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Abstract
Antiviral treatment remains one of the key pharmacological interventions against
influenza pandemic. However, widespread use of antiviral drugs brings with it the
danger of drug resistance evolution. To assess the risk of the emergence and dif-
fusion of resistance, in this paper, we develop a diffusive influenza model where
influenza infection involves both drug-sensitive and drug-resistant strains. We first
analyze its corresponding reaction model, whose reproduction numbers and equilibria
are derived. The results show that the sensitive strains can be eliminated by treatment.
Then, we establish the existence of the three kinds of traveling waves starting from the
disease-free equilibrium, i.e., semi-traveling waves, strong traveling waves and persis-
tent traveling waves, fromwhich we can get some useful information (such as whether
influenzawill spread, asymptotic speed of propagation, the final state of thewavefront).
On the other hand, we discuss three situations in which semi-traveling waves do not
exist. When the control reproduction number RC is larger than 1, the conditions for
the existence and nonexistence of traveling waves are determined completely by the
reproduction numbers RSC , RRC and the wave speed c. Meanwhile, we give an inter-
val estimation of minimal wave speed for influenza transmission, which has important
guiding significance for the control of influenza in reality. Our findings demonstrate
that the control of influenza depends not only on the rates of resistance emergence
and transmission during treatment, but also on the diffusion rates of influenza strains,
which have been overlooked in previous modeling studies. This suggests that antiviral
treatment should be implemented appropriately, and infected individuals (especially
with the resistant strain) should be tested and controlled effectively. Finally, we outline
some future directions that deserve further investigation.
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1 Introduction

Influenza is a serious cytopathogenic, drastic respiratory infectious disease that is
caused by an RNA virus in the Orthomyxoviridae family (Earn et al. 2002; Möhler
et al. 2005). Based on the differences in two major internal proteins, matrix protein
(M) and nucleoprotein (NP), the virus is categorized into three main types: A, B and
C (Webster et al. 1992; Tamura et al. 2005). Influenza virus can be transmitted among
human beings in various ways, such as direct contact with infectious individuals, by
contact with contaminated objects, by inhalation of virus-laden aerosols, etc (Viboud
et al. 2004).

In fact, human influenza, a more severe disease, has been amajor cause of excessive
morbidity and mortality: 40 million in Spanish flu (H1N1) 1918–1919 (Oxford 2000)
and a total of 6 million in Asian flu (H2N2) 1957–1958 and Hong-Kong flu (H3N2)
1968 (Stone et al. 2007). In particular, the outbreak of 2009 H1N1 flu (swine flu) has
proved again that influenza can be a serious problem worldwide (Garten et al. 2009).
In addition, influenza poses a considerable economic burden of society and becomes
a problem of public health (Webster et al. 1992). Therefore, it is imperative to study
how to prevent and contain the outbreak of influenza, increasing our understanding of
the influenza transmission dynamics.

To prevent and control pandemic influenza, various pharmaceutical (vaccination
and antiviral treatment) and non-pharmaceutical (wearing masks, reducing the fre-
quency of going out or paying attention to personal hygiene) measures (Longini
et al. 2005; Ferguson et al. 2005; Halloran et al. 2008) may be taken. Among phar-
maceutical interventions, antiviral treatment (including a range of medications and
therapies) remains one of the most effective measures to lower disease transmission
and reduce the health burden of infections (Ferguson et al. 2005). However, abundant
use of antiviral drugs (such as oseltamivir and zanamivir) is a significant factor in pro-
ducing resistant strains. The emergence of drug-resistant strains prevents the growth
and spread of the drug-sensitive strains, which has raised great concern for public
health (Heymann 2006).

More recently, some mathematical models (primarily ordinary differential, net-
worked and stochastic models), as effective tools, have explored the potential effects
of drug resistance on the transmission of influenza (Stilianakis et al. 1998; Regoes and
Bonhoeffer 2006; Moghadas et al. 2008) and identified effective treatment strategies
for resistance management (Lipsitch et al. 2007; Moghadas 2008; Moghadas et al.
2009; Qiu and Feng 2010; Hansen and Day 2011). For example, Lipsitch et al. (2007)
designed and analyzed a deterministic compartmental model of the transmission of
oseltamivir-sensitive and -resistant influenza infections during a pandemic. They con-
cluded that the benefits of antiviral drug use to control an influenza pandemic may be
reduced, although not completely offset, by drug resistance in the virus. Jnawali et al.
(2016) developed and analyzed a classical two-player game theoretical model where
each player chooses from a range of possible rates of antiviral drug use, and payoffs
are derived as a function of final size of epidemic with the regular and mutant strain.
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Their results showed that strategic interactions could strongly influence a population’s
choice of antiviral drug use policy.

If the random movement of individuals in space plays a very important role in the
dynamics of influenza transmission, it is necessary to consider the influence of spatial
diffusion, which is usually characterized by reaction–diffusion equations. Zhang and
Wang (2014) established a reaction–diffusion influenza model with treatment and
focused on the existence and nonexistence of traveling wave solutions. Xu and Ai
(2016) formulated a mathematical model of influenza disease with vaccination to
incorporate a spatially homogeneous structure. It is shown that the existence and
nonexistence of the traveling wave solutions for the model are determined completely
by the basic reproduction number.

These studies have provided much useful insights into the emergence, spread and
control of influenza. However, most of these models have considered either antiviral
use or the spatial structure of large populations alone. The potential large-scale use of
antiviral drugs brings with it the danger of drug resistance diffusion, which will create
an unprecedented selective pressure for the control of pandemic influenza. To assess
the impact of antiviral resistance and population diffusion, in this paper, wemodify and
extend a previous model of influenza epidemic into a diffusive model which takes into
account the division of large populations into smaller units, the effects of demographic
processes (recruitment and natural deaths) and spatial diffusion factors. The newmodel
allows us to examine the effects of antiviral use on the prevalence of both drug-sensitive
and drug-resistant strains under the influence of population diffusion and to explore
the interaction between populations considering antiviral drug use strategies.

