
sensors

Article

Generator of Slow Denial-of-Service Cyber Attacks †

Marek Sikora * , Radek Fujdiak , Karel Kuchar , Eva Holasova and Jiri Misurec

����������
�������

Citation: Sikora, M.; Fujdiak, R.;

Kuchar, K.; Holasova, E.; Misurec, J.

Generator of Slow Denial-of-Service

Cyber Attacks. Sensors 2021, 21, 5473.

https://doi.org/10.3390/s21165473

Academic Editor: Lei Shu

Received: 29 June 2021

Accepted: 5 August 2021

Published: 13 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Telecommunications, Faculty of Electrical Engineering and Communications, Brno University of
Technology, Technicka 12, 616 00 Brno, Czech Republic; fujdiak@feec.vutbr.cz (R.F.);
xkucha24@stud.feec.vutbr.cz (K.K.); xholas08@stud.feec.vutbr.cz (E.H.); misurec@feec.vutbr.cz (J.M.)
* Correspondence: marek.sikora@vutbr.cz
† This paper is an extended version of our paper published in International Congress on Ultra Modern

Telecommunications and Control Systems (ICUMT 2020), Brno, Czech Republic, 5–7 October 2020.

Abstract: In today’s world, the volume of cyber attacks grows every year. These attacks can cause
many people or companies high financial losses or loss of private data. One of the most common
types of attack on the Internet is a DoS (denial-of-service) attack, which, despite its simplicity,
can cause catastrophic consequences. A slow DoS attack attempts to make the Internet service
unavailable to users. Due to the small data flows, these attacks are very similar to legitimate
users with a slow Internet connection. Accurate detection of these attacks is one of the biggest
challenges in cybersecurity. In this paper, we implemented our proposal of eleven major and most
dangerous slow DoS attacks and introduced an advanced attack generator for testing vulnerabilities
of protocols, servers, and services. The main motivation for this research was the absence of a
similarly comprehensive generator for testing slow DoS vulnerabilities in network systems. We
built an experimental environment for testing our generator, and then we performed a security
analysis of the five most used web servers. Based on the discovered vulnerabilities, we also discuss
preventive and detection techniques to mitigate the attacks. In future research, our generator can be
used for testing slow DoS security vulnerabilities and increasing the level of cyber security of various
network systems.

Keywords: network security; slow DoS attacks; vulnerability testing; prevention; detection

1. Introduction

Nowadays, with the ever-growing number of Internet users and the expanding range
of Internet services, the demands on the security of users’ data, services, and privacy are
also growing. One type of cyber attack is the DoS (denial-of-service) attack. The main goal
of this attack is to make the target Internet service unavailable to other users, or, at least, to
degrade the quality and speed of the service. Most often, DoS attacks are targeted on web
servers to prevent users from accessing web content. The primary targets of DoS attacks
include web, mail, database, file, and domain system servers, and remote access services.
Attacks can also block traffic on the target internal networks [1].

DoS attacks have gradually evolved from primitive flood attacks to the current so-
phisticated attacks targeting application protocols of the TCP/IP (Transmission Control
Protocol/Internet Protocol) model, especially the HTTP (Hypertext Transfer Protocol) [2].
These attacks communicate validly on lower-layer protocols. This makes it challenging
for many detection mechanisms to distinguish them from legitimate traffic. One of these
attacks are slow DoS attacks. Their main characteristic is a very slow data flow. Due to
unhandled system vulnerabilities or abnormal service usage, these attacks can overload
the target server and cause a denial of service to other users with just a few packets. Due
to low data flows and usually valid use of all protocols, these attacks are very similar to
legitimate users with a very slow Internet connection.

Slow DoS attacks can also be generated as DDoS (distributed DoS) attacks. In this
case, the attacker uses an army of hijacked computers and devices to conduct an attack on

Sensors 2021, 21, 5473. https://doi.org/10.3390/s21165473 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2896-2303
https://orcid.org/0000-0002-8319-0633
https://orcid.org/0000-0002-5972-9037
https://orcid.org/0000-0002-5584-2948
https://orcid.org/0000-0002-5023-7757
https://doi.org/10.3390/s21165473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165473
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165473?type=check_update&version=2

Sensors 2021, 21, 5473 2 of 27

the target system at one time. Such an army of computers is called a botnet, and hijacked
computers are called bots. To create a botnet, an attacker typically uses self-propagating
malicious code, which scans open ports and the security flaws of computers on the Internet.
If an attacker finds a computer with a security flaw, he can upload his malicious code and
gain control over this computer. This computer is then part of the botnet and waits for the
attacker’s order to generate an attack. The botnet will increase the volume of the attack
and reduce the possibility of attacker identification because the attack is spread among
a large number of computers. Accurate detection of slow DoS attacks is one of the most
challenging goals in this research area [1].

The paper is divided as follows. Section 1.1 reports related papers on the topic of
slow DoS attacks. Section 1.2 describes the main contribution of this paper and the pro-
posed generator. Section 2 describes the key characteristics of slow DoS attacks. Section 3
describes the proposal of the attack generator. Section 4 describes the attack prevention
capabilities of web servers and the deployment of attacks in the experimental environment
against several types of the most frequently used web servers—Apache, Nginx, lighttpd,
and Microsoft IIS (Internet Information Services). The used attack models and their settings
are also described here. At the end of this section is a table with the results of the success
of attacks against individual web servers. In Section 5, we summarize the facts about
prevention and possible methods of attack mitigation. We further discuss and suggest
several methods of attack detection based on the observed attacks’ behavior. The last
section, Section 6, summarizes the main findings and results of this paper.

1.1. State of the Art

In recent years, several papers that deal with slow DoS attacks were published. Gener-
ally, these papers are focused either on the proposal and analysis of specific types of attacks,
analysis of attack behavior in a particular system, methods of detection, and mitigation.
Current slow DoS attacks are often very similar, but it is possible to categorize them. A pos-
sible method of categorization relates to the used version of the HTTP (Hypertext Transfer
Protocol). This categorization is used, e.g., in papers [2,3], where several types of slow DoS
attacks are described. However, not all currently used slow DoS attacks are described in
these papers. Generators used for the experimental testing are not mentioned either.

The most current overview of application layer DoS attacks is found in [4] from 2021.
The authors summarized all known facts about the characteristics and mitigation of slow
DoS attacks and available tools. The current situation in the field of DDoS (distributed
denial-of-service) attacks is described in [1]. In that study, their characteristics, methods of
detection, and mitigation, and the current scientific challenges in this area are described
and discussed. However, to be able to develop detection and mitigation techniques and to
focus on newer types of techniques, a generator of these types of attacks is needed.

Some of the most well-known slow DoS attacks are Slowloris [3], Slow POST [3],
and Slow Read [5]. The mentioned papers describe the main characteristics of these
attacks and suggest detection methods or preventive recommendations for web servers.
However, both papers did not focus on a wider area of slow DoS attacks. The study
in [6] discussed the mitigation against slow DoS by monitoring the time rate and data
flow of TCP connections. The work in [7] described the possibilities of increasing the web
server security level by modifying its configuration, using a firewall, or modifying the
network infrastructure. The study in [8] presented an intrusion prevention system (IPS)
for Slowloris, Slow POST, and Slow Read attacks. The system is based on the detection
of attack signatures in the HTTP and TCP content. The system is designed as a separate
network filter. When an attack is mitigated, it filters the attacker’s traffic and communicates
with the server to free up already occupied resources. However, the system is only suitable
for detecting an undistributed attack. In the case of a distributed attack, the system does
not have appropriately designed signatures and would have a long response time.

In [9], a novel advanced application-independent Slowcomm attack was presented
together with the metrics for a successful attack, and test results for FTP (File Transport

Sensors 2021, 21, 5473 3 of 27

Protocol) and SMTP (Simple Mail Transfer Protocol) servers. However, the proposed
attack model was not able to perform a continuous DoS attack; therefore, the authors
discussed the possible future development of this attack, which could provide a technique
for managing the continuous DoS effect. In [10], another novel application-independent
attack called Slow Next was presented. The work in [11] introduced a threshold-based
detection technique for this attack. However, this method is effective for Slowloris and
Slow Read attacks but shows a high rate of false positives for Slow Next. In [12], the authors
created and tested a method of detecting Slowloris, Slowreq, Slow Next, and Slow Read
attacks based on the analysis of data on the TCP/IP transport layer. This technique
monitors the progress of incoming packets at certain intervals. The advantage is a faster
detection due to the absence of application data analysis and long-term communication
monitoring. This method proved to be effective for the above-mentioned attacks except
for Slow Next, which could not be clearly distinguished from legitimate traffic. In the
case of the utilization of SDN (software-defined networks), ref. [13] proposed a machine
learning framework for the detection of slow DoS attacks, and [14] deployed detection and
mitigation methods against distributed Slowloris and Slow POST attacks using an SDN
controller application. The study in [15] proposed a deep learning model for detecting
DoS attacks in various network environments. However, all three papers did not mention
the used generator for experimental testing, and thus it is hard for a reader to test his
network infrastructure.

One of the biggest current challenges in the field of slow DoS attacks is the attack called
SlowDrop, which was introduced in 2019 in [16]. This resource describes the attack model
and tests. However, the tests are performed in an ideal environment under conditions that
do not correspond to use in a real network. The source further discussed the possibilities
of detection but did not provide any specific functional design for detection and mitigation.
This attack can harm various protocols and server systems. Although this attack should be
considered as a serious problem, at the time of writing this paper, there are still no other
papers bringing new insights into the analysis, detection, and mitigation techniques of the
SlowDrop attack.

In addition to these attacks, there is also another group of slow DoS attacks, focusing
on the HTTP/2 protocol, which was adopted by the IETF (Internet Engineering Task Force)
in May 2015 [17]. Research presented in [18–21] showed the importance of developing
additional HTTP/2 security due to the discovered and tested security vulnerabilities of this
protocol. This research was followed by [22,23]. The authors presented a detailed security
analysis of HTTP/2 and a group of novel HTTP/2 slow DoS attack models including
experimental testing against web servers. The method of detection using the chi-square test
and machine learning using four different techniques was also mentioned in these papers.

