbial
infection and highlight recent and potential future insights regarding the evolution of molecular
arms races, host range, microbial competition, and pathogen virulence.

The Battle for Iron
A potential role for iron in immunity became apparent following an elegant series of experiments
by Arthur Schade and Leona Caroline in the early 1940s [7]. While attempting to develop a
vaccine against Shigella, the researchers observed that addition of raw egg white to their culture
media severely inhibited the growth of diverse bacteria as well as fungi. The antiseptic properties
of egg white have in fact been recognized since the days of Shakespeare, where it was applied to
wounds during Act III of King Lear. While various nutrient supplements failed to reverse the
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Glossary
Antagonistic pleiotropy: also
termed an evolutionary ‘trade-off’, in
which a single gene controls multiple
traits with opposing beneficial and
deleterious effects.
Black Queen Hypothesis:
describes the process by which gene
loss can progress via natural
selection, particularly in cases where
individuals reduce investment in
costly metabolic functions provided
by other members of a microbial
community.
Microbiota: the collection of
microorganisms inhabiting a particular
environment, such as the human
body.
Nutritional immunity: a host
immune defense mechanism by
which essential nutrients, such as
iron, are withheld in order to limit
microbial growth and prevent
infection.
Positive selection: the process by
which new, beneficial genetic
variation accrues in a population.
Red Queen Hypothesis: posits that
antagonistic coevolution (e.g.,
between predators and prey or
pathogens and hosts) produces a
state in which constant adaptation is
required to maintain comparative
evolutionary fitness.
Siderophore: a diverse class of
small molecule iron chelators, which
are secreted by microbes and then
internalized via surface receptors to
mediate iron acquisition.
Transferrin: a serum glycoprotein in
animals containing two iron-binding
‘lobe’ domains that deliver ferric iron
to host cells via receptor-mediated
endocytosis, as well as withholding
iron from microbes.
Virulence factor: a gene or
molecule that contributes to microbial
infection, while not necessarily
required for viability in nonpathogenic
settings.
Zoonosis: an infectious disease
naturally transmitted from animals to
humans.
antimicrobial effect of egg whites, incinerated yeast extract did, suggesting that the limiting
component was elemental in nature. Of 31 individual elements tested, supplementation with iron
alone was sufficient to restore microbial growth in the presence of egg white. Adding to the
fortuitous nature of their discovery, the authors posited that an iron-binding component present
in the egg white prevented acquisition of this nutrient by microbes, which could have important
implications for immunity. Two years later the scientists reported similar activity present in human
blood serum [8]. The factor responsible for this activity in both cases was later revealed to be the
protein transferrin, which plays a central role in animal iron metabolism by binding and
transporting this metal to target cells [9,10].

In the decades following Schade and Caroline's initial discoveries, Eugene Weinberg proposed
that withholding iron from microbial pathogens provided an important cornerstone of host
defense, which he termed nutritional immunity [11]. Weinberg's theory explained previous
observations that human iron overload disorders such as hereditary hemochromatosis and
thalassemia render affected individuals highly susceptible to bacterial and fungal infections. The
theory of nutritional immunity was also consistent with George Cartwright's earlier observations
that infection induces an acute reduction in circulating iron levels [12–14]. Subsequent microbi-
ology and molecular genetic studies established that nutritional immunity plays a pivotal role in
defense against an array of pathogens, including bacteria, fungi, and parasites [3,15]. Owing to
the iron-binding properties of proteins, such as transferrin, circulating levels of free iron in the
body are orders of magnitude below the requirements for optimal microbial growth.

Microbes respond to iron starvation by actively scavenging this nutrient from host proteins to
meet their metabolic requirements (Figure 1) [16]. One of the most common microbial iron
acquisition strategies involves the secretion of siderophores, small molecule chelators, which
possess an affinity for iron unmatched even by proteins such as transferrin [17,18]. Microbes
then recover iron–siderophore complexes via cell surface receptors. Obviating the need for
siderophores, several microbes also express receptors that directly recognize and extract iron
from host proteins including transferrin and lactoferrin [19–23]. Additional mechanisms involve
the acquisition of heme, the iron-containing porphyrin cofactor, from abundant host proteins
such as hemoglobin [24–26]. Ferric reductases are an important class of iron acquisition
systems in fungal pathogens, which convert transferrin or lactoferrin-bound ferric iron into a
soluble ferrous form [27]. The identification of iron acquisition genes as pathogen virulence
factors further underscores the role of iron in infection, as well as the potential for evolutionary
conflicts to arise in the struggle for this precious nutrient.