To this end, we develop a diffusive influenza model with multiple strains includes
explicitly both antiviral use and spatial diffusion in Sect. 2. The equilibria and repro-
duction numbers for the corresponding reaction model are discussed in Sect. 3. The
existence of three different kinds of traveling waves of the diffusive model is estab-
lished in Sect. 4. The conditions for the nonexistence of semi-traveling waves of the
diffusive model and the estimation of minimal wave speed are given in Sect. 5. Finally,
some further discussions are listed in Sect. 6 to conclude this work.

2 A Diffusive InfluenzaModel WithMultiple Strains

We adapt the approach of Lipsitch et al. (2007) for modeling the drug treatment (with-
out prophylaxis). In a homogeneously mixing population, individuals may be treated
with antiviral drugs, or not treated. They may also be either infected with the regular
drug- sensitive strain, or with the mutant drug resistance strain. Then, a population is
divided into classes of individuals with epidemiological statuses as susceptible (S),
infected with the sensitive strain (ISU ), infected with the sensitive strain under treat-
ment (IST ), infected with the resistant strain (IR) and recovered individuals (R). To
describe the spatiotemporal spreading behavior between susceptible and infectious
individuals, we extend their ordinary differential equation (ODE) model by including
diffusion terms and vital dynamics (recruitment and mortality). Therefore, a diffusive
influenza model with multiple strains can be demonstrated as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = dS

∂2S
∂x2

+ Λ − μS − [βS(ISU + δ IST ) + βR IR]S,

∂ ISU
∂t = dSU

∂2 ISU
∂x2

+ (1 − f )βS(ISU + δ IST )S − (kU + μ)ISU ,

∂ IST
∂t = dST

∂2 IST
∂x2

+ f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST ,

∂ IR
∂t = dR

∂2 IR
∂x2

+ [ f rβS(ISU + δ IST ) + βR IR]S − (kR + μ)IR,

∂R
∂t = dR̃

∂2R
∂x2

+ kU ISU + kT IST + kR IR − μR,

(1)

where S(x, t), ISU (x, t), IST (x, t), IR(x, t) and R(x, t) represent the quantities of
susceptible, infected with the sensitive strain and untreated, infected with the sensitive
strain and treated, infectedwith the resistant strain and recovered population at position
x and time t , respectively. The parameters dS, dSU , dST , dR and dR̃ are the diffusion
coefficients of the above five subclasses. The constant Λ is the recruitment rate of the
population and μ is per capita natural death rate. Here we assume that each infected
individual with the sensitive strain will receive treatment with proportion f , and each
individual who received treatment will develop drug resistance with probability r .
The parameters βS and βR are the transmission coefficients of the untreated and drug-
resistant infected individuals. Due to antiviral treatment, the transmission rate by an
individual who received treatment will be reduced by the factor δ. Each individual
in I j subclasses can recover with the corresponding rate k j , j = SU , ST , R. All
parameters are assumed to be positive.

Since the first four equations of (1) are independent of the last one, it suffices to
consider the following reduced reaction–diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂S
∂t = dS

∂2S
∂x2

+ Λ − μS − [βS(ISU + δ IST ) + βR IR]S,

∂ ISU
∂t = dSU

∂2 ISU
∂x2

+ (1 − f )βS(ISU + δ IST )S − (kU + μ)ISU ,

∂ IST
∂t = dST

∂2 IST
∂x2

+ f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST ,

∂ IR
∂t = dR

∂2 IR
∂x2

+ [ f rβS(ISU + δ IST ) + βR IR]S − (kR + μ)IR .

(2)

3 Equilibria and Reproduction Numbers for the ReactionModel

When the spatial diffusion of population is omitted, the diffusive model (1) is reduced
to a reaction model. Sometimes it greatly affects the dynamics of its diffusion
model (Gardner 1984), so it is necessary to analyze the reaction model of model (1),
which is described by the following system of ODEs:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ − μS − [βS(ISU + δ IST ) + βR IR]S,

dISU
dt = (1 − f )βS(ISU + δ IST )S − (kU + μ)ISU ,

dIST
dt = f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST ,

dIR
dt = [ f rβS(ISU + δ IST ) + βR IR]S − (kR + μ)IR,
dR
dt = kU ISU + kT IST + kR IR − μR.

(3)
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In this section, we give a brief discussion about the existence of equilibria and repro-
duction numbers of the reaction model (3).

Denote by N (t) = S(t)+ ISU (t)+ IST (t)+ IR(t)+ R(t), the total quantity of the
population at time t . Note that N (t) satisfies the equation dN

dt = Λ − μN , which, for
any initial value N (t0) ≥ 0, has a general solution of the form

N (t) = 1
μ
[Λ − (Λ − μN (t0)) exp−μ(t−t0)].

Then, we have limt→+∞ N (t) = Λ
μ
. Through the above analysis, we know that the

biologically feasible set of the reaction model (3) is given by

Γ =
{

(S, ISU , IST , IR, R)|0 ≤ S, ISU , IST , IR, R, S + ISU + IST + IR + R ≤ Λ

μ

}

.

Obviously, the set Γ is positively invariant for the reaction model (3).
There is a key parameter in epidemiological models, the basic reproduction number,

commonly denoted by R0, defined as the expected number of secondary infections
generatedby a single infectious individual during the infectionperiod in an entirely sus-
ceptible population (Anderson et al. 1992; Diekmann andHeesterbeek 2000; Hethcote
2000).When certain controlmeasures (such as immunization, isolation, treatment, etc)
are introduced, we use the control reproduction number, denoted by RC , to determine
whether the epidemic can be contained (Anderson et al. 1992).

