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Introduction: To develop and test the feasibility of free-breathing (FB), high-resolution

quantitative first-pass perfusion cardiac MR (FPP-CMR) using dual-echo Dixon

(FOSTERS; Fat-water separation for mOtion-corrected Spatio-TEmporally accelerated

myocardial peRfuSion).

Materials and Methods: FOSTERS was performed in FB using a dual-saturation

single-bolus acquisition with dual-echo Dixon and a dynamically variable Cartesian k-t

undersampling (8-fold) approach, with low-rank and sparsity constrained reconstruction,

to achieve high-resolution FPP-CMR images. FOSTERS also included automatic in-plane

motion estimation and T∗2 correction to obtain quantitative myocardial blood flow (MBF)

maps. High-resolution (1.6 x 1.6 mm2) FB FOSTERS was evaluated in eleven patients,

during rest, against standard-resolution (2.6 x 2.6 mm2) 2-fold SENSE-accelerated

breath-hold (BH) FPP-CMR. In addition, MBF was computed for FOSTERS and spatial

wavelet-based compressed sensing (CS) reconstruction. Two cardiologists scored the

image quality (IQ) of FOSTERS, CS, and standard BH FPP-CMR images using a 4-point

scale (1–4, non-diagnostic – fully diagnostic).

Results: FOSTERS produced high-quality images without dark-rim and with reduced

motion-related artifacts, using an 8x accelerated FB acquisition. FOSTERS and standard

BH FPP-CMR exhibited excellent IQ with an average score of 3.5 ± 0.6 and 3.4 ± 0.6

(no statistical difference, p > 0.05), respectively. CS images exhibited severe artifacts

and high levels of noise, resulting in an average IQ score of 2.9 ± 0.5. MBF values

obtained with FOSTERS presented a lower variance than those obtained with CS.
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Discussion: FOSTERS enabled high-resolution FB FPP-CMR with MBF quantification.

Combining motion correction with a low-rank and sparsity-constrained reconstruction

results in excellent image quality.

Keywords: myocardial perfusion, high-resolution, free-breathing, quantitative myocardial blood flow, Dixon,

motion correction

INTRODUCTION

First-pass perfusion cardiac MR (FPP-CMR) enables non-
invasive detection of ischemic heart disease (1–3). Typically,
assessment is based on visual comparison of relative contrast
enhancement in different myocardial segments, which requires
highly trained readers (4). Quantitative FPP-CMR (QFPP-
CMR) provides an objective assessment by estimating pixel-wise
myocardial blood flow (MBF) (5) and has high diagnostic and
prognostic value (6–10). However, there are several technical
challenges that can negatively impact the image quality and the
diagnostic yield. Since MBF quantification is based on modeling
the signal intensity during the first pass of a contrast agent bolus,
sources of motion must be minimized to ensure that the same
anatomy is depicted for a given pixel across time. In particular,
the duration of the first pass, approximately 30–50 s, does not
fit into a breath-hold and therefore, respiratory motion poses
a significant challenge (11). Free-breathing QFPP-CMR can
be performed with retrospective respiratory motion correction
using image registration, yet the localized strong image contrast
changes can hamper the performance of conventional signal
intensity-based registration algorithms (12, 13). FPP-CMR
images are also commonly affected by the dark-rim artifact which
mimics perfusion defects and is exacerbated by a low spatial
resolution (14, 15). The signal from subcutaneous, epicardial,
or intramyocardial fat may also adversely impact quantification
and image quality. While fat-selective saturation prepulses can be
employed, in practice they are limited to centric phase encoding
sampling which can cause blurring and reduced contrast. Finally,
MBF quantification may be biased by signal nonlinearities at
very high contrast agent concentrations due to T1 saturation and
T∗
2-related signal loss (5, 16–18).
Recently, a dual-bolus multi-echo Dixon QFPP-CMR