New Perspectives on Ancient Evolutionary Arms Races
Novel mutations that alter host–pathogen interactions can provide a substantial fitness advan-
tage and spread in a population through positive selection. Recurrent bouts of positive
selection at such interfaces can give rise to so-called ‘molecular arms races’, in which the host
and pathogen must continually adapt to maintain comparative fitness [1]. Genes subject to such
evolutionary conflicts are often characterized by an increased rate of nonsynonymous to
synonymous substitutions (termed dN/dS or ω), reflecting recurrent selection for novel amino
acid substitutions that alter protein interaction surfaces. Instances of such molecular arms races
also exemplify Leigh Van Valen's Red Queen Hypothesis, which proposed that antagonistic
coevolution leads to a perpetual cycle of adaptation in which neither opponent gains a perma-
nent advantage [28]. Several core components of the vertebrate immune system have subse-
quently been shown to engage in such conflicts, some of which are able to dictate the outcome
of an infection [29–35].

Our recent work highlighted the battle for iron as a new interface for Red Queen evolutionary
conflicts [36]. As described earlier, transferrin was among the first vertebrate proteins to be
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Figure 1. Nutritional Immunity and Microbial Iron Piracy. Illustration highlighting major components of bacterial iron
acquisition, including surface receptors as well as secreted siderophores and hemophores. Host nutritional immunity
proteins are denoted in bold.
implicated in nutritional immunity and is also a frequent target of iron acquisition by microbes.
Reasoning that transferrin could be a focal point for genetic conflicts with pathogens, we
performed phylogenetic analyses of transferrin gene divergence in the primate lineage. Not
only has transferrin been subject to strong positive selection in primates but also rapidly evolving
sites almost entirely overlap with the binding interface of a bacterial surface receptor, transferrin-
binding protein A (TbpA), an important virulence factor in several human pathogens including
Neisseria meningitidis, Neisseria gonorrhoeae, Haemophilus influenzae, and Moraxella catar-
rhalis, as well as a number of agricultural pathogens (Figure 2A) [21,37–41]. Single amino acid
substitutions at rapidly evolving sites in transferrin were sufficient to control TbpA-binding
specificities between related primates as well as for an abundant human transferrin variant,
termed C2 (Figure 2B). Genetic signatures of positive selection at the transferrin–TbpA binding
interface suggest that this interaction has been a key determinant of infection during millions of
years of primate divergence. More broadly, these results demonstrate that nutritional immunity,
similar to more established immune pathways, has strongly impacted host fitness during our
long and intertwined history with microbes.

Evidence for an evolutionary arms race between transferrin and TbpA raises the question as to
whether other host nutritional immunity factors may be subject to similar conflicts. Many
pathogens encode receptors for other host iron-binding proteins including lactoferrin, a trans-
ferrin paralog expressed in milk, saliva, tears, mucus, and the secondary granules of neutrophils
[37,42–44]. The evolution of lactoferrin introduces a fascinating twist; in addition to sequestering
iron, lactoferrin has acquired mutations to generate antimicrobial peptide (AMP) domains that
bind and disrupt pathogen membranes [45,46]. Many pathogens in turn encode factors that
either scavenge lactoferrin-bound iron or inhibit associated AMP activity [47–49]. How these
distinct functions have shaped lactoferrin evolution or potential arms races with pathogens
remains to be determined.

Genetic conflicts in nutritional immunity may also unfold by means other than simple point
mutation and selection at protein interaction sites. For example, the vertebrate protein lipocalin 2
(also known as siderocalin or NGAL) is a potent innate immunity factor that functions in part
through binding and sequestration of siderophores, preventing their uptake by microbes [50,51].
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Figure 2. Evolutionary Conflict at the Transferrin–Transferrin-binding protein A (TbpA) interface. (A) Cocrystal
structure (Protein Data Bank: 3V8X) of human transferrin bound to TbpA from Neisseria meningitidis. Side chains of rapidly
evolving amino acid positions in primate transferrin are shown in blue, with rapidly evolving TbpA sites among human
pathogens shown in red (as described in [36]). (B) Schematic highlighting rapidly evolving regions in primate transferrin. Sites
subject to positive selection are denoted with blue arrows; a variable site in humans (the C2 variant) is marked by a white
arrow. Divergent amino acids among humans and other primates are shown in blue, and the ability of human-adapted TbpA
to recognize each transferrin ortholog is shown on the right. The human transferrin C2 variant is recognized by TbpA from
some but not all pathogens.
Some pathogens evade this defense through production of modified ‘stealth siderophores’,
which are not recognized by lipocalin 2 [52,53]. Whether lipocalin 2 in turn has undergone
adaptation resulting in enhanced or modified siderophore recognition is unknown. Understand-
ing the extent to which molecular arms races have influenced other nutritional immunity factors
beyond transferrin could reveal additional modes of adaptation underlying host–pathogen
evolutionary conflicts.