In [24], a novel DoS attack called H2DoS was proposed. This attack exploits the
flow control mechanism of HTTP/2. The authors also suggested preventive changes in
the web server configuration. The study in [25] from 2019 presented a next-generation
application DDoS called Multiplexed Asymmetric DDoS Attack, which causes the victim’s
processor to overload by exploiting HTTP/2 multiplexing. HTTP/2 can also be exploited
for a man-in-the-middle attack via DNS cache poisoning and a spoofed TLS (Transport
Layer Security) certificate, as published in [26].

In today’s world, slow DoS attacks can infect a huge number of IoT (Internet of Things)
devices. These devices have very limited computing resources and security levels. Thanks
to this, they can be relatively easy to control and misused for an attack. Although these
devices cannot generate large data traffic, they have more than enough resources to generate
a slow DoS attack. The topic of IoT device security is thus another challenge in the field of
cyber security [1]. The work in [27] described the vulnerabilities in the IoT environment
using the MQTT (Message Queuing Telemetry Transport) protocol.

Many of these papers did not specify the generator used. However, a separate detailed
analysis of the available DoS attack generators was provided in [28]. The authors compared
and categorized a large number of available tools. Slow DoS generators were also described

Sensors 2021, 21, 5473 4 of 27

in an already mentioned survey [4]. All sources indicate that there is currently no tool
available for Slowcomm, Slow Next, SlowDrop, and HTTP/2 attacks. During our research,
we also did not find any generator for these attacks. The only slow DoS attacks addressed
in this paper for which we found an available generator are Slowloris, Slow POST, and Slow
Read. These attacks are contained in the slowhttptest tool, published by Sergey Shekyan
in [29]. The Slowloris attack, as the most mentioned attack in the slow DoS category, is also
available in various stress testing systems [30], the Pyloris tool [28], and the original Perl
Slowloris script [2].

1.2. Contribution

This paper is a review of [31] which brings a new perspective on well-known protocol
vulnerabilities and possible exploitation by adjusting the parameters of Slowloris, Slow
POST, and Slow Read attacks. We implemented an attack generator, which, in comparison
with other generators, brought the possibility to better adapt attacks according to the
server’s security and increase the volume of the attack thanks to the simulation of the
distributed form. In this paper, we expanded our previous work with more recent attacks.
Our goal was to focus on the current most dangerous attacks and to create effective attack
models to verify the vulnerability of network systems. We present an updated and more
comprehensive attack generator, which contains a total of 11 slow DoS attacks—Slowloris,
Slow POST, Slow Read, SlowDrop, Slow Next, Slowcomm, and a group of attacks focusing
on the HTTP/2 protocol—Slow Read, Slow POST, Slow Preface, Slow Headers, and Slow
Settings. The primary motivation for the creation of this generator was to provide a
comprehensive tool for our future research, as there are no tools available to perform newer
types of slow DoS attacks [28]. We especially considered the implementation of SlowDrop,
Slow Next, and Slowcomm attacks into a usable generator to be the main contribution of
our work. Our attack models can also be distributed and allow detailed parameter settings
to obtain maximum similarity to the slow data flows of legitimate users. As a result, attacks
have a higher chance of being undetected and causing maximum damage. This is the main
innovation of our generator compared to other tools. By using these models, we also tested
some of the most commonly used web servers. The obtained results contain novel data
regarding the resistance of web servers to these attacks, specifically SlowDrop, Slow Next,
and Slowcomm attacks. These results can be extremely valuable for developers and security
experts to improve the security level of web servers and the detection and prevention
techniques such as firewalls, intrusion detection systems (IDSs), and IPSs. Unambiguous
detection of these attacks is one of the biggest challenges in the field of cyber attacks [1].
In addition, this generator can be used as a tool for further research into identifying and
mitigating the impacts of these or other zero-day attacks.

Table 1 compares the selected papers from the selected slow DoS attacks’ point of
view. It is clear from the table that the slow DoS attack area is increasing, and to be able
to handle cyber attacks, proper security techniques and principles are needed. Further,
current generators often do not allow more detailed modification of the attack’s parameters.

The research was carried out in the following steps:

• Analysis of the current state of slow DoS attacks;
• Analysis and proposal of key attack properties;
• Implementation of slow DoS attack generator;
• Experimental testing of Internet services vulnerabilities;
• Evaluation of servers’ security level;
• Prevention and detection techniques discussion and proposal.

Sensors 2021, 21, 5473 5 of 27

Table 1. Selected papers’ comparison.

Paper Slowloris Slow
Next Slowcomm SlowDrop Slow

Read
Slow
POST

Slow
Preface

Slow
Headers

Slow
Settings HTTP/2 Other

DoS Mitigation

[1] 3 7 7 7 3 7 7 7 7 7 3 3
[2] 3 7 7 7 3 3 7 7 7 7 3 7
[3] 3 7 7 7 7 3 7 7 7 7 3 3
[6] 3 7 7 7 7 7 7 7 7 7 3 3
[7] 3 7 7 7 7 7 7 7 7 7 3 3
[9] 7 7 3 7 7 7 7 7 7 7 3 7
[10] 3 3 7 7 7 7 7 7 7 7 3 3
[11] 3 3 7 7 3 7 7 7 7 7 7 3
[12] 3 3 7 7 3 7 7 7 7 7 3 3
[13] 7 7 7 7 7 7 7 7 7 7 7 3
[14] 3 7 7 7 7 3 7 7 7 7 7 3
[15] 3 3 3 7 7 7 7 7 7 7 7 3
[16] 7 7 7 3 7 7 7 7 7 7 7 3
[17] 7 7 7 7 7 7 7 7 7 3 7 3
[24] 7 7 7 7 7 7 7 7 7 3 7 7
[25] 7 7 7 7 7 7 7 7 7 3 7 7
[26] 7 7 7 7 7 7 7 7 7 3 7 3
This

paper 3 3 3 3 3 3 3 3 3 3 7 3

2. Analysis of Slow DoS Attack Key Parameters

This section aims to analyze slow DoS attacks and find key signatures for detection.
These parameters will allow the generation of authentic attacks, in order to analyze the
server’s weaknesses, and to design detection mechanisms. The main key behavior of the
attack is the effort to establish as many connections as possible and keep them active for
as long as possible using a very slow communication. This leads to the exhaustion of all
the web server’s available resources [1,32]. The attack technique differs depending on the
type of attack. Attackers can simulate the slow sending of a request, limit server responses,
or focus on flaws in the implementation of the protocol causing depletion of the available
resources (widely used in HTTP/2 attacks) [2].

Today’s detection mechanisms monitor several parameters of the network traffic,
which reach non-standard values during an ongoing attack. One of these parameters is
the number of TCP connections from one IP address. An attacker has to establish a large
number (hundreds or thousands) of TCP connections at once to occupy all the computing
resources of a web server. However, ordinary users usually maintain only a few open TCP
connections with the server when browsing web pages [6]. Another indicator of an ongoing
slow DoS attack may be the duration of the established TCP connection and the rate of
the transmitted data. Attackers typically send only one or a few characters in each part of
an HTTP request, trying to keep the connection open for as long as possible. Therefore,
it is recommended to set a threshold of acceptable connection quality to eliminate these
extremely slow data flows directly to the web server. In the case of a slow legitimate user
with such a slow connection, the user would not be able to download any usable web data
in a reasonable time [6,33].

However, slow DoS attacks can be significantly more effective using a distributed form
of attack. An attacker can launch an attack from more than one computer in the form of a
single TCP connection per computer. This makes each of the attacker’s computers appear
to be a legitimate user with a slow connection. The next step to reduce the probability of
attack detection is to carefully set the content and timing of sending data parts between
both ends. The closer the nature of the transmitted data to legitimate traffic, the more
difficult accurate detection is.

2.1. Attacks on HTTP/x
2.1.1. Slowloris

The Slowloris attack is also called Slow GET or Slow Header. The HTTP GET request
is sent to the server. This request is not validly terminated due to the absence of the
terminating character \r\n\r\n (double line break). The server thus waits for the next part
of the request, which will contain a terminating character. This waiting is limited in the

Sensors 2021, 21, 5473 6 of 27

server configuration. After the timer is exceeded, the server closes the TCP connection.
However, before this time expires, the attacker sends another part of the request. This
keep-alive packet usually contains only a few random characters. This packet resets the
timer, and then the attacker is silenced again. Then, the whole process is repeated [34].
In this way, an attacker attempts to establish as many TCP connections as possible and
exhaust all free server resources that might otherwise serve other legitimate users.

2.1.2. Slow POST

The Slow POST or R.U.D.Y. (R U Dead Yet) attack uses an HTTP POST request. This
type of request is usually used to send data filled into Internet forms. The HTTP request
header contains the Content-Length field, which specifies the size of the transmitted form
of data after the request header. In this attack, the Content-Length field contains a very
high value, meaning the server will expect to receive a large amount of data. The header of
the spoofed request is then validly terminated, and then the request contains a small piece
of data, which is usually represented by a few random characters. The attacker then waits
and sends another small piece of data before the connection termination timer expires.
In this way, the attacker keeps the connection active and similarly attempts to establish as
many of them as possible. This leads to exhausting all available server resources [2].

2.1.3. Slow Read

The Slow Read attack uses HTTP and TCP protocols. At the beginning, an attacker
requests some larger data, such as an image, by sending a valid GET request to the server.
An attacker sets the window-size parameter in the TCP header to a very low TCP window
value. This parameter determines the amount of data that the server can send without
any acknowledgment. This mechanism is used to regulate and adapt the data rate to the
quality of the connection between the endpoints. The server is forced to send a response
in very small parts [35]. In this way, an attacker can reach a state where the transfer of a
1 MB file can take several days. An attacker uses this technique to exhaust all available
server resources.

2.1.4. SlowDrop

The SlowDrop attack is one of the newest threats in the field of slow DoS attacks.
This attack develops the characteristics of its predecessors, making it more destructive and
less detectable. An attacker first requests the download of some content but randomly
drops parts of the response from the server, simulating the dropping of packets due to poor
connectivity. The server is forced to resend the dropped packets until the client’s request
is finished. The attack is thus characterized by a continuous data transfer between the
attacker and the victim, meaning the volume of communication over time does not contain
any significant peaks [16]. Due to this feature, it is practically impossible to distinguish
this attack from legitimate users based on traffic analysis. In practice, commonly used IPSs
and firewalls may disconnect the legitimate user by mistake in defense, which is another
possible welcome eventuality for the attacker. In addition to waste server TCP connections,
SlowDrop can exhaust the victim’s network and hardware resources when requesting large
amounts of data [16].