Similar to the calculation of the basic reproduction number, we can use the same
approach developed in Diekmann and Heesterbeek (2000) and Van den Driessche
and Watmough (2002) to calculate the control reproduction number of the reaction
model (3) with treatment terms. Note that the reaction model (3) always has a disease-
free equilibrium E0 = (S0, 0, 0, 0, 0), where S0 := Λ

μ
. The reaction model (3) has

three infected variables, namely ISU , IST and IR , linearizing the equations of these
three variables at the equilibrium E0(S0, 0, 0, 0, 0), the matrices F and V (corre-
sponding to the new infection and remaining transfer terms, respectively) are given
by

F =
⎛

⎝
(1 − f )βS S0 (1 − f )βSδS0 0
f (1 − r)βS S0 f (1 − r)βSδS0 0

f rβS S0 f rβSδS0 βRS0

⎞

⎠ , (4)

and

V =
⎛

⎝
kU + μ 0 0

0 kT + μ 0
0 0 kR + μ

⎞

⎠ . (5)

Thus, FV−1 =
(
F11 0
F21 F22

)

, where

F11 =
(

(1− f )βS S0

kU+μ
(1− f )βSδS0

kT +μ
f (1−r)βS S0

kU+μ
f (1−r)βSδS0

kT +μ

)

, F21 =
(

f rβS S0

kU+μ
f rβSδS0

kT +μ

)
, F22 = βRS0

kR + μ
.
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Let

RSU = βS

kU + μ
, RST = βSδ

kT + μ
, RR = βR

kR + μ
, (6)

then we have

RSC = ρ(F11) = (1 − f )βS S0

kU + μ
+ f (1 − r)βSδS0

kT + μ
= S0[(1− f )RSU+ f (1−r)RST ],

(7)
and

RRC = ρ(F22) = βRS0

kR + μ
= S0RR, (8)

where ρ(A) is the spectral radius of the nonnegative matrix A.
Therefore, the control reproduction number of the reaction model (3) is given by

RC = ρ(FV−1) = max{RSC , RRC }. (9)

The biological interpretations of these quantities are as follows. Note that RSC

represents the number of secondary sensitive cases that one individual infected with
the sensitive strain initiates in a completely susceptible population where antiviral
treatment is implemented, while RRC represents the number of secondary resistant
cases that one individual infected with the resistant strain initiates in a completely
susceptible population. The quantity RSC consists of two parts: (1 − f )S0RSU and
f (1 − r)S0RST , which represent the numbers of secondary sensitive cases produced
by a untreated and treated sensitive case during the period of infection in a susceptible
population, respectively. In the influenza context, the control reproduction number RC

tells us, on average, the total number of individuals that each single infected individual
will initiate to influenza virus during the period of infection in a completely susceptible
population.

The above quantities can be used to investigate the existence of equilibria of the
reaction model (3), so we present the following lemma.

Lemma 3.1 (1) The disease-free equilibrium E0 always exists;
(2) If RC < 1, there exists a unique disease-free equilibrium E0;
(3) If RC > 1, then in addition to the disease-free equilibrium E0, the reaction

model (3)has a boundary equilibrium Ê when RRC > 1, and an interior (positive)
equilibrium E∗ when RSC > 1 and RRC < RSC .

Proof The equilibria of the reaction model (3) are the solutions of the following equa-
tions: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Λ − μS − [βS(ISU + δ IST ) + βR IR]S = 0,
(1 − f )βS(ISU + δ IST )S − (kU + μ)ISU = 0,
f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST = 0,
[ f rβS(ISU + δ IST ) + βR IR] S − (kR + μ)IR = 0,
kU ISU + kT IST + kR IR − μR = 0.

(10)

In order to solve algebraic Eq. (10), we divide it into the following three cases.
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Case I: IR = 0. For this case, based on the setting of parameters and the fact that
S > 0, from the fourth equation of (10), we have ISU = IST = 0. Substituting
IR = ISU = IST = 0 into the first equation of (10), we can obtain S = Λ

μ
= S0.

Case II: IR > 0 and IST = 0. For this case, it follows from the third and fourth
equations of (10) that ISU = 0 and S = kR+μ

βR
= S0

RRC
:= Ŝ. Substituting ISU =

IST = 0 and S = Ŝ into (10), we get the following reduced equations

Λ − μŜ − βR IR Ŝ = 0, kR IR − μR = 0. (11)

By solving linear algebraic Eq. (11), we obtain IR = μS0
(
1− 1

RRC

)

kR+μ
:= ÎR and R =

kR S0
(
1− 1

RRC

)

kR+μ
:= R̂.

Case III: IR > 0 and IST > 0. For this case, we first deal with the second and third
equations of (10), which can be regarded as equations with unknown quantities ISU
and IST . In view of the fact that IST > 0, by Cramer’s Rule, we have

∣
∣
∣
∣
(1 − f )βS S − (kU + μ) (1 − f )βSδS

f (1 − r)βS S f (1 − r)βSδS − (kT + μ)

∣
∣
∣
∣ = 0.

Calculate the above determinant, we can get the value of S as follows

S = (kU + μ)(kT + μ)

(kT + μ)(1 − f )βS + (kU + μ) f (1 − r)βSδ
= S0

RSC
:= S∗.

Substituting S = S∗ into (10), after some algebraic computations, we can solve the
remaining four unknown quantities of Eq. (10) with S = S∗ as follows

ISU = μ(RSC−1)
βS(1+δa)+βRb

:= I ∗
SU , IST = aI ∗

SU := I ∗
ST ,

IR = bI ∗
SU := I ∗

R, R = kU I ∗
SU+kT I ∗

ST +kR I ∗
R

μ
:= R∗,

where a = f (1−r)(kU+μ)
(1− f )(kT +μ)

and b = f r(kU+μ)

(1− f )(kR+μ)(1− RRC
RSC

)
.

From the above discussions, it follows that (10) has three possible nonnegative
solutions. Accordingly, the reaction model (3) has three possible equilibria E0 =
(S0, 0, 0, 0, 0), Ê = (Ŝ, 0, 0, ÎR, R̂) and E∗ = (S∗, I ∗

SU , I ∗
ST , I ∗

R, R∗). Based on the

expression of ÎR in Case II, we know that ÎR > 0 if and only if RRC > 1. Under
the condition I ∗

SU > 0, from the expression of I ∗
R in Case III, we can easily see that

I ∗
R > 0 if and only if RRC < RSC , which implies b > 0. Return to the expression of
I ∗
SU , we can similarly determine that I ∗

SU > 0 if and only if RSC > 1. When RC < 1,

i.e., RSC < 1 and RRC < 1, it follows that ÎR < 0 and I ∗
SU < 0. Thus, when RC < 1,

the reaction model (3) has a unique disease-free equilibrium E0. When RRC > 1, it
follows that the boundary equilibrium Ê exists. When RRC < RSC and RSC > 1, the
interior (positive) equilibrium E∗ exists. No matter how RSC and RRC are valued, the
disease-free equilibrium E0 always exists. The proof is completed. ��
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Table 1 Existence of equilibria
on the values of RSC , RRC and
RC

Parameters Equilibria
E0 Ê E∗

RC < 1 Y N N

RSC > 1 > RRC Y N Y

RSC > RRC > 1 Y Y Y

RRC > 1 > RSC Y Y N

RRC > RSC > 1 Y Y N

Remark: Y Exists, N Does not exist

In Table 1, we present a diagram to clearly show the relationship between the
existence of equilibria and the values of the parameters RSC , RRC and RC .