The barrier imposed by nutritional immunity has seemingly produced an even more drastic
evasion strategy by one pathogen – giving up iron altogether. Previous work has demonstrated
that the bacterial spirochete Borrelia burgdorferi, the causative agent of Lyme disease, lacks a
requirement for iron shared by nearly all other organisms [54]. This was an astounding discovery
given that iron serves as a cofactor for numerous metalloproteins involved in essential cellular
processes including the electron transport chain and DNA metabolism. How then has
B. burgdorferi managed such an evolutionary feat? Closer inspection of the B. burgdorferi
genome revealed that numerous genes encoding iron-binding proteins have been lost, and
remaining enzymes that normally bind iron have undergone modification to bind manganese
in its place [54,55]. Beyond these general observations, we are only beginning to unravel
the stepwise genetic mechanisms that lead to such major evolutionary innovations [56–58].
Identifying other microbes that have foregone the requirement for iron could provide useful
comparison points to understand the mechanics of complex evolutionary transitions.

Because many host nutritional immunity proteins also carry out crucial ‘day jobs’ in metal
metabolism or transport, it is conceivable that antagonistic pleiotropy, or an evolutionary
trade-off, could arise from an arms race with adverse consequences for the host. Sickle cell
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anemia in humans provides a quintessential example, whereby hemoglobin mutations confer
resistance to malaria infection at the expense of severe anemia in homozygous carriers [59].
Hereditary hemochromatosis (HH) is a condition characterized by increased iron absorption in
the gut as well as serum iron overload, leading to iron accumulation in various organs and
subsequent tissue damage [9,60]. HH caused by the C282Y mutation in the HFE gene is the
most common genetic disorder among those of European descent, carried by approximately
10% of these individuals. Although the molecular mechanisms by which HFE mutations cause
HH are still unclear, HFE is expressed on the surface of several cell types where it interacts with
the transferrin receptor Tf-R to regulate iron absorption in the gut and release of iron stored in
circulating macrophages. The high frequency of the C282Y mutation among Europeans has led
to speculation as to the underlying cause for its abundance [61]. In addition to other associated
health problems, individuals with HH are highly susceptible to infection by normally noninvasive
microbes, such as the bacteria Vibrio vulnificus and Yersinia enterocolitica [62–64]. Ironically, this
increased susceptibility to extracellular pathogens may be offset by resistance to others that
normally infect macrophages such as Mycobacterium tuberculosis or Salmonella enterica
serovar Typhi, which cause tuberculosis and typhoid fever, respectively [65]. While many
questions remain regarding the consequences of HH mutations, these studies provide fasci-
nating examples of how the role of iron in infection may contribute to instances of antagonistic
pleiotropy in human genetic disorders.

Iron in Host Range and Zoonoses
The term zoonosis refers to an infectious disease of animals that can be transmitted to humans.
Because naïve populations typically lack pre-existing genetic resistance to these new pathogens,
zoonotic diseases have caused some of the most deadly epidemics in human history, including
the Black Death and the 1918 Spanish flu, along with recently emerging pathogens such as Ebola
virus and the MERS coronavirus [66,67]. The mechanisms that dictate the host range of pathogens
are thus of high interest to evolutionary biologists and infectious disease researchers alike. A
number of studies have now implicated nutritional immunity factors in restricting the host range
of several bacterial pathogens. For example, bacteria that utilize transferrin receptors possess
extremely narrow host ranges, such as the human-specific N. gonorrhoeae and the porcine
pathogen Actinobacillus pleuropneumoniae. Consistent with this observation, TbpA and its
coreceptor TbpB exclusively recognize their host transferrin proteins when compared with diverse
mammals [68–70]. Our recent work further demonstrated that single rapidly evolving sites in
transferrin are sufficient to dictate TbpA-binding differences between even our closest relatives,
such as chimpanzees [36]. Moreover, expressing or injecting human transferrin in mice can
promote infection with human-specific Neisseria [71,72]. These findings suggest that adaptive
evolution of nutritional immunity factors may be sufficient to establish a host range barrier against
pathogens. The implications for transferrin variation on host range likely extend beyond bacteria
as well, given that transferrin receptors have been implicated in iron acquisition and tropism
of Trypanosoma brucei, the eukaryotic parasite that causes African sleeping sickness [73,74].