2.1.5. Slowcomm

The Slowcomm attack is an application-independent attack. Using an appropriately
selected invalid data content, this attack can harm various Internet services such as HTTP,
FTP, or SMTP servers [9]. The principle of the attack is essentially identical to Slowloris.
The attacker sends an incomplete request and the server waits for the rest of the data.
During this time, the attacker attempts to generate as many such requests as possible,
which leads to the occupation of all available server resources, and the server is unable
to accept further requests from legitimate users. After a delay, the attacker then sends
an additional piece of data, keeping the connections open. Compared to the original

Sensors 2021, 21, 5473 7 of 27

Slowloris model, Slowcomm includes a connection monitoring component and attempts to
reconnect immediately when the server closes some of the connections. With other minor
improvements, Slowcomm is much more efficient, server unavailability can theoretically
last indefinitely, and it does not cause a denial of service of a victim by a sudden request
flood [9]. The course of the attack can be slower without significant fluctuations in data
rates, which can make detection more difficult.

2.1.6. Slow Next

This attack also belongs to the category of application-independent DoS attacks. Slow
Next abuses the timer between the server response and another client request within a
persistent connection [10]. In this case, the attacker sends a valid request to the server,
and the server responds validly. The server then waits a while to see if the attacker will
request any more data. The attacker is silent for a moment and then sends another valid
request. In this way, the attacker keeps a persistent connection open throughout the attack.
If they manage to open more connections, they may overload the server, which will no
longer be able to communicate with other users. As the communication contains valid data,
the attack can easily bypass common detection systems.

2.2. Attacks on HTTP/2

The main benefit of the HTTP/2 protocol is the parallel processing of request streams
within one connection to use network resources more efficiently and to reduce latency.
HTTP/2 defines a new basic unit of communication—the frame. Each frame contains a
header and data. The header consists of length, type, and flag values. A collection of
frames is called a message, which forms a complete request or response. The protocol
then transmits these messages bidirectionally in HTTP/2 streams. In HTTP/2, several
properties are further defined to increase the efficiency of data transmission such as stream
multiplexing and stream prioritization. More information can be found in [36]. On the
other hand, these new features may pose new security risks. HTTP/2 connections can
be memory-intensive, despite the header compression. The size of the allocated space
is defined by the SETTINGS frame. This frame can be misused for a slow DoS attack by
swapping, repeating individual parts of the frame, or creating new undefined parameters.
An attacker can also abuse the WINDOW_UPDATE and PRIORITY frames similarly. Another
option is to flood the target with a large number of small empty frames and force it to
extend the processing time [22].

2.2.1. Slow Read

In this attack, the SETTING_INITIAL_WINDOW_SIZE flag is set to 0, followed by a valid
GET request. This tells the server that the client is currently busy; therefore, the server
will wait to receive the WINDOW_UPDATE frame, which the attacker will not send. This
action freezes the data stream, and the server waits until its timer expires. When the
server is flooded with such connections, all free resources of the server are occupied, and
communication with other users is dropped [22].

2.2.2. Slow POST

For a successful attack, the attacker must set the flags of the HEADERS frame to the
following values: END_STREAM: 1, END_HEADERS: 0, and send a valid POST method. This
causes the server to wait for the next DATA data frame [22]. The data frame wait time de-
pends on the server implementation. This timeout is used for a DoS attack. A larger number
of such connections occupy all available server resources and cause service unavailability
to legitimate users.

2.2.3. Slow Preface

After a successful TCP connection is established, the attacker sends a CONNECTION
PREFACE frame. This frame has the following form: "PRI * HTTP/2.0\r\n\r\nSM\r\n".

Sensors 2021, 21, 5473 8 of 27

After receiving this frame, the server expects confirmation of the negotiated connection
parameters in the SETTINGS frame, as well as the valid request itself. However, the
attacker never sends this request at all. This forces the server to wait until the server
closes the connection itself [22]. This timeout is sufficient to cause the denial of service for
legitimate users.

2.2.4. Slow Headers

This attack can be performed using a GET or POST request. The attacker, similar to the
HTTP/2 Slow POST attack, uses the same HEADERS flags of the frame. If the POST request
is used, the attacker sends a HEADERS frame with the END_HEADERS: 0 and END_STREAM: 0
flags. In the case of a GET request, the attacker sends END_HEADERS: 0 and END_STREAM: 1.
The END_HEADERS: 0 flag says that the HEADERS frame is not complete and must be followed
by another CONTINUATION frame. In contrast, END_STREAM: 1 indicates the end of a valid
HTTP/2 stream. The server will wait for the CONTINUATION frame with more data, but the
attacker will never send it. Then, the server closes the connection [22]. This timeout is
abused to cause the denial of service for legitimate users.

2.2.5. Slow Settings

The attacker sends a valid GET or POST request, including the SETTINGS frame.
The SETTINGS frame must be confirmed by the SETTINGS: 0 frame [17]. The server re-
sponds by confirming the client’s SETTINGS and sends its SETTINGS frame, which the at-
tacker no longer confirms. The server will wait and close the connection with a SETTINGS_TIMEOUT
error [22]. This timeout is abused to cause the DoS for legitimate users.

2.3. Summary of Selected Slow DoS Attacks

Table 2 summarizes the selected slow DoS attacks presented in this paper and mentions
the main signs (main principles) of the attacks. These attacks are divided into two groups
(HTTP/x, HTTP/2) as in this paper. Most attacks attempt to behave (or directly cause this
condition) like users with a slow Internet connection. Therefore, their detection is not as
easy as in the case of volumetric DoS attacks.

Table 2. Summary of selected slow DoS attacks and their main pattern.

Attacks
Targeting Attack Main Pattern of the Attack

HTTP/x

Slowloris Missing terminating character \r\n\r\n

Slow POST
(R.U.D.Y.) High value of Content-Length parameter

Slow Read Low value of window-size parameter

SlowDrop Response parts are randomly dropped

Slowcomm Incomplete request + requests generating

Slow Next Valid request and waiting

HTTP/2

Slow Read SETTING_INITIAL_WINDOW_SIZE equals 0
WINDOW_UPDATE not sent

Slow POST HEADERS equals: END_STREAM: 1, END_HEADERS: 0

Slow Preface CONNECTION PREFACE form is set to:
PRI*HTTP/2.0\r\n\r\nSM\r\n

Slow Headers For GET method: END_HEADERS: 0 and END_STREAM: 1
For POST method: END_HEADERS: 0 and END_STREAM: 0

Slow Settings Valid GET or POST request, Settings frame is
not confirmed

Sensors 2021, 21, 5473 9 of 27

3. Proposal and Implementation of Attack Generator

We propose a generator of all the slow DoS attacks mentioned in Table 2. The primary
motivation for creating the proposed slow DoS attack generator was the absence of freely
available attack generators. The proposed attack generator is implemented as a Linux
console application written in the Python programming language. The generator requires
a Linux operating system with iptables and a Python interpreter 3.8.x or higher. Other
dependencies are the following Python libraries. Generating the required amount of traffic
and parallelizing processes is achieved by the requests and threading libraries. Moreover,
the sockets, hyper-h2, hyperframe, hpack, pandas, and plotly libraries are also used.

The attack is started by a specific command in the terminal. The command must
contain the type of attack and the target of the attack, which are mandatory parameters for
all attacks. Other parameters vary depending on the selected attack. The user can use the
program’s help to see all available settings. A more detailed description of the parameters
is provided for all test scenarios in Section 4. As soon as a valid command is executed,
the generator starts generating an attack. The generator periodically sends predefined data
to the server according to the set parameters. In the case of some attacks, the number of
established connections is monitored. When it drops, the connections are re-established.
The attack can be terminated by pressing the Ctrl + C keys. The established connections
with the victim remain for some time, and it is possible to observe their gradual termination
according to the set timeouts of the server.

The generator core is divided into several parts (scripts) according to the attack type.
Figure 1 shows the individual parts from which the proposed generator is implemented.

Slowloris

Slow POST

Slow READ

Possible distributed form

Slow POST

Slow READ

Slow HEADERS

Slow PREFACE

Slow SETTINGS

HTTP/2

Slowcomm

Slow NEXT

Slow DROP

Application-independent

Developed generator of slow DoS attacks

Figure 1. Individual parts of implemented slow DoS generator.

The first part includes Slowloris, Slow POST, and Slow Read. Our generator allows
us to set the attack’s parameters more precisely than in competing tools and also launch
an attack in a distributed form. We believe that by more precisely adapting the attack to
the server configuration, it is possible to achieve a successful attack even with applied
preventive protection. Many detailed attack parameters can be specified in the generator.
General input parameters include the output network interface, destination IP address,
destination website URL, starting port, port increment step, total number of connections,
time between individual parts of data, delay between individual clients, and setting the
number and IP addresses of bots in case of a distributed attack. Other input parameters
depend on the selected type of attack. For example, it is possible to specify the initial HTTP
request’s content, the size of the randomly generated data, the size of the TCP window,
and the path to the requested file.

Sensors 2021, 21, 5473 10 of 27

A distributed attack simulation is currently only available for the following three
attacks: Slowloris, Slow POST, and Slow Read. In this scenario, the virtual bots will be
simulated on the local subnet to which the generator is connected. The subnet should have
enough address space. In our experimental environment, we used a subnet with a netmask
255.0.0.0, which provides an address space for approximately 16 million computers. Virtual
bots are simulated using the Address Resolution Protocol (ARP) data spoofing. In the first
step, the generator receives from the user a range of IP addresses on which to simulate the
bots. Then, the generator sends an Internet Control Message Protocol (ICMP) Echo request
to these addresses. This will cause other devices on the subnet to query the MAC addresses
for these IP addresses using ARP. Subsequently, the generator sends out modified ARP
messages, in which it spoofs its own MAC address. This will ensure that traffic routing on
bot IP addresses is actually directed to the generator. Using this technique, it is possible
to imitate a situation where an attack is coming to the web server from many different
Internet addresses. However, the limitation is that the bot subnet must not be hidden
behind Network Address Translation (NAT) in the test environment.