4 Semi-, Strong and Persistent TravelingWaves for the Diffusive
Model

Traveling wave is one of the elementary notions in the study of reaction–diffusion
systems, the existence of which determines the long-term behavior of other solutions
of the systems (Ruan and Xiao 2004; Weng and Zhao 2006; Huang 2016; Zhang
2017). In epidemiology, the existence and nonexistence of nontrivial traveling waves
indicate whether an infectious disease could persist as a wave front of infection that
travels geographically across vast distances. Therefore, the study of traveling waves
is of great significance to the prevention and control of influenza.

More specifically, we consider a solution (S(x, t), ISU (x, t), IST (x, t), IR(x, t))
of the diffusive model (2), with the following form

S(x, t) = S(ξ), Ii (x, t) = Ii (ξ), ξ = x + ct, (12)

where i = SU , ST , R, and c > 0 is the wave speed. A solution having the form (12) is
called a travelingwave solution (or referred to as travelingwave) if S(ξ) and Ii (ξ), i =
SU , ST , R, are defined for all ξ ∈ R and are nonnegative functions.

For the convenience of discussion below,wefirst give several definitions of different
kinds of traveling waves as follows (Huang 2016; Zhang et al. 2016; Ai et al. 2017).

Definition 4.1 (Huang 2016; Zhang et al. 2016) A traveling wave (S(ξ), ISU (ξ),

IST (ξ), IR(ξ)) is called a semi-traveling wave connected to the disease-free equi-
librium E0 (for convenience, here we still use the same notation E0 to represent the
equilibrium of system (2)) if it satisfies the boundary condition

lim
ξ→−∞(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) = E0(S0, 0, 0, 0). (13)
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Definition 4.2 (Ai et al. 2017) A traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is
strong if it satisfies

(S(−∞), ISU (−∞), IST (−∞), IR(−∞)) = E0,

(S(+∞), ISU (+∞), IST (+∞), IR(+∞)) = Ê/E∗,

where U (±∞) = limξ→±∞ U (ξ).

Definition 4.3 (Ai et al. 2017) A traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is per-
sistent if there exist two positive constants M1 and M2 such that

(S(−∞), ISU (−∞), IST (−∞), IR(−∞)) = E0,

M1 < lim inf
ξ→+∞ S(ξ), lim sup

ξ→+∞
S(ξ) < M2,

M1 < lim inf
ξ→+∞ Ii (ξ), lim sup

ξ→+∞
Ii (ξ) < M2, i = SU , ST , R.

Next we discuss the conditions for the existence of three kinds of traveling waves start-
ing from the disease-free equilibrium E0, i.e., semi-traveling waves, strong traveling
waves and persistent traveling waves.

4.1 Semi-travelingWaves

In this subsection, to prove the existence of semi-traveling waves for the diffusive
model (2), we first introduce an auxiliary system, the technique of which has been
widely used (see Zhang and Wang 2014; Zhang 2017; Zhang et al. 2016; Ma 2007).
Then, by linearizing the wave equations of the diffusive model (2) at disease-free
equilibrium E0, we construct a pair of upper–lower solutions for the auxiliary system.
Finally, we use Schauder’s fixed-point theorem to establish the existence of semi-
traveling waves for the auxiliary system. The detailed proof process is shown in
Appendix A.

Now we state our main results about the auxiliary system as follows.

Lemma 4.4 If RC > 1, then there exists c∗ > 0 , defined by Lemma A.1, such
that for any c > c∗, the auxiliary system (35) admits a nonnegative bounded
semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfying the asymptotic bound-
ary condition (13).

Proof We conclude that there exists a fixed point of the operator G, denoted by
Sol = (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) ∈ L, by Schauder’s fixed-point theorem and
LemmasA.6, A.7 andA.8, which is equivalent to say that Sol is a nonnegative bounded
traveling wave of the auxiliary system (35).

We can further show that Sol satisfies the asymptotic boundary condition (13). It is
easy to see that (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) → E0(S0, 0, 0, 0)when ξ → −∞ due
to the definition of upper–lower solutions in (39) andLemmasA.3,A.4 andA.5. So, the
nonnegative bounded travelingwave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a semi-traveling
wave satisfying the asymptotic boundary condition (13). The proof is completed. ��
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Based on Lemma 4.4, we give the conditions for the existence of semi-traveling
waves for the diffusive model (2).

Theorem 4.5 If RC > 1, then there exists c∗ > 0 (defined by Lemma A.1) such
that for any c > c∗, the diffusive model (2) admits a positive semi-traveling wave
(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfying the asymptotic boundary condition (13) and
S(ξ) < S0 for any ξ ∈ R. Furthermore,

lim
ξ→−∞ Ii (ξ)e−λcξ = κi , lim

ξ→−∞ I ′
i (ξ)e−λcξ = λcκi , i = SU , ST , R, (14)

where κSU = κ2, κST = κ3, κR = κ4.

Proof Set Υ = Υn := 1
n . Obviously, the sequence {Υn} satisfies 0 < Υi+1 < Υi < 1

and Υn → 0 as n → +∞. By Lemma 4.4, there is a nonnegative semi-traveling wave

Φn(ξ) = (ϕ1n(ξ), ϕ2n(ξ), ϕ3n(ξ), ϕ4n(ξ)) ∈ L

of the auxiliary system (35)withΥ = Υn satisfying the asymptotic boundary condition

(ϕ1n(−∞), ϕ2n(−∞), ϕ3n(−∞), ϕ4n(−∞)) = E0(S0, 0, 0, 0).