In addition to transferrin, it is likely that other nutritional immunity proteins contribute to limiting
pathogen host range. Elegant work by Pishchany et al. demonstrated that the Gram-positive
bacterium Staphylococcus aureus exhibits strong preference for human hemoglobin over
mouse hemoglobin, which correlates with bacterial growth in murine models of infection
[75]. While hemoglobin evolution has been extensively studied in the context of both environ-
mental adaptation and malaria parasite resistance [59,76], the implications for this variation on
nutritional immunity against bacterial pathogens has not been investigated. It is also notable that
pathogens exhibiting restricted host iron requirements, including N. gonorrhoeae and S. aureus,
pose urgent public health concerns given their increasing resistance to conventional antibiotics
[77]. Applying genetic variants of transferrin to protein-based therapeutics provides one new
means of treating infectious disease [78]. Therapeutic strategies building from evolutionary
Trends in Genetics, November 2015, Vol. 31, No. 11 631



studies of nutritional immunity could therefore provide new weapons against increasingly dire
scenarios of resistance to traditional antimicrobial treatments.

Microbial Competition for Iron: The Red Queen Is Back in Black
The biology of competition has been a long-standing area of interest for both evolutionary
theorists and microbial ecologists. A recent contribution to the field of microbial evolutionary
theory came with the Black Queen Hypothesis [79]. The metaphor stems from the card game
Hearts, in which players avoid holding the Queen of Spades or face a significant point penalty.
The Black Queen Hypothesis posits that gene loss can be adaptive and proceed by natural
selection, allowing individuals to reap public goods provided by other members of the microbial
community. Iron acquisition is one such ‘leaky’ biological process that may be particularly prone
to Black Queen conflicts. It has been widely observed that bacteria that do not produce
siderophores nonetheless express siderophore receptors, allowing them to harvest this
resource at the expense of their neighbors [16]. This hypothesis also invokes the long-standing
concept of evolutionary ‘cheaters’, which can profoundly influence the stability of microbial
populations. Previous studies have demonstrated that bacterial siderophore production follows
many predictions of kin selection, whereby relatedness and degrees of competition influence
the emergence of cheaters that do not produce siderophores [80,81]. Iron acquisition therefore
provides as an informative system in which to study microbial population biology and evolution,
including Black Queen dynamics.

The link between iron and microbial competition during infection was further illuminated in recent
work by Deriu et al., focusing on interactions between pathogenic Salmonella and commensal
Escherichia coli in the gut [82]. The Nissle 1917 strain of E. coli was isolated from a soldier during
World War I who appeared resistant to an outbreak of dysentery, and has subsequently been
applied as a probiotic treatment for gastrointestinal ailments including ulcerative colitis and
Crohn's disease [83,84]. The authors demonstrated that Nissle is able to suppress gastroen-
teritis induced by Salmonella enterica serovar Typhimurium through competition for iron [82].
The ability of Nissle to outcompete S. enterica was also dependent on the presence of the host
siderophore-binding protein lipocalin 2, illustrating a complex interplay among host, pathogen,
and commensal species. These findings further illustrate how microbial Black Queen dynamics
can impact human disease, as well as the potential application of beneficial microbes to combat
pathogens through iron sequestration.

The Red Queen and Black Queen Hypotheses highlight distinct modes of evolutionary
adaptation ranging from antagonistic arms races to adaptive gene loss [85]. In the case
of microbial iron piracy, both processes appear to play roles influencing fundamental func-
tions. In addition to previous examples, loss of iron acquisition genes in B. burgdorferi could
be interpreted as a Black Queen process arising within the host cell, whereas rapid evolution
of bacterial transferrin receptors reflects a prototypical Red Queen conflict. The Black Queen
Hypothesis may also provide a basis for understanding the fitness advantage conferred by
bacterial receptors such as TbpA. By forgoing siderophore production and targeting host
iron-binding proteins directly, these bacteria use a less leaky system, which may be inherently
resistant to cheaters. In turn, dependence on these receptors gives rise to Red Queen
conflicts with host proteins, such as transferrin, contributing to narrow host ranges observed
for these strains. Future studies of iron acquisition could reveal additional genetic or ecological
factors that contribute to these distinct evolutionary outcomes and the implications for
infectious disease.

Iron in the Evolution of Virulence
In addition to influencing interactions between microbes, iron can also regulate evolutionary
transitions between commensal and pathogenic states. Iron acquisition genes are now
632 Trends in Genetics, November 2015, Vol. 31, No. 11



established as microbial virulence factors, in the sense that loss of these genes impairs
pathogenicity without completely compromising organism viability [3,86]. However, a simple
interpretation of iron acquisition dictating pathogenesis breaks down when considering the
commensal microbiota. In nearly all cases these organisms require iron for survival, and yet
rarely if ever cause disease. The role of iron in microbial virulence is thus more nuanced than it
first appears and represents a growing area of research.