The next part of the generator includes HTTP/2 attacks—Slow POST, Slow Read, Slow
Headers, Slow Preface, and Slow Settings attacks. It accepts the following input parameters:
victim’s IP address and port, attack type, and the number of connections. The attack model
also contains a component to verify the availability of the target server.

The application-independent Slowcomm and Slow Next attacks are implemented in
the next generator part. The input parameters are the IP address and port of the victim,
the type of attack, and the number of connections, and, optionally, the content of data sent
by the attacker, two types of timeouts (to make the attack more effective depending on the
server configuration), and the number of processor threads. The ability to set any port and
data payload allows the use of attacks to exploit various protocols.

The last part of the generator is focused on the SlowDrop attack. Depending on the
needs of the scenario, the attack can be modified with input parameters: the number
of threads generating requests, the time interval between threads to spread the attack,
the interval for sending a new request, and the incoming packet drop ratio. Optionally, it
is possible to modify the content of the HTTP request due to the higher server load. It is
recommended to modify the user-agent for hiding the Python client, cache-control for non-
caching, and accept-encoding to increase fragmentation, and to set connection: keep-alive to
prolong the TCP connection (if the server supports persistent connections). The first step to
launch a SlowDrop attack is an HTTP GET request for a larger amount of data. Subsequent
answers need to be dropped with some degree of randomness. The native Linux iptables
firewall was chosen for this purpose. The iptables program contains the ipt_random
and ipt_statistic modules used primarily for the load balancing function. However, this
function can be used to determine the percentage of forwarded or dropped packets, which
is very suitable for SlowDrop attacks. On the contrary, the authors of the attack in [16] for
implementation chose the NFQUEUE tool and cited [37] dealing with iptables acceleration
using NFQUEUE with GPU parallelization. According to this paper, the decision speed in
parallel processes of the network rules is up to 43 times higher than on a regular computer
with iptables. We used the python-nfqueue library to implement this solution for our
generator. However, the resulting solution was not as efficient and fast as using iptables
directly in the Linux kernel. The NFQUEUE queue was overflowing, and more packets
were inadvertently dropped than required. Our generator does not assume parallelization
on the GPU; therefore, we decided to use iptables for this purpose. The main advantage is
that iptables drop packets at lower layers and are not forwarded to the NFQUEUE queue
through the application layer. Therefore, the application daemon is no longer burdened
by these packets. This feature thus better captures the slow DoS attacks, attempting to
minimize the load on the attacker’s machine.

Sensors 2021, 21, 5473 11 of 27

Tools Comparison

To evaluate the proposed generator in terms of the variability of individual parameters,
we selected one of the most used tools for Slowloris, Slow READ, and Slow POST attacks.
We compared the proposed generator with the slowhttptest [38], Slowloris [39], PyLoris [40],
and R.U.D.Y. [41] tools.

Table 3 compares the proposed generator and the slowhttptest, Slowloris, and PyLoris
tools from the editable parameters’ point of view. The table is divided into two main parts:
the first part is comparing attack-specific parameters, and the second part concerns general
parameters. If the tool allows editing of a parameter, the 3symbol is used (also the preset
values are shown); in the other case, the 7 symbol is used. Due to a fully editable Slowloris
header, it is possible to generate specific values. All preset Slowloris header parameters are
shown in Listing 1. Table 4 compares the proposed generator with the slowhttptest tool
that is able to generate the Slow READ attack.

Table 3. Comparison of the proposed generator from the Slowloris attack point of view.

Tool

Attack Specific Parameters General Parameters

Fu
ll

y
Ed

it
ab

le
H

ea
de

r

C
on

te
nt

-L
en

gt
h

U
se

r-
A

ge
nt

K
ee

p
A

li
ve

D
at

a

M
et

ho
d

C
on

n.
pe

r
Se

co
nd

s

Ta
rg

et
IP

A
R

P

To
ta

lN
um

be
r

of
C

on
n.

Ti
m

e
be

tw
ee

n
Se

nd
er

s

Ti
m

e
be

tw
ee

n
W

av
es

St
ar

ti
ng

Po
rt

Po
rt

St
ep

Se
rv

er
U

R
L

B
ot

s
Si

m
ul

at
io

n

Proposed
generator 3 3 42 3

3
X-a: b 3 GET 7 3 3 3 500 3 10 ms 3 2 s 3 5000 3 1 3 3

slowhttptest 7 3 4096 7 7 3 GET 3 50 3 7 3 50 3 10 s 7 7 7 3 7

Slowloris 7 7 7 7 7 7 3 7 3 1000 3 5 s 7 3 80 7 3 7

PyLoris 7 7 7 7 7 7 3 7 3 3 7 3 7 3 7

Listing 1. Default parameters of Slowloris header used by the proposed generator.

GET /?654865241562456 HTTP/1.1
Host :
User−Agent : Mozil la /4.0 (compatible ; MSIE 7 . 0 ; Windows NT 5 . 1 ;
Tr ident / 4 . 0 ; .NET CLR 1 . 1 . 4 3 2 2 ; .NET NET CLR 2 . 0 . 5 0 3 1 3 ;
.NET CLR 3 . 0 . 4 5 0 6 . 2 1 5 2 ; .NET CLR 3 . 5 . 3 0 7 2 9 ; MSOffice 12)
Content −Length : 42

Table 4. Comparison of the proposed generator from the Slow READ attack point of view.

Tool

Attack Specific Parameters General Parameters

W
in

do
w

Si
ze

Sl
ow

R
ea

d
U

R
L

In
te

rv
al

be
tw

ee
n

R
ea

ds

R
ep

ea
tR

eq
ue

st

Ta
rg

et
IP

A
R

P

To
ta

lN
um

be
r

of
C

on
n.

Ti
m

e
be

tw
ee

n
Se

nd
er

s

Ti
m

e
be

tw
ee

n
W

av
es

St
ar

ti
ng

Po
rt

Po
rt

St
ep

Se
rv

er
U

R
L

B
ot

s
Si

m
ul

at
io

n

Proposed
generator 3 10 B 3 /index.html 7 3 3 3 3 500 3 10 ms 3 2 s 3 5000 3 1 3 3

slowhttptest 3 5 B 7 3 1 s 3 3 7 3 50 3 10 s 7 7 7 3 7

Table 5 compares the proposed generator and the slowhttptest and R.U.D.Y. tools.
These tools also enable the generation of the Slow POST attack. The advantage of the
R.U.D.Y. tool is the implementation of Tor usage. Unlike other tools, our tool allows setting
the starting port and the step that is used when the port is changed. As in the Slowloris
attack, the proposed tool enables a fully editable Slow POST header. The preset Slow POST
header is shown in Listing 2.

The comparison showed that the proposed generator is the only one capable of the
bot simulation. Using this parameter, it is possible to multiply the impact of the generated

Sensors 2021, 21, 5473 12 of 27

attack. Moreover, the proposed generator provides a fully editable header used in the
attack, and a port step function. This function periodically changes a port within the attack.

Table 5. Comparison of the proposed generator from the Slow POST attack point of view.

Tool

Attack Specific Parameters General Parameters

Fu
ll

y
Ed

it
ab

le
H

ea
de

r

Pa
yl

oa
d

Si
ze

M
et

ho
d

To
r

Ta
rg

et
IP

A
R

P

To
ta

lN
um

be
r

of
C

on
n.

Ti
m

e
be

tw
ee

n
Se

nd
er

s

Ti
m

e
be

tw
ee

n
W

av
es

St
ar

ti
ng

Po
rt

Po
rt

st
ep

Se
rv

er
U

R
L

B
ot

s
Si

m
ul

at
io

n

Proposed
generator 3 3 1 GB 3 POST 7 3 3 3 500 3 10 ms 3 2 s 3 5000 3 1 3 3

slowhttptest 7 7 3 POST 7 3 7 3 50 3 10 s 7 7 7 3 7

R.U.D.Y. 7 3 1 Mb 3 POST 3 3 7 3 500 3 5 s 7 7 7 3 7

Listing 2. Default parameters of slow POST header used by the proposed generator.

POST /textform . php HTTP/1.1
Host :
User−Agent : Mozil la /4.0 (compatible ; MSIE 7 . 0 ; Windows NT 5 . 1 ;
Tr ident / 4 . 0 ; .NET CLR 1 . 1 . 4 3 2 2 ; .NET NET CLR 2 . 0 . 5 0 3 1 3 ;
.NET CLR 3 . 0 . 4 5 0 6 . 2 1 5 2 ; .NET CLR 3 . 5 . 3 0 7 2 9 ; MSOffice 12)

4. Experimental Verification of the Generator

This section describes an experimental environment which was created to verify the
functionality of the proposed generator. The environment was created by virtualization
using the VMware software. The parameters of the virtual machines are specified in Table 6.
The topology of the environment is shown in Figure 2. It contains a server subnet that
can be easily extended by other types of servers. For experimental purposes, three servers
are used, each with a different type of used web server. There is also a client subnet that
contains user and attacker computers. This subnet has a 255.0.0.0 netmask providing
enough address space to simulate distributed DoS attacks. In all scenarios, only one client
is used, meaning the server has a minimal load and almost ideal conditions to handle the
attack. The router and VMware host adapters are the backbone network devices on which
detection and mitigation software can be developed and tested. The entire environment is
hidden behind NAT and connected to the Internet via the router, due to the installation of
the necessary software and updates.

Table 6. Experimental network specification.