framework has been proposed to address in-plane respiratory
motion, T∗

2-related signal loss, and fat suppression (19). This
method provides fat-only images, which were used to estimate
respiratory motion, while motion-corrected water-only images
were used for visual assessment and MBF quantification. In this
work, a framework titled “Fat-water separatiOn for motion-
corrected Spatio-TEmporally accelerated myocardial peRfuSion”
(FOSTERS) is proposed. FOSTERS extends the previous work
by combining a dynamic variable undersampled dual-echo
Dixon acquisition with a motion-corrected reconstruction with
low-rank and sparsity constraints to achieve high-resolution
FPP-CMR images. Additionally, the high-resolution acquisition
is interleaved with a low-resolution image with a low T1

sensitivity for estimating the arterial input function (AIF) (20).
As before, echo images were used for correcting the AIF for T∗

2-
related signal losses to further improve MBF quantification. The

performance of FOSTERS is compared to a standard compressed
sensing reconstruction as well as the corresponding clinical
standard-resolution breath-hold FPP-CMR. This comparison
assessed the variability of MBF, the image sharpness, and the
image quality scores of expert readers.

MATERIALS AND METHODS

FOSTERS Framework
Pulse Sequence
The FOSTERS pipeline (shown in Figure 1) comprises an
electrocardiogram-triggered multi-slice dual-saturation (21)
single-bolus acquisition with dual-echo gradient-echo imaging
to allow for water-fat separation and T∗

2 correction. In each
cardiac cycle, to measure the AIF, the dual-echo acquisition
is preceded by a low-resolution image with a short saturation
time (20). A variable density Poisson distribution undersampled
Cartesian acquisition was employed (22), where the center of
k-space is more densely sampled than the periphery, to achieve
an incoherent artifact distribution. In addition, the ky pattern
was pseudo-randomly varied individually for each time point
(k-t acceleration).

Image Reconstruction and Motion Correction
The FOSTERS image reconstruction and motion correction
were implemented in the Recon 2.0 environment (Philips,
Best, The Netherlands) to allow for inline scanner integration.
First, a Dixon reconstruction with compressed sensing (CS)
using low-rank (time-domain) and sparsity (spatial domain)
constraints (23) was performed with 10 iterations (empirically
determined), which generates water- and fat-only images from
k-t undersampled data with sufficient quality for in-plane
respiratory motion estimation using image registration.

Thresholding, followed by dilation, was then employed to
create a binary mask from the water images. From this binary
mask, a bounding box was automatically placed around the
epicardial fat and was used to estimate rigid respiratory motion
using the Fast Elastic Image Registration (FEIR) toolbox (24)
with normalized gradient fields as an image similarity measure.
Fat images were used as a stable reference for the anatomy
because they do not show contrast uptake-related image intensity
changes, as proposed by Scannell et al. (19). A reference time
frame, with superior-inferior (SI) motion displacement closest
to the mean SI position, was selected. This translational motion
information was used to correct rigidly the dual-echo data by
applying a linear phase shift in k-space. Rigid motion only was
estimated in this step due to the sparse signal of the fat images
being unsuitable for non-rigid motion estimation. A non-rigid
refinement step is performed at a later stage.
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FIGURE 1 | FOSTERS framework: (A) A dual-saturation dual-echo Dixon FPP-CMR sequence was used to acquire low-resolution arterial input function (AIF) and

high-resolution myocardial images. (B) Water- and fat-only images were obtained from k-t undersampled data using a fast low-rank and sparsity constrained

reconstruction method with 10 iterations. Fat-only images were used to estimate in-plane respiratory motion. Then, rigidly motion-corrected images were generated

using the same fast low-rank and sparsity regularized reconstruction method with 50 iterations. (C) The rigidly motion-corrected water-only images were fine-tuned

using non-rigid registration and were automatically segmented to an AHA 16-segment model. (D) AIF echoes were used to correct for T2* decay and quantitative

myocardial blood flow (MBF) maps were automatically obtained.