From the proof of Lemma A.8, we know that {|ϕ′
in(ξ)|} are uniformly bounded for

i = 1, 2, 3, 4 sinceΦn(ξ) ∈ L is a fixed point of the operatorG. In addition, {|ϕ′′
in(ξ)|}

and {|ϕ′′′
in(ξ)|} are also uniformly bounded since Φn(ξ) is the solution of the auxiliary

system (35) with Υ = Υn . Therefore, {Φn(ξ)}, {Φ ′
n(ξ)}, {Φ ′′

n (ξ)} are equicontinuous
and uniformly bounded in R. Then, Arzelà–Ascoli theorem implies that there exists
a subsequence {Υnk } such that Φnk (ξ) → Ψ (ξ), Φ ′

nk (ξ) → Ψ ′(ξ),Φ ′′
nk (ξ) → Ψ ′′(ξ)

uniformly in any bounded closed interval when k → +∞, and pointwise onR, where
Ψ (ξ) = (ψ1(ξ), ψ2(ξ), ψ3(ξ), ψ4(ξ)).

Since Φnk (ξ) is the solution of the auxiliary system (35), and let Υnk → 0, we
obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cψ ′
1 = dSψ ′′

1 + Λ − μψ1 − [βS(ψ2 + δψ3) + βRψ4]ψ1,

cψ ′
2 = dSUψ ′′

2 + (1 − f )βS(ψ2 + δψ3)ψ1 − (kU + μ)ψ2,

cψ ′
3 = dSTψ ′′

3 + f (1 − r)βS(ψ2 + δψ3)ψ1 − (kT + μ)ψ3,

cψ ′
4 = dRψ ′′

4 + [ f rβS(ψ2 + δψ3) + βRψ4]ψ1 − (kR + μ)ψ4.

Therefore, Ψ (ξ) is a nonnegative semi-traveling wave of the diffusive model (2) sat-
isfying the asymptotic boundary condition (13).

Next,we show thatΨ (ξ) is a positive semi-travelingwave of the diffusivemodel (2),
i.e., ψi (ξ) > 0, i = S, SU , ST , R for any ξ ∈ R.

Suppose that (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) ∈ L is a nonnegative semi-traveling
wave of the diffusive model (2). For fixed c > c∗ and Υ ∈ (0, 1], then ξ1, ξ2 and ξ3
defined in LemmasA.3, A.4 andA.5 can be chosen such that they do not depend on the
choice of Υ . So, by the definition of the profile set L in (44), we know that there exists
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a constant ξ0 ≤ ξ2 such that S(ξ) > 0 for any ξ < ξ0. Now we show that S(ξ) > 0
for any ξ ∈ R. On the contrary, we suppose that there exists ξ∗ such that S(ξ∗) = 0.
Since S(ξ) ≥ 0 for any ξ ∈ R, S(ξ∗) is a minimum, implying that S′(ξ∗) = 0 and
S′′(ξ∗) ≥ 0. Employing the first equation of system (36) yields dSS′′(ξ∗) + Λ = 0,
which is a contradiction. Thus, we have S(ξ) > 0 for any ξ ∈ R.

We then claim that ISU (ξ) > 0 for any ξ ∈ R. In fact, there exists ξ̃0 ≤ ξ3 such
that ISU (ξ) > 0 when ξ < ξ̃0. If there exists ξ̃∗ such that ISU (̃ξ∗) = 0, then there
exist constants a1, a2 such that a1 < ξ3 < a2 and ξ̃∗ ∈ (a1, a2). It implies that ISU (ξ)

achieves its minimum in (a1, a2) for any ξ ∈ [a1, a2]. From the second equation of
system (36), we know that ISU (ξ) satisfies, for any ξ ∈ [a1, a2],

−dSU I ′′
SU (ξ) + cI ′

SU (ξ) + (kU + μ)ISU (ξ) = (1 − f )βS(ISU (ξ) + δ IST (ξ))S(ξ) ≥ 0.

By the elliptic strongmaximum principle [see Theorem 3.3.6 in Gilbarg and Trudinger
2001], it follows that ISU (ξ) ≡ 0 for ξ ∈ [a1, a2]. On the other hand, by Lemma A.3,
we have ISU (ξ) > 0 for ξ ∈ [a1, ξ3), a contradiction. Similarly, by the elliptic strong
maximum principle, it can be shown Ii (ξ) > 0, i = ST , R for any ξ ∈ R.

Based on the above arguments, we easily obtain S(ξ) < S0 for any ξ ∈ R. Other-
wise, there exists ξ̂∗ such that

dSS
′′(̂ξ∗) = [βS(ISU (̂ξ∗) + δ IST (̂ξ∗)) + βR IR (̂ξ∗)]S(̂ξ∗) > 0,

a contradiction due to S′′(̂ξ∗) ≤ 0.
Wefinally show that the positive semi-travelingwave (S(ξ), ISU (ξ), IST (ξ), IR(ξ))

of the diffusive model (2) satisfies (14).
Let (Sn(ξ), ISUn(ξ), IST n(ξ), IRn(ξ)) ∈ Lbe a nonnegative semi-travelingwave of

the diffusive model (35) with Υ = Υn in Lemma 4.4. Let κSU = κ2, κST = κ3, κR =
κ4. Since the selection of κi , i = 2, 3, 4 is independent on Υ , by the definition of
upper–lower solutions of the diffusive model (35), we have

κ j e
λcξ (1 − Qeεξ ) ≤ I jn(ξ) ≤ I jn(ξ) ≤ Ī jn(ξ) ≤ κ j e

λcξ ,

which follows that limξ→−∞ I jn(ξ)e−λcξ = κ j , j = SU , ST , R.