Type Name OS CPU RAM IP Web Server

Host machine VMware Host Windows 10 Pro 20H2 i7-7700 3.6 GHz 32 GB 10.0.0.2,
20.0.0.2 -

Guest machine

Router Debian 10.8 4 cores 2 GB 10.0.0.1,
20.0.0.1 -

Attacker Kali Linux 2020.04 4 cores 2 GB 20.0.0.5 -

Client Debian 10.8 1 core 2 GB 20.0.0.3 -

Web server 1 Debian 10.8 1 core 2 GB 10.0.0.3 Apache 2.4.17,
lighttpd 1.4.55

Web server 2 Debian 10.8 1 core 2 GB 10.0.0.4 Apache 2.4.26

Web server 3 Windows 10 Pro 20H2 2 cores 2 GB 10.0.0.5 Microsoft IIS 10,
Nginx 1.14.0

Sensors 2021, 21, 5473 13 of 27

Legitimate client
20.0.0.3

Attacker
20.0.0.5

Vmware Host Adapter VM3

Webserver 1
10.0.0.3

Webserver 2
10.0.0.4

Webserver 3
10.0.0.5

Router

Internet

20.0.0.2
Vmware Host Adapter VM2

10.0.0.220.0.0.1 10.0.0.1

Virtual LAN VM3 20.0.0.0/8 Virtual LAN VM2 10.0.0.0/8

Apache 2.4.17
lighttpd

Apache 2.4.29 Nginx
IIS

Figure 2. Experimental network topology.

In total, vulnerabilities were tested on five web servers—2x Apache2, Nginx, lighttpd,
and Microsoft IIS. We chose these web servers because they are among the most used on
the Internet. We primarily used the latest server versions at the time of the test. When
choosing Apache versions, we also considered usage statistics in [42] to make our results
relevant to as many users as possible.

Except for the lighttpd server, these servers already have DoS protection pre-installed.
Therefore, servers should be protected from various threats. In the case of slow DoS attack
resistance, the tolerance level of slow connections set by web server developers is crucial.
A significant percentage of web server administrators do not pay enough attention to
additional server configurations, prevention, and deployment of additional protection
systems [1]. Therefore, in these test scenarios, the web servers were left in the default
configurations, and their ability to resist the selected slow DoS attacks without significant
configuration changes was monitored. This is to reflect the common situation where server
administrators often do not pay extra attention to configuration modifications and leave the
server in an out-of-the-box configuration. Only pre-installed attack protection is enabled
on the servers. Details are described in the following subsections.

The tests were performed as follows. A legitimate client periodically sent a request
to the server to view a web page every second. Each request was initiated by a TCP
handshake within a new connection. In this way, the client verified the availability of the
server and whether a DoS condition occurred. Once an attacker launched an attack on a
server, the client monitored server response failures and delays.

The courses of the test scenarios are shown in graphs, where the X-axis represents the
time. Most tests are displayed at a scale of 30 seconds to make the server behavior and
connection changes clearly observable. There were no further major changes in the longer
time intervals. In some scenarios, the server responds to the attack with a longer delay. This
is based on the configured server timeouts. Therefore, some graphs display events at longer
intervals. The main effort is to make the changes and behavior of the server in the graphs
clearly visible. The left Y-axis represents the number of TCP connections, and the right
Y-axis represents the web server availability by the percentage of legitimate user processed
requests. The green curve represents established TCP connections, the orange curve
represents pending TCP connections, the red curve represents closed TCP connections, and
the blue curve represents the success rate of legitimate user requests.

Sensors 2021, 21, 5473 14 of 27

4.1. Apache Web Server

The primary tested web server was Apache 2.4.29, which, by comparison in [42], is
the second most used version of Apache 2.4 (on 29 March 2021). This server already has
a pre-installed security module against DoS attacks. The main parameters of the server
configuration are shown in Listing 3.

Listing 3. Configuration file of Apache 2.4.29.

Timeout 300
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout~5

<IfModule reqtimeout_module >
RequestReadTimeout header =20 −40 ,MinRate=500
body=10 , MinRate=500
</IfModule >

<IfModule mpm_prefork_module>
S t a r t S e r v e r s 5
MinSpareServers 5
MaxSpareServers 10
MaxRequestWorkers 150
MaxConnectionsPerChild 0
</IfModule >

Parameters in the mpm_prefork module, such as MaxRequestWorkers, specify the
maximum number of clients that can be served simultaneously. It is important to choose
this number carefully to avoid CPU and RAM overload. The ideal number can be estimated
based on the average size of the httpd process and the server load of other processes. In the
case of our server with 2 GB of RAM, we kept the default value of 150.

The value RequestReadTimeout is a timer that determines how long the server waits
to receive the request or part of it. Another important parameter is KeepAliveTimeout,
which specifies the time during which the client must send a complete request. Other-
wise, the connection will be terminated by the server. Other related parameters such as
LimitRequestBody, LimitRequestFields, LimitRequestFieldsSize, LimitRequestLine,
and LimitXMLRequestBody are used to limit other types of attacks. However, an attacker
can estimate these parameters by thorough testing and adapt the attack by carefully setting
the attack parameters.

The secondary Apache server was version 2.4.17. Despite its advanced age and low
worldwide usage [42], this server was used only for verifying the functionality of the
attack, as the level of security against slow DoS is low. The server was left in the default
configuration. All attacks against this server were successful.

4.1.1. Slowloris

The Slowloris attack was set as follows: generating 500 TCP connections, interval 2 sec-
onds between parts of the HTTP request, interval 10 milliseconds between individual TCP
connections. This setting should create enough traffic to congest the server. The data sent by
the implemented attack model are shown in Listing 4. The first packet contained the request
type, HTTP protocol version, and the parameters Host, User-Agent, and Content-Length.
The keep-alive packets contained the string X-a: b.

Listing 4. HTTP content of Slowloris attack model.

GET /?89018286261135 HTTP/1.1
Host : 1 0 . 0 . 0 . 2
User−Agent : Mozil la / 4 . 0 . . .
Content −Length : 42
X−a : b
X−a : b
. . .

Sensors 2021, 21, 5473 15 of 27

Immediately after connecting approximately 460 TCP connections, all server resources
were exhausted, and other TCP connections remained pending. Therefore, a DoS state
had occurred. A closing of several TCP connections had occurred around the 12th second
of the test, but the attacker reconnected all the impacted connections. Around the 22nd
second, the intervention of the DoS prevention module is visible. The server canceled the
initial TCP connections, which were open too long. At this point, the server was available
again, but within seconds, the generator re-established the lost connection and exhausted
all server resources again. The course of this attack is shown in Figure 3. In the case of a
distributed attack, the results were identical.

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 3. Slowloris attack against Apache server.

4.1.2. Slow POST

In the Slow POST attack model, the Content-Length was set to 1,000,000 bits. Due
to the low upload speed, the server would wait for this portion of data for several days,
which is sufficient for this attack. The other parameters were the same as in the Slowloris
attack scenario. A preview of the data sent by the implemented attack model is shown
in Listing 5. The first packet contained only the request type, the HTTP protocol version,
the parameters Host, User-Agent, and Content-Length, and then the first part of the data.
As the keep-alive packet, the attacker repeatedly sends a randomly generated character
representing the data from the Internet form.

Listing 5. HTTP content of Slow POST attack model.

POST /textform . php HTTP/1.1
Host : 1 0 . 0 . 0 . 2
User−Agent : Mozil la / 4 . 0 . . .
Content −Length : 1000000

name= z z z z z z z z z z z z v v v v v v v v v e e e e e e e j j j j j j j j c c c . . .

The results were similar to the Slowloris attack. After reaching the maximum service
capacity of the server, the attacker’s connections remained open, as the attacker sent the
data at a sufficient frequency. The DoS state was reached again. As the Slowloris attack,
the server began terminating the initial connections. These connections were re-established
by the attacker. The course of this attack is shown in Figure 4. The course of the distributed
attack was very similar, but the server attempted to close the connections continuously
after the 20th second of the test.

Sensors 2021, 21, 5473 16 of 27

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 4. Slow POST attack against Apache server.

4.1.3. Slow Read

During the Slow Read attack, the generator was set as follows: 500 TCP connections
and window size 10 bits. From previous tests, it can be seen that the upper limit of currently
open connections on the Apache server is in the range of 400–500 connections. The attacker
requested a 1 MB jpeg file representing a usual image on a web page. From the graph in
Figure 5, it is evident that the server managed to handle less than 500 connections, and the
DoS state lasted for the rest of the test scenario without any fluctuations. For the distributed
Slow Read attack, the results were identical.

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 5. Slow Read attack against Apache server.

4.1.4. Slowcomm

The Slowcomm attack had almost identical results to the Slowloris attack, which was
expected due to the same principle of attack. Our Slowloris generator has a built-in function
for restoring closed connections, meaning it is practically not different from a Slowcomm
attack. The course of this attack is shown in Figure 6. The difference is that Slowloris
focuses only on the web service, while the Slowcomm attack generator was developed to
attack various application protocols. We intend to investigate the impact of this attack on
other services in future work.

Sensors 2021, 21, 5473 17 of 27

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

0 5 10 15 20 25 30

Su
cc

es
sf

u
l H

TT
P

 r
eq

u
es

ts
 [

%
]

N
u

m
b

er
 o

f
TC

P
 c

o
n

n
ec

ti
o

n
s

[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 6. Slowcomm attack against Apache server.

4.1.5. Slow Next

In this scenario, it was necessary to increase the number of connections because the
server was stressed differently than in previous attacks. It proved sufficient to generate
700 concurrent connections by sending additional bits of data every 4 seconds to invoke
the DoS state. Once the attacker established approximately 680 connections, the server
could no longer serve other users. As it can be seen from Figure 7, this condition lasted
throughout the attack.

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 7. Slow Next attack against Apache server.

4.1.6. SlowDrop

The SlowDrop attack scenario was based on previous test scenarios and attempted
to open a 500 TCP connection and request an image download of approximately 500 kB
representing a usual web image. The drop ratio was set at 60%. This packet drop ratio
proved to be optimal, as the transmission of the entire image was extended to several tens
of seconds. This time is sufficient to reach the DoS condition and also not to terminate the
transfer by the server. The course of this attack is shown in Figure 8. The Apache server
could only handle approximately 380 connections. Then, the server exhausted all available
resources and did not respond to new connection requests from the legitimate user. This
condition lasted continuously until the end of the attack.

Sensors 2021, 21, 5473 18 of 27

0%

20%

40%

60%

80%

100%

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC

P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 8. SlowDrop attack against Apache server.