Finally, motion-corrected water-only images were generated
using a CS reconstruction with low-rank and sparsity constraints
after 50 iterations. Images were reconstructed using a fast sparsity
and nuclear norm regularization method (23), which solved the
following minimization problem:

x̂ = argmin
x

{1

2

∥

∥Ex− k
∥

∥

2

2
+ α ‖x‖∗ + β ‖9x‖1

}

,

where x are the dynamic images, k is the dynamic time-series data
(after translational motion correction), E is the SENSE encoding
operator, 9 is the spatial anisotropic total variation operator,
α and β are regularization parameters, ‖ • ‖∗ is the nuclear
norm (sum of singular values) and ‖ • ‖1 is the L1-norm. The
regularization parameters were selected empirically and set at
α = 1 and β = 0.005 for all subjects.

Post-processing: T∗

2 Correction and Quantification of

Myocardial Blood Flow
The rigidly motion-corrected dynamic water-only images were
fine-tuned using non-rigid registration to a corresponding
motionless synthetic image series, generated with principal
component analysis (12). FPP-CMR images were automatically
segmented to an AHA 16-segment model using a deep
learning-based method, as previously published (25). This
model comprises four neural networks applied sequentially:
a convolutional neural network (CNN) to detect the time-
frame with peak left ventricle (LV) enhancement, a CNN to
select a bounding box that encompasses the LV cavity and
myocardium, a U-Net to segment the myocardium, and a U-
Net to detect the right ventricle insertion points that define
the 16 AHA-segments. In addition, the dual-echo images were
used for estimating the AIF and T∗

2-related signal loss by
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fitting the mean signal magnitude to an exponential decay
model (19). Quantitative MBF values were estimated on a
pixel-wise level by fitting the observed AIF and myocardial
tissue curves to a two-compartment exchange model, using
Bayesian inference (26). MBF quantification was performed
using only the dynamic contrast-enhanced data corresponding
to the first pass of the contrast bolus (approximately 20 sec
of data).

In vivo Experiments
All acquisitions reported in this study were performed on a
3.0T Achieva scanner (Philips, Best, The Netherlands) using
a 32-channel cardiac coil. The study was approved by the
National Research Ethics Service (15/NS/0030) and written
informed consent was obtained from each participant according
to institutional guidelines. All the patients enrolled in this
study underwent a CMR examination for clinical nonstress
function and viability assessment with known or suspected heart
disease. Patients were required to be ≥18 years of age and have
no contraindications to gadolinium contrast, inclusive of an
estimated glomerular filtration rate ≤ 60 ml/min/1.73 m2.

Eleven patients (baseline characteristics in
Supplementary Table 1) with suspected cardiovascular disease
were scanned during rest with 8-fold k-t accelerated FOSTERS
during the first pass of a contrast bolus injection (0.075 mmol/kg
of Gadobutrol at 4 ml/s followed by 25ml saline flush). Three
short-axis slices (basal, mid, and apical) were acquired with the
following parameters: FOV = 320 × 300 mm2, matrix size =

200 × 186, acquired/reconstructed in-plane resolution = 1.6 ×

1.6 / 1.43 x 1.43 mm2, slice thickness = 10mm, TR/TE1/TE2
= 2.8/1.1/1.9ms, acceleration factor (R) = 8, saturation time
(short TS / long TS) = 23.5/100ms, flip angle = 15◦, acquisition
window = 65.4ms, temporal resolution = 145ms, bandwidth =

2,083.3Hz, 54–87 dynamic frames, and scan time = 60 s. Apart
from the previously mentioned saturation time and acquired
in-plane resolution, all imaging parameters were kept constant
between the AIF and the dual-echo images. The dual-echo
FPP-CMR datasets were also reconstructed with the vendor’s
commercially available inline CS wavelet-based reconstruction
(only spatial sparsity constraints with the default parameters)
(27) and non-rigid motion correction. A BH standard-resolution
2D FPP-CMR acquisition (referred here as standard BH)
(20) was acquired for the same eleven subjects with identical
imaging parameters to FOSTERS except for in-plane resolution
= 2.6 × 2.6 mm2, TR/TE = 2.2/1ms, temporal resolution =

160ms, SENSE = 2 and partial Fourier = 0.75. The standard
BH and FOSTERS scans were performed with individual
contrast injections and were separated by 5–7min to allow for
contrast washout.