In addition, note that (Sn(ξ), ISUn(ξ), IST n(ξ), IRn(ξ)) ∈ L is a fixed point of the
operator Gn . Applying L’Höspital rule to the maps Gin, i = S, SU , ST , R, it is easy
to see that S′

n(−∞) = 0 and I ′
jn(−∞) = 0, j = SU , ST , R. Integrating both sides

of the second equation of the diffusive model (35) from −∞ to ξ gives

dSU I ′
SUn(ξ) = cISUn(ξ) − (1 − f )βS

∫ ξ

−∞
(ISUn(s) + δ IST n(s))Sn(s)ds

+ (kU + μ)

∫ ξ

−∞
ISUn(s)ds + Υn

∫ ξ

−∞
I 2SUn(s)ds.
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Recall that Sn(−∞) = S0, S′
n(−∞) = 0, I jn(−∞) = 0, I ′

jn(−∞) = 0 and

lim
ξ→−∞ I jn(ξ)e−λcξ = κ j , j = SU , ST , R,

then we have

lim
ξ→−∞ I ′

SUn(ξ)e−λcξ

= lim
ξ→−∞

1

dSU

[

ce−λcξ ISUn(ξ) − (1 − f )βSe
−λcξ

∫ ξ

−∞
(ISUn(s) + δ ISTn(s))Sn(s)ds

]

+ lim
ξ→−∞

1

dSU

[

(kU + μ)e−λcξ

∫ ξ

−∞
ISUn(s)ds + Υne

−λcξ

∫ ξ

−∞
I 2SUn(s)ds

]

= cλcκSU − (1 − f )βS(κSU + δκST )S0 + (kU + μ)κSU

dSUλc
.

By the first equation of the eigenvalue Eq. (38), we know

cλcκSU − (1 − f )βS(κSU + δκST )S0 + (kU + μ)κSU

dSUλc
= λcκSU .

So, limξ→−∞ I ′
SUn(ξ)e−λcξ = λcκSU .

Based on the previous discussion in this lemma, we suppose that there exists a
subsequence {nk} such that

Snk (ξ) → S(ξ), I jnk (ξ) → I j (ξ), j = SU , ST , R,

here (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a positive semi-traveling wave of diffusive
model (2) satisfying the asymptotic boundary condition (13). Applying the limiting
arguments yields

lim
ξ→−∞ I ′

SU (ξ)e−λcξ = lim
k→+∞ lim

ξ→−∞ I ′
SUnk (ξ)e−λcξ = λcκSU .

Similarly, we can also demonstrate limξ→−∞ I ′
j (ξ)e−λcξ = λcκ j , j = ST , R. This

completes the proof of the theorem. ��
In Theorem 4.5, we establish the existence of positive semi-traveling waves starting

from the disease-free equilibrium E0 for the diffusivemodel (2),where the disease-free
equilibrium E0 is the population state before the transmission of influenza.Meanwhile,
its presence means that the influenza will spread among the crowd. Different from
reaction model (3), the control reproduction number RC is not the only factor that
determines whether influenza spreads in space. If influenza spreads among population,
except for RC > 1, the wave speed c should be greater than the critical wave speed c∗,
which depends on the diffusion coefficients of three infected subclasses. This implies
that the speed of groupmovement affects the likelihood of a global influenza outbreak.
In terms of influenza control, it can reduce the scale of influenza outbreak by restricting
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individual travel and implementing home quarantine. Equation (14) gives the growth
rates of different infection strains in the initial stage, which is favorable for us to make
reasonable predictions and rationally arrange medical resources.

4.2 Strong TravelingWaves

By Theorem 4.5, we have obtained the conditions that positive semi-traveling waves
exist. In this subsection, we will further study under what conditions the final state of
semi-traveling waves will tend to the boundary equilibrium Ê(Ŝ, 0, 0, ÎR).

Theorem 4.6 Under the condition of RC > 1, if RSU ≤ RR and RST ≤ RR (defined
in (6)), then for any c > c∗ (c∗ > 0 is defined by Lemma A.1), the diffusive model (2)
has a strong traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) connecting E0(S0, 0, 0, 0)
and Ê(Ŝ, 0, 0, ÎR).

Proof From Theorem 4.5, we know that when RC > 1, there exists c∗ > 0 such
that for any c > c∗, the diffusive model (2) admits a positive semi-traveling wave
(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfying

(S(−∞), ISU (−∞), IST (−∞), IR(−∞)) = E0(S0, 0, 0, 0)

with S(ξ) < S0 for any ξ ∈ R.
To complete the proof, it is sufficient to show

(S(+∞), ISU (+∞), IST (+∞), IR(+∞)) = Ê(Ŝ, 0, 0, ÎR).

We first claim that S′(ξ)
S(ξ)

and
I ′
j (ξ)

I j (ξ)
, j = SU , ST , R are bounded for any ξ ∈ R. To

get the result, we rewrite wave Eq. (36) of the diffusive model (2) as follows

⎛

⎜
⎜
⎝

dS 0 0 0
0 dSU 0 0
0 0 dST 0
0 0 0 dR

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

S′′
I ′′
SU
I ′′
ST
I ′′
R

⎞

⎟
⎟
⎠ − c

⎛

⎜
⎜
⎝

S′
I ′
SU
I ′
ST
I ′
R

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎝

b11(ξ) 0 0 0
b21(ξ) b22(ξ) 0 0
b31(ξ) 0 b33(ξ) 0
b41(ξ) 0 0 b44(ξ)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

S
ISU
IST
IR

⎞

⎟
⎟
⎠ = 0, (15)

where

b11(ξ) = Λ

S(ξ)
− μ − [βS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)],

b21(ξ) = (1 − f )βS(ISU (ξ) + δ IST (ξ)), b22(ξ) = −(kU + μ),

b31(ξ) = f (1 − r)βS(ISU (ξ) + δ IST (ξ)), b33(ξ) = −(kT + μ),

b41(ξ) = f rβS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ), b44(ξ) = −(kR + μ).
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By Lemmas A.3, A.4 and A.5, it is not difficult to see that the functions bk1(ξ), bkk(ξ),
for k = 1, 2, 3, 4 are bounded. Moreover, bk1(ξ) > 0, for k = 2, 3, 4 due to the fact
S(ξ) > 0 and I j (ξ) > 0, j = SU , ST , R for any ξ ∈ R. We can apply Harnack
inequality (see Theorem 1.1 in Chen and Zhao 1997) for system (15), and it follows
that there exists a constant D > 0 such that for any ξ ∈ R, we have

max[s−1,s+1] S(ξ) ≤ D min[s−1,s+1] S(ξ),

max[s−1,s+1] I j (ξ) ≤ D min[s−1,s+1] I j (ξ), j = SU , ST , R,

where D depends only on the coefficients of system (15) and the length of interval
[s−1, s+1]. As a consequence, we can deduce that there exists some constant D1 > 0
such that

∣
∣
∣
∣
S′(ξ)

S(ξ)

∣
∣
∣
∣ +

∑

j=SU ,ST ,R

∣
∣
∣
∣
∣

I ′
j (ξ)

I j (ξ)

∣
∣
∣
∣
∣
≤ D1, ξ ∈ R.