4.1.7. HTTP/2 Attacks

Implemented attacks on the HTTP/2 protocol were able to establish and maintain a
connection with the server only in the case of Apache 2.4.17. Only the Slow Preface attack
was successful in the attack on Apache 2.4.29, which is shown in Figure 9. The attack
established approximately 500 connections. Due to the configuration of the server and its
timers, the server closed all the attacker’s connections after 60th second. During this time,
however, a denial of service to the legitimate user was achieved.

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

0 20 40 60 80 100 120

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 9. Slow Preface attack against Apache server.

4.2. Nginx

Another tested server was Nginx 1.14.0. This server already has a pre-installed
module for slowing down DoS attacks, but other modules that help distribute the load only
appear in the paid version of the server. In the free version used in this test, the security
module contains parameters similar to the Apache server, e.g., client_header_timeout
and client_body_timeout, in order to terminate the slow HTTP data streams. The default
value for both parameters is 5 seconds. Another crucial parameter is limit_req_zone,
which limits the number of HTTP requests per client. The default value is set to 30 requests
per minute or one request per 2 seconds. The last important parameter is limit_conn_zone,
which limits the number of TCP connections from one IP address. This protection should
protect the web server from slow DoS attacks coming from one station. However, this
protection should be ineffective for distributed attacks.

4.2.1. Slow Read

In the case of the Slow Read attack, the generator settings used were the same as those
for the Apache server attacks, but the total number of TCP connections was increased to
2500 due to the higher expected server performance. Approximately 1900 connections

Sensors 2021, 21, 5473 19 of 27

were established, and then all the server resources were exhausted. As it can be seen in
Figure 10, the server attempted to terminate some connections. However, the generator
restored these connections. The DoS state lasted throughout the attack. Distributed attacks
had very similar results.

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
[%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 10. Slow Read attack against Nginx server.

4.2.2. Slowcomm

Nginx was much more resilient than Apache due to its architecture. Based on the
results of the previous attack, this scenario was set to establish 2500 connections and
then send data every 2 seconds. However, when approximately 800 connections were
established, the server’s security mechanisms began terminating the connections, and the
attack was mitigated. Paradoxically, this led to a server overload and communication
interruption with the legitimate user. The course of the attack is shown in Figure 11.

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC

P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 11. Slowcomm attack against Nginx server.

4.2.3. SlowDrop

The SlowDrop attack failed to cause a service failure on the Nginx server. The gen-
erator was able to produce and maintain approximately 1400 TCP connections, but the
server was able to process all of the attacker’s connections. The legitimate client was served
without a noticeable delay. The course of the attack is shown in Figure 12.

Sensors 2021, 21, 5473 20 of 27

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC

P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 12. SlowDrop attack against Nginx server.

4.2.4. HTTP/2 Attacks

The Nginx server is immune to all implemented HTTP/2 attacks. An attacker can
establish TCP connections, but they are closed by the web server.

4.2.5. Other Attacks

Slowloris, Slow POST, and Slow Next attacks were ineffective against this web server
due to the event-driven architecture of the web server. All attacker invalid connections
were closed shortly. The web server responded to legitimate users during the attacks
without any delay, meaning DoS attacks were unsuccessful. Distributed attacks had the
same results.

4.3. Lighttpd

The next tested web server was lighttpd 1.4.55. This lightweight web server does not
contain any advanced settings and elements for protection against slow DoS attacks.

4.3.1. Slowloris

The lighttpd server is optimized to handle a large number of requests at once. The
Slowloris attack scenario used the same attack generator settings as the Apache server
attack scenario, but the total number of TCP connections was increased to 2000. This value
was chosen based on several previous attempts to be able to cause a DoS condition. In
this test scenario, lighttpd could handle approximately 1500 connections during an attack.
Once the server reached this maximum, a DoS effect occurred and lasted throughout the
test. The distributed Slowloris scenario had the same results. The course of the attack is
shown in Figure 13.

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 13. Slowloris attack against lighttpd server.

Sensors 2021, 21, 5473 21 of 27

4.3.2. Slow POST

The Slow POST attack scenario used the same generator settings as the Apache server
attack, but the total number of connections was increased to 1500. This value was chosen
based on several previous attempts to be able to cause a DoS condition. From the course of
the attack in Figure 14, the server attempted to terminate some of the connections. However,
all closed connections were restored by the generator. Once all free server resources were
occupied, the server became unavailable to legitimate users. The distributed attack had very
similar results, but there were no such frequent fluctuations and connection termination.

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

2500

0 10 20 30 40

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 14. Slow POST attack against lighttpd server.

4.3.3. Slow Read

In the case of the Slow Read attack, the same generator settings as in the scenario with
the Apache server were sufficient to cause a DoS condition. The course of the attack is
visualized in Figure 15. An attempt to terminate a large number of TCP connections can
be observed around the 20th second after all available server resources were exhausted.
However, the TCP connections were re-established, and the DoS state was reached again.
The distributed attack produced very similar results.

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

Su
cc
e
ss
fu
l H

TT
P
 r
eq

u
e
st
s
[%

]

N
u
m
b
er
 o
f
TC
P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 15. Slow Read attack against lighttpd server.

4.3.4. Slowcomm and Slow Next

Due to the low resource requirements of the server, the number of connections of
both attacks was set to 1000 to increase the server load and exhaust the server’s resources.
This number was chosen based on previous attempts to achieve a DoS condition. After
establishing almost 400 connections, the service was denied to a legitimate user. This
condition lasted throughout the attack. The course of the attack is shown in Figure 16.

Sensors 2021, 21, 5473 22 of 27

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC

P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 16. Slowcomm attack against lighttpd server.

4.3.5. SlowDrop

The SlowDrop scenario had the same settings as the Apache attack scenario. The at-
tacker opened 500 connections and requested an image of 500 kB, and a drop rate of
60%. The server handled approximately 400 concurrent connections. Other connections,
including the legitimate user, were denied. The course of the attack is shown in Figure 17.

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC

P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 17. SlowDrop attack against lighttpd server.

4.3.6. HTTP/2 Attacks

These attacks could not be performed due to the missing HTTP/2 support in lighttpd 1.4.55.
The server supports this protocol from version 1.4.56 and above [43], which was not yet
released at the time of this testing.

4.4. Microsoft IIS

The IIS server configuration offers several parameters that can be used to secure server
vulnerabilities to slow DoS attacks [7]. The maxAllowedContentLength, maxQueryString,
and maxUrl parameters in the <RequestLimits> element are used to limit the attributes
of the HTTP request. In the <headerLimits> element, admin can adjust the size of the
HTTP header that the web server accepts. We left these values at the default state. The val-
ues in the <limits> and <WebLimits> elements directly affect the server’s slow connec-
tion behavior. We left the default values again, i.e., connectionTimeout = 00:02:00,
headerWaitTimeout = 00:00:00, and minBytesPerSecond = 240.

4.4.1. SlowDrop

After several attempts, our virtual machine with an attack generator managed to
produce a maximum of 1400 connections, which was not enough to cause the DoS effect.

Sensors 2021, 21, 5473 23 of 27

IIS was able to handle all connections. Possible optimization of the SlowDrop attack could
produce better results. The course of the attack is visualized in Figure 18.

0%

20%

40%

60%

80%

100%

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

Su
cc
es
sf
u
l H

TT
P
 r
eq

u
es
ts
 [
%
]

N
u
m
b
er
 o
f
TC

P
 c
o
n
n
ec
ti
o
n
s
[-
]

Time [s]

Connected connections [-] Pending connections [-]

Closed connections [-] Server availability [%]

Figure 18. SlowDrop attack against IIS server.

4.4.2. HTTP/2 Attacks

Microsoft IIS 10.0 supports HTTP/2 for encrypted communication only. The h2c
(hypertext-to-cleartext) protocol is implemented over the TCP protocol, while h2 works on
the TLS protocol. Therefore, the implemented slow DoS attacks on HTTP/2 will not work
on IIS 10.0, as our attack generator does not yet support encrypted communication.

4.4.3. Other Attacks

None of the tested attacks could cause server failure and denial of service to a le-
gitimate client. IIS was able to process all of the attacker’s connections that the attack
generators were able to produce.

4.5. Summary of the Tests

The results of testing all types of investigated attacks against the mentioned servers
are summarized in Table 7. An attack was considered successful if a legitimate client
noticed a continuous service outage for more than 6 seconds. We determined this value
based on the estimated user experience. The user would probably notice a smaller delay
and, exceptionally, tolerate it. With a longer delay, it is very likely that the user would close
the website. This successful invocation of the DoS state in a given scenario is indicated in
the table by the symbol 3. Otherwise, when there was no such long service outage, there
could only be a delay in response, but the service was responsive. In this case, the attack
was considered unsuccessful and is marked with the symbol 7.

Table 7. Discovered vulnerabilities.

Attack Apache 2.4.17 Apache 2.4.29 Nginx 1.14.0 Lighttpd 1.4.55 MS IIS 10.0

Slowloris 3 3 7 3 7
Slow POST 3 3 7 3 7
Slow Read 3 3 3 3 7
SlowDrop 3 3 7 3 7
Slowcomm 3 3 3 3 7
Slow Next 3 3 7 3 7

Slow POST (HTTP/2) 3 7 7 - -
Slow Read (HTTP/2) 3 7 7 - -

Slow Settings (HTTP/2) 3 7 7 - -
Slow Headers (HTTP/2) 3 7 7 - -
Slow Preface (HTTP/2) 3 3 7 - -

Sensors 2021, 21, 5473 24 of 27

5. Discussion on Detection and Mitigation

The testing of web servers in the previous section proved the effectiveness of the
generator and its suitability for analyzing the security of web servers. The results show
that for some servers, security against the investigated attacks is sufficient already in the
out-of-the-box state. Other servers need to be additionally secured either with a more
careful configuration or other network protections.

The basic and simplest prevention against slow DoS attacks is to keep the computer
system up to date. Another option is to use security modules and third-party systems.
However, this approach is not always sufficient. In some cases, it only allows reducing the
strength of the attack. Another method is the use of specialized intrusion detection and
prevention systems. In addition, there are a few general steps to increase the web server’s
security and prevent slow DoS attacks [1,8]:

• Limit the time of open connections with each IP address to what is necessary;
• Limit the maximum number of open connections per user and IP address;
• Limit the waiting time of the server to receive and send a request, and after this time,

close the connection;
• Use the maximum computing capacity of the server to serve as many users as possible;
• Create HONEYPOT servers within the network;
• Use multiple servers with load balancing.