To assess the motion correction performance of FOSTERS in
different circumstances, one patient (baseline characteristics in
Supplementary Table 1) was scanned separately with FOSTERS
both in free-breathing (FB) and breath-hold (BH) during the
same CMR examination. The scan parameters were kept identical
for both acquisitions, and the BH-FOSTERS was acquired 11min
after the FB-FOSTERS.

Image Evaluation and Statistical Analysis
FOSTERS, CS, and standard BH were processed, including
the non-rigid motion compensation, following the procedure
described in section 2.1.3. The MBF values estimated with
FOSTERS were compared to those obtained with CS. The
FOSTERS MBF values were not compared directly with the
standard BH MBF values as the standard BH acquisition was
the second contrast injection and the MBF values are biased
by the residual contrast from the first injection. The presence
of dark-rim artifacts and the image quality (IQ) of the three
slices acquired with FOSTERS, CS, and standard BH were
assessed jointly by two experienced cardiologists in a randomized
setup, blinded to the patient information and imaging. IQ was
graded on a scale of 1 to 4, in consensus: where (1) was non-
diagnostic IQ; (2) was diagnostic IQ with major artifacts; (3)
diagnostic IQ with minor artifacts; and (4) was fully diagnostic
IQ with no artifacts. For each dataset (FOSTERS, CS, and
standard BH) the total combined IQ score was calculated as the
average score of the three slices. Quantitative image sharpness
was calculated for FOSTERS, CS, and standard BH. For each
patient, the three acquired slices were selected for sharpness
analysis. In each image, a profile was manually selected between
the left ventricle blood pool and the endocardium, as shown
in Supplementary Figure 1. The sharpness was defined as the
distance in pixels between 20% and 80% of the pixel intensity
range of the profile, and a lower pixel distance indicates a sharper
border (28). For FOSTERS, CS, and standard BH, the total image
sharpness was calculated as the average of the three slices. For all
statistical comparisons a p-value cut-off level of 0.05 was chosen
to indicate significance and was performed using the Wilcoxon
signed-rank test (IQ) and the Mann-Whitney U-test (sharpness).

RESULTS

Figure 2 shows the comparison of FB and BH FOSTERS on a
single patient. Three-time frames are displayed for each slice
together with 16-segment bullseye plots. Good image quality was
achieved with both approaches, with FB-FOSTERS exhibiting
overall sharper image features, while BH-FOSTERS presented
some residual ghosting artifacts in some timeframes. In addition,
FB-FOSTERS (0.7 ± 0.1 mL/min/g) yielded MBF values with 4-
fold lower variation when compared to BH-FOSTERS (0.8 ± 0.4
mL/min/g).

All 11 patient scans were completed, reconstructed, and the
in-plane motion was estimated successfully for all slices. Figure 3
displays a comparison between the water-only images (middle
slice) obtained with FB-FOSTERS, spatial wavelet-based CS,
and standard BH for two representative patients (patients 5
and 7). Supplementary Videos 1, 2 contain animations of these
datasets for all approaches.Three different FOSTERS timeframes
are displayed, demonstrating high image quality with no visible
motion artifacts and clear myocardial depiction. Conversely,
CS exhibited degraded image quality with high levels of noise.
These differences between FOSTERS and CS are also visible
in the fat-only images and the temporal profile as shown in
Supplementary Figure 2 and Supplementary Video 3. Standard
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FIGURE 2 | Single patient (diagnosed with dilated cardiomyopathy) comparison between breath-hold (BH) and free-breathing (FB) FOSTERS. Right ventricle (RV), left

ventricle (LV), myocardial enhancement timeframes, and a temporal profile (blue dashed line) are displayed for the acquired three short-axis slices (basal, mid, and