New insights on the role of iron in bacterial virulence were recently provided by studies of the
opportunistic bacterial pathogen Pseudomonas aeruginosa. While P. aeruginosa is commonly
found in the environment and is typically avirulent in immune-competent individuals, it readily
colonizes the lungs of patients with cystic fibrosis (CF) where it poses a major source of mortality
[87]. P. aeruginosa, like many microbes, possesses multiple distinct iron acquisition systems,
including siderophores and a heme uptake system. Recently Marvig et al. investigated the
genetic basis of host adaptation in P. aeruginosa strains that had maintained persistent human
colonization for over 36 years [88]. Among several potential adaptations that took place during
this period, evidence of positive selection was detected in the promoter of phu, the bacterial
heme uptake system. Using experimental culture systems, the authors determined that
increased expression of the phu system enhanced bacterial growth in a model of the CF lung,
and that similar mutations had occurred independently in P. aeruginosa isolates from other
patients with CF. These results suggest that a shift to enhanced heme uptake via hemoglobin
plays an important role in the transition of P. aeruginosa from an environmental microbe to a
dedicated human pathogen.

Iron acquisition can also dictate the ability of a microbe to shift between commensalism and
virulence as conditions change, as was recently observed in the yeast Candida albicans.
While often present as a commensal member of the gut microbiota, C. albicans is also
capable of proliferating in the bloodstream and causing systemic infections in susceptible
individuals [89]. The mechanisms by which C. albicans can shift between these distinct
lifestyles are still largely mysterious. Chen et al. dissected the evolution of an elaborate
transcriptional network in C. albicans whereby incorporation of a novel transcriptional
activator, Sef1, into a pre-existing iron-responsive repressor system mediates growth in
different host niches [90]. The authors demonstrated that Sef1 promotes iron acquisition and
is essential for virulence in vivo. In addition, Sef1 is regulated by and itself regulates Sfu1, a
transcriptional repressor. Sfu1 in turn represses iron acquisition and is dispensable for
virulence, but is conversely essential for commensal growth in the gastrointestinal tract.
Thus, C. albicans has evolved an intricate transcriptional program to regulate iron acquisition
during commensal or pathogenic states [91]. Given that iron starvation acts as a trigger for
activation of virulence genes in many pathogens [92], it is likely that similar gene regulatory
networks also exist in other microbes.

Our understanding of iron in the control of commensal versus pathogenic states is only in its
infancy. For example, while transferrin receptors are important virulence factors in pathogenic
N. meningitidis and N. gonorrhoeae, these genes are also harbored by commensal Neisseria
that inhabit the nasopharynx [93]. Adding to this complexity, Neisseria are naturally compe-
tent and horizontal gene transfer readily occurs between pathogenic and commensal strains
[94]. Commensal microbes may therefore provide a genetic stockpile of virulence factors
available for acquisition by pathogens. As we continue to learn more about the impact of the
microbiota on human health and disease, these studies may also shed light on the role of iron
in evolutionary interactions between seemingly beneficial or pathogenic inhabitants of our
bodies.
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Outstanding Questions
In addition to transferrin, what other
nutritional immunity factors are subject
to molecular arms races with
pathogens?

Do evolutionary conflicts exist for other
nutrient metals such as manganese or
zinc and their respective binding
proteins?

How can we leverage evolution-guided
studies of nutritional immunity to com-
bat infectious disease?
Concluding Remarks and Future Directions
Studies of microbial iron acquisition are proving a useful resource for investigating diverse
evolutionary genetic phenomena (Figure 3). As new insights emerge, additional questions continue
to arise (see Outstanding Questions). For example, while the majority of studies addressing
nutritional immunity involve iron, recent work has begun to reveal the contribution of other essential
metals including manganese and zinc in this process [95–98]. In addition, while previous findings
have demonstrated that iron plays an important role in microbial competition, we understand
comparatively little regarding its importance in the evolution of cooperative microbial communities.
Finally, we have focused largely here on the role of bacteria in the evolutionary battle for iron, while
fungi and parasites are undoubtedly also subject to similar conflicts [74,99,100]. The potential
for adaptive evolution to dictate the outcome of microbial infection further provides an impetus
to harness these studies for novel therapeutics. The application of evolutionary insights has led
to promising genetic and chemical strategies for combatting human disease, most notably in the
case of HIV [66,101–103]. Future studies promise to reveal additional genetic innovations favoring
or countering microbial piracy of iron and other critical nutrients.
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