The simplest prevention can be created by properly configuring the web server and
the firewall [33]. The settings should then be adapted to the particular server according to
its content. For example, the server should be stricter in terms of attacker connections and
data transfer times for a simple website with a small data content than for more complex
web applications with large downloadable data. The disadvantage of restricting access
from a single IP address may be the fact that an attacker can be hidden in the local network
behind NAT. Thus, a countermeasure could restrict other legitimate users in the subnet.
Mitigation should always focus on specific suspicious connections defined by the source
IP address and port. Furthermore, limiting the connection time should take into account
different situations, as communication in the Internet environment can be heterogeneous.

Slowloris, Slow POST, and Slowcomm attacks can be easily traced according to specif-
ically modified data requests. Detection should have a certain tolerance set to distinguish
between the attacker and a legitimate user. Only when the number of such connections is
exceeded and it could disrupt the stability of the server should the mitigation technique
block the connection and release the server’s occupied resources. Thus, it is possible to use
specialized tools for the detection and mitigation of individual attacks, such as the SDToW
tool [44]. This tool is for the detection and mitigation of Slowloris attacks in wireless
mesh networks using a device called a concentrator. Antibot and antispam tools that limit
the reception of GET and POST requests can also be useful [45]. They can help mitigate
the beginning and effect of an attack. However, these antispam tools are used by web
programmers rather than server administrators.

Slow Read attacks for all HTTP versions can be detected based on the extremely
small size of the TCP window. However, for unambiguous detection, it is necessary
to also monitor other parameters such as the speed of transmitted data, the number of
these slow connections, and the specification of the required data. Here, it is necessary to
carefully choose the detection threshold and determine which flows can still be tolerated
and considered legitimate, and which should be terminated.

The Slow Next attack is much more difficult to detect due to the legitimate commu-
nication. For detection, it is necessary to monitor all connections and monitor the delay
between individual requests. The maximum limit of waiting for the next request within
the connection should be defined, and with a higher number of such connections, this limit
should be reduced. This can prevent server congestion. The detection mechanism should
look for similarities between request delays and recurring requests. These connections then
indicate a Slow Next attack and can be terminated.

Sensors 2021, 21, 5473 25 of 27

There is currently no reliable detection technique for the SlowDrop attack. The attack
mimics the behavior of a legitimate user too accurately. Theoretically, it could be possible
to use neural networks to detect attacks as an anomaly. An attacker is characterized by
data retransmission. Setting an acceptable retransmission rate based on the amount of data
could help to prevent this attack.

Attacks on the HTTP/2 protocol can be detected by the occurrence of signatures
described in Section 2.2. Some of these attacks involve sending non-standard HTTP/2
frame parameters, meaning the detection should be accurate. For attacks that simulate
a legitimate slow user, such as Slow Read, the detection mechanism should specify a
tolerance of the data rate and the number of connections for accurate attack detection,
similar to Slow Read for HTTP/1.1.

6. Conclusions

The test scenarios proved the functionality of the created slow DoS attack generator,
in which the DoS state was successfully invoked on most web servers. However, Mi-
crosoft IIS proved to be the most resistant to these attacks. It was able to overcome all
attacks and maintain the quality of service for users in all tested scenarios. Nginx 1.14.0
showed resistance to most attacks. Thanks to its architecture, it passed all attacks without
denial of service, except for the Slow Read and Slowcomm attacks. A surprising result,
however, is the vulnerability of the Apache 2.4.29 web server, which is still vulnerable
to Slowloris, Slow POST, Slow Read, Slowcomm, and Slow Next, although these attacks
have long been known and described in detail. There is some noticeable progress in the
configuration of the web server and its modules, but the tolerance to slow traffic is still,
by default, high enough to perform a DoS attack. However, despite the possible stricter
server settings, the created attack generators can adapt attacks and invoke the DoS state.
The worst results were achieved by lighttpd 1.4.55 and Apache 2.4.17. Due to the lack of
insufficient security against slow DoS, these servers were vulnerable to all tested attacks.

In the case of attacks on the HTTP/2 protocol, our generator confirms that the vulnera-
bility of the Apache2 server has already been fixed in version 2.4.29, except the Slow Preface
attack. This attack was successful on the Apache server in both tested versions. Other
HTTP/2 attacks were successful only against the older version 2.4.17. We will verify the
vulnerabilities of Microsoft IIS and lighttpd in future research once support for this protocol
is fully implemented.

In conclusion, this paper confirms the importance of the security development and
configuration adjustment of web servers to mitigate the mentioned attacks. We also strongly
recommend the usage of additional protection, e.g., an intrusion prevention system. The
contribution of our work is the creation of a universal generator of slow DoS attacks, which
can be easily extended to new types of attacks. We have included the latest types of attacks
in the generator, for which no tool is yet available. This generator allows testing web
server vulnerabilities and the effectiveness of attack detection/mitigation implementations.
Experimental testing of the generator showed the weaknesses of the current most used
web servers. In this paper, we also described our proposal of attack prevention and
detection mechanisms.

Our future goal is to complete the development of the generator, fix all bugs, and
then publish it. In future work, we will also focus on testing the vulnerabilities of newer
web server versions including the HTTP/2 implementation of lighttpd and the encrypted
variant in Microsoft IIS. Thanks to the easy addition of other services to the experimental
environment, we intend to test the vulnerabilities of other application services against
these attacks. Our future work will also focus on the design, implementation, and testing
of accurate detection and mitigation mechanisms.

Author Contributions: Conceptualization, M.S.; data curation, M.S., K.K. and E.H.; formal analysis,
M.S. and E.H.; funding acquisition, R.F. and J.M.; investigation, M.S., K.K. and E.H.; methodology,
M.S.; project administration, R.F. and J.M.; resources, M.S.; software, M.S.; supervision, M.S. and R.F.;
validation, M.S.; visualization, M.S., K.K. and E.H.; writing—original draft, M.S.; writing—review

Sensors 2021, 21, 5473 26 of 27

and editing, M.S., R.F., K.K. and E.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Technology Agency of the Czech Republic, grant num-
ber FW01010474.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The license does not allow us to fully publish the source code.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahjabin, T.; Xiao, Y.; Sun, G.; Jiang, W. A survey of distributed denial-of-service attack, prevention, and mitigation techniques.

Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717741463. [CrossRef]
2. Cambiaso, E.; Papaleo, G.; Aiello, M. Taxonomy of Slow DoS Attacks to Web Applications. In Recent Trends in Computer Networks

and Distributed Systems Security; Springer: Berlin/Heidelberg, Germany, 2012; pp. 195–204._20. [CrossRef]
3. Cambiaso, E.; Papaleo, G.; Chiola, G.; Aiello, M. Slow DoS attacks. Int. J. Trust Manag. Comput. Commun. 2013, 1, 300–319.

[CrossRef]
4. Tripathi, N.; Hubballi, N. Application Layer Denial-of-Service Attacks and Defense Mechanisms: A Survey. ACM Comput. Surv.

2021, 54, 1–33. [CrossRef]
5. Shekyan, S. Are You Ready for Slow Reading? Qualis 2012. Available online: https://blog.qualys.com/vulnerabilities-threat-

research/2012/01/05/slow-read (accessed on 12 August 2021).
6. Cline, K.R.; Kustarz, C.; Hand, C.R.; Huston, L.B. Method and Protection System for Mitigating Slow HTTP Attacks Using Rate

and Time Monitoring. U.S. Patent 8,856,913, 7 October 2014.
7. Shekyan, S. How to Protect Against Slow HTTP Attacks? Qualys. 2011. Available online: https://blog.qualys.com/vulnerabilities-

threat-research/2011/11/02/how-to-protect-against-slow-http-attacks (accessed on 12 August 2021).
8. Sikora, M.; Gerlich, T.; Malina, L. On Detection and Mitigation of Slow Rate Denial of Service Attacks. In Proceedings of the

2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Dublin,
Ireland, 28–30 October 2019; pp. 1–5. [CrossRef]

9. Cambiaso, E.; Papaleo, G.; Aiello, M. Slowcomm: Design, development and performance evaluation of a new slow DoS attack. J.
Inf. Secur. Appl. 2017, 35, 23–31. [CrossRef]

10. Cambiaso, E.; Papaleo, G.; Aiello, M.; Chiola, G. Designing and Modeling the Slow Next DoS Attack. In International Joint
Conference; Springer: Cham, Switzerland, 2015; doi:10.1007/978-3-319-19713-5_22. [CrossRef]

11. Cambiaso, E.; Aiello, M.; Mongelli, M.; Vaccari, I. Detection and Classification of Slow DoS Attacks Targeting Network Servers.
In Proceedings of the 15th International Conference on Availability, Reliability and Security (ARES’20); Association for Computing
Machinery: New York, NY, USA, 2020; doi:10.1145/3407023.3409198. [CrossRef]

12. Aiello, M.; Cambiaso, E.; Mongelli, M.; Papaleo, G. An On-Line Intrusion Detection Approach to Identify Low-Rate DoS Attacks.
In Proceedings of the 2014 International Carnahan Conference on Security Technology (ICCST), Rome, Italy, 13–16 October 2014;
Volume 2014; pp. 1–6. [CrossRef]

13. Phan, T.V.; Gias, T.M.R.; Islam, S.T.; Huong, T.T.; Thanh, N.H.; Bauschert, T. Q-MIND: Defeating Stealthy DoS Attacks in SDN
with a Machine-Learning Based Defense Framework. In Proceedings of the 2019 IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [CrossRef]

14. Hong, K.; Kim, Y.; Choi, H.; Park, J. SDN-Assisted Slow HTTP DDoS Attack Defense Method. IEEE Commun. Lett. 2017,
22, 688–691. [CrossRef]

15. Punitha, V.; Mala, C.; Rajagopalan, N. A novel deep learning model for detection of denial of service attacks in HTTP traffic over
internet. Int. J. Ad Hoc Ubiquitous Comput. 2020, 33, 240–256. [CrossRef]

16. Cambiaso, E.; Chiola, G.; Aiello, M. Introducing the SlowDrop Attack. Comput. Netw. 2019,150, 234–249. [CrossRef]
17. Belshe, M.; Peon, R.; Thomson, M. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC Ed. 2015, 7540, 1–96. [CrossRef]
18. Adi, E.; Baig, Z.; Lam, C.; Hingston, P. Low-Rate Denial-of-Service Attacks against HTTP/2 Services. In Proceedings of the 2015

5th International Conference on IT Convergence and Security (ICITCS), Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–5.
[CrossRef]

19. Adi, E.; Baig, Z.; Hingston, P.; Lam, C. Distributed denial-of-service attacks against HTTP/2 services. Clust. Comput. 2016, 19,
79–86. [CrossRef]

20. HTTP/2: In-depth Analysis of the Top Four Flaws of the Next Generation Web Protocol. IMPERVA: Hacker Intelligent Initiative.
2016. Available online: https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf (accessed on 12 August 2021).