apical). FB-FOSTERS images exhibit excellent quality with no visible motion artifacts, despite some visible motion in the final part of the acquisition, as shown in the

temporal profile. In some timeframes, BH-FOSTERS displays residual ghosting artifacts, due to unsuccessful motion correction. This can be explained by the more

regular respiratory motion during FB which is easier to correct than the large amplitude motion that may occur due to incomplete breath-holding. The 16-segment

bullseye plot shows that the myocardial blood flow (MBF) values were more uniform for FB- than for BH-FOSTERS (average ± SD for the 16 segments of 0.7 ± 0.1

and 0.8 ± 0.4 mL/min/g, respectively). The reconstruction parameters were kept identical for both approaches.

FIGURE 3 | A single short-axis view at mid-ventricular level is displayed during right ventricle (RV), left ventricle (LV), and myocardial enhancement for two

representative patients (middle slice for (A) patient 5 and (B) 7). High-resolution free-breathing water-only FPP-CMR FOSTERS and spatial wavelet-based

compressed sensing (CS) reconstruction in addition to standard-resolution FPP-CMR (Standard BH) are displayed. Overall, CS FPP-CMR exhibits a higher level of

noise and artifacts compared to FOSTERS and standard BH. (C) In the zoom-in region (red rectangle), a dark-rim artifact can be seen in the standard BH images

(arrow), which were not visible in the FOSTERS and CS images. Supplementary Videos 1, 2 contains an animation of these datasets for all approaches.
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BH FPP-CMR achieved excellent image sharpness (Figure 3), but
dark-rim artifacts were still present in 7 out of the 33 cases (3
acquired slices for 11 patients). These were not visible in the
FOSTERS and CS images.

Figure 4 shows the image quality score for all the patients, as
an average score for the three slices, using FB-FOSTERS, CS, and
standard BH. FOSTERS scored the highest (3.5 ± 0.6), followed
by standard BH (3.4 ± 0.6) and CS (2.9 ± 0.5). The differences
between FOSTERS and CS and between standard BH and CS
were statistically significant (p = 0.004 and 0.02, respectively).
There was no significant difference between the FOSTERS and
standard BH images (p = 0.72). The mean blood-myocardium
sharpness ± standard deviation was 4.8 ± 1.8 for FOSTERS, 3.2
± 2.1 for CS, and 4.9 ± 2.4 for standard BH. For the blood-
myocardium sharpness measurements, no statistically significant
differences were found between FOSTERS and CS (p = 0.08),
between FOSTERS and standard BH (p = 0.68), and between CS
and standard BH (p= 0.25).

The 16-segment MBF plots for the FB-FOSTERS and CS
approaches for all eleven patients are displayed in Figure 5.
FOSTERS provides uniform MBF maps whereas CS results in
MBF values with higher variation, which could be attributed
to residual artifacts unresolved by the reconstruction algorithm
and high levels of noise. These artifacts will affect the motion
estimation performance, T∗

2 correction of the AIF, and accuracy
of theMBF estimation. ThemeanMBF (± SD) values were 1.0 (±
0.3) and 1.3 (± 0.6) mL/min/g for FOSTERS and CS, respectively.
FOSTERS also resulted in a lower SD (0.4 mL/min/g) when
compared to CS (0.6 mL/min/g). Significant differences (p =

0.01) in MBF were found between the two methods. Figure 6
shows representative slices of the pixel-wise MBF maps acquired
with Standard BH, CS, and FOSTERS in three subjects. When
compared to FOSTERS, the MBF maps obtained with Standard
BH and CS exhibited a higher level of noise, resulting in a
larger variation in the MBF values. MBF values obtained with
the standard BH are higher due to the residual contrast from the
FOSTERS acquisition, this is visible in the first row of Figure 6.