Set VS(ξ) = S′(ξ), Vj (ξ) = I ′
j (ξ), j = SU , ST , R, the wave Eq. (36) of the

diffusive model (2) can be transformed into the following equivalent system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′ = VS,

dSV ′
S = cVS − Λ + μS + [βS(ISU + δ IST ) + βR IR]S,

I ′
SU = VSU ,

dSUV ′
SU = cVSU − (1 − f )βS(ISU + δ IST )S + (kU + μ)ISU ,

I ′
ST = VST ,

dST V ′
ST = cVST − f (1 − r)βS(ISU + δ IST )S + (kT + μ)IST ,

I ′
R = VR,

dRV ′
R = cVR − [ f rβS(ISU + δ IST ) + βR IR]S + (kR + μ)IR .

(16)

Finally, we complete the proof of the lemma by introducing a Lyapunov functional,
determining that the positive semi-travelingwave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of the
diffusivemodel (2) converges to the boundary equilibrium Ê(Ŝ, 0, 0, ÎR) as ξ → +∞.
Equivalently, it corresponds to the convergence of the solution

(S(ξ), VS(ξ), ISU (ξ), VSU (ξ), IST (ξ), VST (ξ), IR(ξ), VR(ξ))

of system (16) to Ê(Ŝ, 0, 0, 0, 0, 0, ÎR, 0). [For the convenience, we still use the same
notation Ê to denote the equilibrium of system (16).] To this end, we consider the
following Lyapunov functional

L(ξ) := LS(ξ) + LSU (ξ) + LST (ξ) + LR(ξ),
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where

LS(ξ) = cS − dSVS + ŜdSVS

S
− c

∫ S

Ŝ

Ŝ

η
dη,

LSU (ξ) = cISU − dSUVSU ,

LST (ξ) = cIST − dST VST ,

LR(ξ) = cIR − dRVR + ÎRdRVR

IR
− c

∫ IR

ÎR

ÎR
η
dη.

Then, through a simple calculation, the derivative of LS(ξ) along the solution of
system (16) satisfies

dLS(ξ)

dξ
= cVS(ξ) − dSV

′
S(ξ) + dS Ŝ(V ′

S(ξ)S(ξ) − VS(ξ)S′(ξ))

S2(ξ)
− cŜ

Ŝ

S(ξ)

= [cVS(ξ) − dSV
′
S(ξ)] S(ξ) − Ŝ

S(ξ)
− dS ŜV 2

S (ξ)

S2(ξ)

≤ [cVS(ξ) − dSV
′
S(ξ)] S(ξ) − Ŝ

S(ξ)
.

Similarly, we can calculate

dLSU (ξ)

dξ
= cVSU (ξ) − dSUV

′
SU (ξ),

dLST (ξ)

dξ
= cVST (ξ) − dST V

′
ST (ξ),

and dLR(ξ)
dξ ≤ [cVR(ξ) − dRV ′

R(ξ)] IR(ξ)− ÎR
IR(ξ)

. Therefore, we have

dL(ξ)

dξ
= LS(ξ)

dξ
+ LSU (ξ)

dξ
+ LST (ξ)

dξ
+ LR(ξ)

dξ

≤ [cVS(ξ) − dSV
′
S(ξ)] S(ξ) − Ŝ

S(ξ)
+ [cVSU (ξ) − dSUV

′
SU (ξ)]

+ [cVST (ξ) − dST V
′
ST (ξ)] + [cVR(ξ) − dRV

′
R(ξ)] IR(ξ) − ÎR

IR(ξ)
.

By system (16), we can further get

dL(ξ)

dξ

≤ {Λ − μS(ξ) − [βS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)]S(ξ)} S(ξ) − Ŝ

S(ξ)

+ [(1 − f )βS(ISU (ξ) + δ IST (ξ))S(ξ) − (kU + μ)ISU (ξ)]

123



  121 Page 16 of 45 G. Chen et al.

+ [ f (1 − r)βS(ISU (ξ) + δ IST (ξ))S(ξ) − (kT + μ)IST (ξ)]

+ {[ f rβS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)]S(ξ) − (kR + μ)IR(ξ)} IR(ξ) − ÎR
IR(ξ)

.

Together with the following equilibrium conditions Λ = μŜ + βR Ŝ ÎR and kR + μ =
βR Ŝ, we have

dL(ξ)

dξ
≤

{
μŜ + βR Ŝ ÎR − μS(ξ) − [βS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)] S(ξ)

} S(ξ) − Ŝ

S(ξ)

+ [(1 − f )βS(ISU (ξ) + δ IST (ξ))S(ξ) − (kU + μ)ISU (ξ)]

+ [ f (1 − r)βS(ISU (ξ) + δ IST (ξ))S(ξ) − (kT + μ)IST (ξ)]

+
{
[ f rβS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)] S(ξ) − βR Ŝ IR(ξ)

} IR(ξ) − ÎR
IR(ξ)

= −μ
(S(ξ) − Ŝ)2

S(ξ)
+ βR Ŝ ÎR

(

2 − Ŝ

S(ξ)
− S(ξ)

Ŝ

)

+ βS(ISU (ξ) + δ IST (ξ))Ŝ − (kU + μ)ISU (ξ) − (kT + μ)IST (ξ)

− f rβS(ISU (ξ) + δ IST (ξ))S(ξ) ÎR
IR(ξ)

≤ βR Ŝ ÎR

(

2 − Ŝ

S(ξ)
− S(ξ)

Ŝ

)

+ (kU + μ)ISU (ξ)

(
βS Ŝ

kU + μ
− 1

)

+ (kT + μ)IST (ξ)

(
βSδ Ŝ

kT + μ
− 1

)

.