21. Winkel, S. Network Forensics and HTTP/2. SANS Institute: InfoSec Reading Room. 2015. Available online: https://www.sans.
org/white-papers/36647/ (accessed on 12 August 2021).

http://doi.org/10.1177/1550147717741463
http://dx.doi.org/10.1007/978-3-642-34135-9_20
http://dx.doi.org/10.1504/IJTMCC.2013.056440
http://dx.doi.org/10.1145/3448291
https://blog.qualys.com/vulnerabilities-threat-research/2012/01/05/slow-read
https://blog.qualys.com/vulnerabilities-threat-research/2012/01/05/slow-read
https://blog.qualys.com/vulnerabilities-threat-research/2011/11/02/how-to-protect-against-slow-http-attacks
https://blog.qualys.com/vulnerabilities-threat-research/2011/11/02/how-to-protect-against-slow-http-attacks
http://dx.doi.org/10.1109/ICUMT48472.2019.8970844
http://dx.doi.org/10.1016/j.jisa.2017.05.005
http://dx.doi.org/10.1007/978-3-319-19713-5_22
http://dx.doi.org/10.1145/3407023.3409198
http://dx.doi.org/10.1109/CCST.2014.6987039
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013585
http://dx.doi.org/10.1109/LCOMM.2017.2766636
http://dx.doi.org/10.1504/IJAHUC.2020.106666
http://dx.doi.org/10.1016/j.comnet.2019.01.007
http://dx.doi.org/10.17487/RFC7540
http://dx.doi.org/10.1109/ICITCS.2015.7292994
http://dx.doi.org/10.1007/s10586-015-0528-7
https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
https://www.sans.org/white-papers/36647/
https://www.sans.org/white-papers/36647/

Sensors 2021, 21, 5473 27 of 27

22. Tripathi, N.; Hubballi, N. Slow Rate Denial of Service Attacks Against HTTP/2 and Detection. Comput. Secur. 2017, 72, 255–272.
[CrossRef]

23. Adi, E.; Baig, Z.; Hingston, P. Stealthy Denial of Service (DoS) Attack Modelling and Detection for HTTP/2 Services. J. Netw.
Comput. Appl. 2017, 91, 1–13. [CrossRef]

24. Ling, X.; Wu, C.; Ji, S.; Han, M., H2DoS: An Application-Layer DoS Attack Towards HTTP/2 Protocol. In Security and Privacy in
Communication Networks; Springer International Publishing: Cham, Switzerland, 2018; pp. 550–570._28. [CrossRef]

25. Praseed, A.; Thilagam, P. Multiplexed Asymmetric Attacks: Next-Generation DDoS on HTTP/2 Servers. IEEE Trans. Inf. Forensics
Secur. 2019, 15, 1790–1800. [CrossRef]

26. Patni, P.; Iyer, K.; Sarode, R.; Mali, A.; Nimkar, A. Man-in-the-middle attack in HTTP/2. In Proceedings of the 2017 International
Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–6. [CrossRef]

27. Vaccari, I.; Aiello, M.; Cambiaso, E. SlowITe, a Novel Denial of Service Attack Affecting MQTT. Sensors 2020, 20, 2932. [CrossRef]
[PubMed]

28. Behal, S.; Saluja, K. Characterization and Comparison of DDoS Attack Tools and Traffic Generators—A Review. Int. J. Netw.
Secur. 2017, 19, 383–393. [CrossRef]

29. Shekyan, S. Slowhttptest. 2016. Available online: https://github.com/shekyan/slowhttptest (accessed on 12 August 2020).
30. Cika, P.; Clupek, V. Stress Tester and Network Emulator in Apache JMeter. In Proceedings of the 2019 Photonics & Electromag-

netics Research Symposium–Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 3722–3726. [CrossRef]
31. Sikora, M.; Krivulcik, A.; Fujdiak, R.; Blazek, P. Design of Advanced Slow Denial of Service Attack Generator. In Proceedings of

the 2020 12th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Brno,
Czech Republic, 5–7 October 2020; pp. 99–104. [CrossRef]

32. Schuba, C.L.; Krsul, I.V.; Kuhn, M.G.; Spafford, E.H.; Sundaram, A.; Zamboni, D. Analysis of a denial of service attack on TCP.
In Proceedings of the 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097), Oakland, CA, USA, 4–7 May 1997;
pp. 208–223.

33. Suroto, S. A Review of Defense Against Slow HTTP Attack. JOIV Int. J. Inform. Vis. 2017, 1, 127–134. [CrossRef]
34. Dantas, Y.G.; Nigam, V.; Fonseca, I.E. A Selective Defense for Application Layer DDoS Attacks. In Proceedings of the 2014 IEEE

Joint Intelligence and Security Informatics Conference, The Hague, The Netherlands, 24–26 September 2014; pp. 75–82.
35. Park, J.; Iwai, K.; Tanaka, H.; Kurokawa, T. Analysis of Slow Read DoS attack. In Proceedings of the 2014 International

Symposium on Information Theory and Its Applications, Victoria, BC, Canada, 26–29 October 2014; pp. 60–64.
36. Pollard, B. HTTP/2 in Action; Manning: Shelter Island, NY, USA, 2019.
37. Karimi, K.; Ahmadi, A.; Ahmadi, M.; Bahrambeigy, B. Acceleration of IPTABLES Linux Packet Filtering Using GPGPU. In

Proceedings of the 2013 Symposium on Computer Science and Software Engineering (CSSE), Tehra, Iran, 25 December 2013;
doi:10.13140/2.1.3047.7763. [CrossRef]

38. Shekyan, S. SlowHTTPTest Package Description. Available online: https://tools.kali.org/stress-testing/slowhttptest (accessed
on 20 July 2021).

39. Geniar, M. Slowloris. 2015. Available online: https://github.com/mattiasgeniar/slowloris (accessed on 22 July 2021).
40. Gilbert, C. PyLoris. 2009. Available online: https://motoma.io/pyloris/ (accessed on 22 July 2021).
41. Chaddha, S. Rudyjs. 2018. Available online: https://github.com/sahilchaddha/rudyjs (accessed on 22 July 2021).
42. Usage Statistics of Apache Version 2.4. W3Techs. Available online: https://w3techs.com/technologies/details/ws-apache/2.4

(accessed on 31 March 2021).
43. Kneschke, J. Lighttpd 1.4.56. 2020. Available online: https://www.lighttpd.net/2020/11/29/1.4.56/ (accessed on 30 March

2021).
44. Faria, V.S.; Gonçalves, J.A.; Silva, C.A.M.; Vieira, G.B.; Mascarenhas, D.M. SDToW: A Slowloris Detecting Tool for WMNs.

Information 2020, 11, 544. [CrossRef]
45. Amin Azad, B.; Starov, O.; Laperdrix, P.; Nikiforakis, N. Web Runner 2049: Evaluating Third-Party Anti-bot Services. In Detection

of Intrusions and Malware, and Vulnerability Assessment; Maurice, C., Bilge, L., Stringhini, G., Neves, N., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 135–159._7. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2017.09.009
http://dx.doi.org/10.1016/j.jnca.2017.04.015
http://dx.doi.org/10.1007/978-3-319-78813-5_28
http://dx.doi.org/10.1109/TIFS.2019.2950121
http://dx.doi.org/10.1109/I2C2.2017.8321787
http://dx.doi.org/10.3390/s20102932
http://www.ncbi.nlm.nih.gov/pubmed/32455752
http://dx.doi.org/10.6633/IJNS.201703.19(3).07)
https://github.com/shekyan/slowhttptest
http://dx.doi.org/10.1109/PIERS-Spring46901.2019.9017650
http://dx.doi.org/10.1109/ICUMT51630.2020.9222423
http://dx.doi.org/10.30630/joiv.1.4.51
http://dx.doi.org/10.13140/2.1.3047.7763
https://tools.kali.org/stress-testing/slowhttptest
https://github.com/mattiasgeniar/slowloris
https://motoma.io/pyloris/
https://github.com/sahilchaddha/rudyjs
https://w3techs.com/technologies/details/ws-apache/2.4
https://www.lighttpd.net/2020/11/29/1.4.56/
http://dx.doi.org/10.3390/info11120544
http://dx.doi.org/10.1007/978-3-030-52683-2_7

	Introduction
	State of the Art
	Contribution

	Analysis of Slow DoS Attack Key Parameters
	Attacks on HTTP/x
	Slowloris
	Slow POST
	Slow Read
	SlowDrop
	Slowcomm
	Slow Next

	Attacks on HTTP/2
	Slow Read
	Slow POST
	Slow Preface
	Slow Headers
	Slow Settings

	Summary of Selected Slow DoS Attacks

	Proposal and Implementation of Attack Generator
	Experimental Verification of the Generator
	Apache Web Server
	Slowloris
	Slow POST
	Slow Read
	Slowcomm
	Slow Next
	SlowDrop
	HTTP/2 attacks

	Nginx
	Slow Read
	Slowcomm
	SlowDrop
	HTTP/2 Attacks
	Other Attacks

	Lighttpd
	Slowloris
	Slow POST
	Slow Read
	Slowcomm and Slow Next
	SlowDrop
	HTTP/2 Attacks

	Microsoft IIS
	SlowDrop
	HTTP/2 Attacks
	Other Attacks

	Summary of the Tests

	Discussion on Detection and Mitigation
	Conclusions
	References