DISCUSSION

Here, the feasibility of high-resolution QFPP-CMR imaging
during FB was demonstrated by using a dual-saturation
dual-echo Dixon water-fat separation, a compressed sensing
reconstruction with low-rank and sparsity constraints, and
respiratory motion correction. The dynamically varying 8-fold
Cartesian k-t undersampling allowed to obtain a short temporal
resolution (< 150ms) while maintaining the desired high in-
plane resolution (1.6 × 1.6 mm2), making FOSTERS suitable
for patients with heart rates up to 110 bpm. High-spatial
resolution imaging is beneficial for minimizing dark-rim artifacts
and detecting subtle sub-endocardial ischemia associated with
coronary microvascular dysfunction (29) and is likely to improve
the diagnostic yield of the modality.

As a proof-of-principle, to assess the performance
of FOSTERS respiratory motion correction and MBF
quantification, a comparison between FB- and BH-FOSTERS
was performed in one patient (Figure 2). Fat-only images
produced by the dual-echo Dixon acquisition allowed for

FIGURE 4 | Image quality (IQ) scores for the eleven patients. The three

acquired slices were independently scored in terms of image quality for the

high-resolution FPP-CMR (FOSTERS and CS) and the standard resolution

(Standard BH), and the values were averaged for each patient. Statistically

significant differences (p < 0.05) are indicated by *.

accurate in-plane motion estimation during free-breathing.
Moreover, FB-FOSTERS resulted in FPP-CMR images with
excellent sharpness of the cardiac structures and more uniform
MBF maps compared to BH-FOSTERS. This can be explained by
an incomplete BH, which resulted in high MBF values observed
in the anterior and lateral walls of the basal slices.

In the image quality evaluation, FB-FOSTERS was ranked
the highest. In the representative cases displayed in Figure 3,
FOSTERS presented an excellent depiction of the myocardium
with minimal residual motion-related artifacts in the FPP-CMR
images. Standard BH also exhibited excellent image quality, but
the need for the BH significantly impacted the subject’s comfort,
which can lead to images with insufficient diagnostic quality.
In addition, dark-rim artifacts were observed in standard BH
images but were not visible in FOSTERS water-only FPP-CMR
images because of the higher image resolution of FOSTERS
compared to standard BH (1.6 × 1.6 and 2.6 × 2.6 mm2,
respectively). The image quality using spatial wavelet-based CS
was scored the lowest due to the high level of image artifacts
and noise. On the other hand, image quality of k-t undersampled
reconstruction is known to be sensitive to respiratory motion,
which negatively affects the spatio-temporal correlations. The
addition of a rigid motion correction step (translational motion)
in combination with a non-rigid motion correction results in
robust FB acquisitions, as previously demonstrated by Scannell
et al. (19).

Overall, FOSTERS provided more homogenous MBF maps
compared to CS for the eleven patients included in this work.
Thismay be due to the higher respiratorymotion artifacts present
in the CS images, which result in higher values and variance in the
measured MBF.

Compared to the multi-echo Dixon QFPP-CMR introduced
by Scannell et al. (19), FB-FOSTERS is substantially accelerated
using k-t undersampling and acquiring two, rather than
three, echo images. Shortening the acquisition time window
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FIGURE 5 | 16-segment myocardial blood flow (MBF) plots for the high-resolution FB FOSTERS and compressed sensing (CS) reconstruction approaches for all

eleven patients. Mean MBF ± SD for all segments is displayed below each plot. Overall, FOSTERS provides more homogenous MBF maps compared to CS, which

can be explained by the lower residual respiratory motion artifacts present in the FOSTERS images.

is necessary to allow the acquisition of three high-resolution
slices in the short RR intervals associated with (stress) FPP-
CMR imaging and allows higher in-plane spatial resolution. In
addition, a dual-saturation strategy was employed, rather than a
dual-bolus, allowing for the acquisition of AIF and myocardial
tissue information in the same cardiac cycle and after injection of
a single bolus.

Several other approaches have been proposed to accelerate
FPP-CMR acquisitions to increase the in-plane spatial resolution
(30–35), minimize dark-rim artifacts, improve the detection of
subendocardial ischemia, and/or increase cardiac coverage and
slice resolution [e.g., simultaneous multi-slice, SMS (36–40), or
3D whole-heart acquisitions (41–47)]. To minimize respiratory
motion artifacts, motion compensation strategies (22, 48–51)
and non-Cartesian sampling schemes (43, 44, 52–54) have been
proposed. However, FB-FOSTERS offers several advantages.
FOSTERS estimates rigid in-plane respiratory motion from the
fat-only image, while most methods use the dynamic contrast-
enhanced time series, which is prone to image registration
errors due to changes in image intensity during contrast passage
(13, 16, 22, 55, 56). Moreover, FOSTERS also eliminates signal
contributions from the chest and body fat that have detrimental
effects on motion estimation and MBF quantification (19).
Incomplete fat suppression can lead to partial volume effects
at the myocardial-epicardial border, which affects the MBF
quantification accuracy. FOSTERS corrects for in-plane rigid
motion during the inline reconstruction, thus avoiding geometric
distortions and blurring caused by non-rigid methods in the
presence of large respiratory displacements. The reconstructed
FB-FOSTERS images show very small residual motion such that
non-rigid motion registration can be successfully and efficiently
applied before MBF quantification (12). A further benefit of
FOSTERS is the inclusion of a low-resolution, low-saturation-
time slice to measure the AIF for accurate MBF quantification
(20). The low-saturation-time slice was used to account for T1

and T∗
2-related signal loss in the AIF, in addition to the high-

resolution dual-echo images. Furthermore, FOSTERS can be
combined with non-Cartesian sampling, SMS, and 3D whole-
heart acquisitions, which will be the focus of future work.

FOSTERS shows promise for future clinical stress/rest
perfusion studies due to its robustness to in-plane motion, high
IQ, as well as inline reconstruction implementation. The short

FIGURE 6 | Pixel-wise myocardial blood flow (MBF) maps of a single slice (mid

position) for three representative patients were obtained with Standard BH,

CS, and FOSTERS. FOSTERS resulted in more homogenous MBF values,

while CS and Standard BH exhibited a higher variance.

acquisition window, together with the removal of breath-holding,
can enable acquisition in patients with short RR intervals. In
this study, only rest FFP-CMR scans were performed, but future
studies will aim to validate FOSTERS in a larger cohort of patients
with coronary artery disease during stress and rest FPP-CMR.

This study has several limitations that warrant discussion.
First, 2D imaging was used and no through-plane motion
correction was performed, which may influence the estimated
MBF values. However, in this patient group, no severe through-
plane motion was identified in FB-FOSTERS acquisitions, likely
associated with the regularity of shallower breathing - reducing
the risk of motion that can occur at the start or end of a long
BH. In addition, in this patient group, sufficient fat content was
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present in the fat-only images, but more studies are warranted to
assess the performance of the motion estimation in patients with
low levels of fat around the heart. Additionally in future work,
FOSTERS should be tested in a heterogeneous patient cohort
that includes different patient profiles, to assess the impact of
subcutaneous, epicardial, or intramyocardial fat content. Due
to practical reasons, FOSTERS and standard BH scans were
acquired with a relatively short pause between scans (5–7min), so
baseline contrast contamination was observed in some standard
BH datasets. In addition, a randomized order of sequences was
not performed, with FOSTERS always preceding the standard BH
FPP-CMR images. Finally, myocardial coverage was limited to
three slices, but whole-heart coverage could be of high diagnostic
utility (46).

CONCLUSION

FOSTERS, a k-t accelerated dual-saturation dual-echo Dixon
FPP-CMR framework, enables free-breathing and high-
resolution quantitative FPP-CMR and improved MBF
quantification, with automatic in-plane respiratory motion
correction and T∗

2 correction. When compared to standard-
resolution breath-hold FPP-CMR, no statistical differences were
found in the image quality score, and substantially reduced
dark-rim artifacts were observed in the FOSTERS FPP-CMR
images. Future studies will aim to test FOSTERS in patients with
coronary artery disease during stress.
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