Let Θ(x) := 1 − x + ln x , for x ∈ (0,+∞). Using the fact Ŝ = S0
RRC

= 1
RR

and the
property that Θ(x) ≤ 0 with Θ(x) = 0 if and only if x = 1 gives

dL(ξ)

dξ
≤ βR Ŝ ÎR

[

Θ

(
Ŝ

S(ξ)

)

+ Θ

(
S(ξ)

Ŝ

)]

+ (kU + μ)ISU (ξ)

(
RSU

RR
− 1

)

+ (kT + μ)IST (ξ)

(
RST

RR
− 1

)

≤ (kU + μ)ISU (ξ)

(
RSU

RR
− 1

)

+ (kT + μ)IST (ξ)

(
RST

RR
− 1

)

.

It is obvious that dL(ξ)
dξ ≤ 0 holds for all ξ ∈ R when RSU ≤ RR and RST ≤ RR ,

implying that L(ξ) is decreasing. Furthermore, dL(ξ)
dξ = 0 if and only if

(S, VS, ISU , VSU , IST , VST , IR, VR) = Ê(Ŝ, 0, 0, 0, 0, 0, ÎR, 0).
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Finally, LaSalle’s invariance principle (1976) implies

(S(ξ), VS(ξ), ISU (ξ), VSU (ξ), IST (ξ), VST (ξ), IR(ξ), VR(ξ)) → Ê(Ŝ, 0, 0, 0, 0, 0, ÎR, 0)

as ξ → +∞. That is, (S(+∞), ISU (+∞), IST (+∞), IR(+∞)) = Ê(Ŝ, 0, 0, ÎR).
The proof of the theorem is completed. ��

In Theorem 4.6, we obtain the conditions for strong traveling waves connecting
the disease-free equilibrium E0 and boundary equilibrium Ê . From RSU ≤ RR and
RST ≤ RR , we can easily derive that RSC < RRC . So we address the connection
problem between two equilibria E0 and Ê in the later two cases of Table 1 in Sect. 3.
The existence of this strong traveling wave shows that the spread of influenza is
successful, which describes the influenza propagation into the susceptible individuals
from an initial disease-free equilibrium to the final boundary equilibrium with only
resistant strain. From RSU ≤ RR and RST ≤ RR , we see that it is unfavorable for
the formation of sensitive strains in the competition of three strains, leading to the
extinction of sensitive strains. In this case, according to the mathematical expression
of ÎR , the resistant strains can be significantly reduced by improving the cure rate
of drug-resistant individuals. In order to prevent the large-scale spread of resistant
strains, we should reasonably restrict the flow of drug-resistant individuals.

4.3 Persistent TravelingWaves

Wecaneasily show that the positive semi-travelingwave (S(ξ), ISU (ξ), IST (ξ), IR(ξ))

of the diffusive model (2) in Theorem 4.5 satisfies

(S(ξ), ISU (ξ), IST (ξ), IR(ξ)) ∈ L,

which implies lim supξ→+∞ S(ξ) ≤ S0, lim supξ→+∞ Ii (ξ) ≤ κi K ∗, i =
SU , ST , R, where κSU = κ2, κST = κ3, κR = κ4.

To prove that the positive semi-traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is
persistent, we only need to prove

lim inf
ξ→+∞ S(ξ) > 0, lim inf

ξ→+∞ Ii (ξ) > 0, i = SU , ST , R.

For this, we will apply the uniform persistence Theorem 4.5 in Thieme (1993) and
restate it as Lemma B.1. To use Lemma B.1, we define

X1 = {(S, VS, ISU , VSU , IST , VST , IR, VR) : (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a

positive semi-traveling of the diffusive model (2) in Theorem4.5

andVS(ξ) = S′(ξ), Vj (ξ) = I ′
j (ξ), j = SU , ST , R},

X2 = {(S, VS, 0, 0, 0, 0, IR, VR) : 0 ≤ S ≤ S0, |VS| ≤ D1|S|,
0 ≤ IR ≤ κ4K

∗, |VR | ≤ D1|IR |},
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where κ4 and K ∗ have been determined in Lemmas A.1 and A.3 and D1 is a positive
constant that is just determined in Theorem 4.6.

By establishing Lemma B.2, we get the conclusion that Ws(E0) ∩ X1 = ∅, which
is to prepare for the proof of the following theorem.

Theorem 4.7 If RSC > 1 > RRC [defined in (7) and (8)], and c > max{c∗, c̃∗}
(c∗ > 0 is defined by Lemma A.1, c̃∗ is defined by Lemma B.2) hold. The diffusive
model (2) admits a persistent traveling wave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) satisfying
the asymptotic boundary condition (13).

Proof Assume that, when ξi → +∞ (as i → +∞),

(S(ξi ), VS(ξi ), ISU (ξi ), VSU (ξi ), IST (ξi ), VST (ξi ), IR(ξi ), VR(ξi ))

−→ (S∗, V ∗
S , I ∗

SU , V ∗
SU , I ∗

ST , V ∗
ST , I ∗

R, V ∗
R).

We first prove several results as follows:

(a) I ∗
SU = 0 ⇒ V ∗

SU = I ∗
ST = V ∗

ST = 0;

In view of the fact that I ∗
SU = 0 and VSU = I

′
SU , if V

∗
SU �= 0, by the Taylor formula,

we know there exists ξ∗ such that ISU (ξ∗) < 0, a contradiction. In addition, we
assume that limξ→+∞ I

′′
SU (ξ) exists, then we can show that limξ→+∞ I

′′
SU (ξ) ≥ 0.

By selecting a subsequence of ξi , denoted by ξi j , we directly give the Taylor expansion
of ISU (ξi j ) at ξ

0
i j
:

ISU (ξi j ) = ISU (ξ0i j )+ I
′
SU (ξ0i j )(ξi j −ξ0i j )+ I

′′
SU (ξ0i j )(ξi j −ξ0i j )

2+o((ξi j −ξ0i j )
2). (17)

Let ξ0i j
→ +∞, implying that ISU (ξ0i j

) → 0 and I
′
SU (ξ0i j

) → 0. Combining with

ISU (ξi j ) ≥ 0, we can get limξ→+∞ I
′′
SU (ξ) ≥ 0 from (17).

Now go back to the equation of ISU in wave Eq. (36) of the diffusive model (2)

cI ′
SU (ξ) = dSU I ′′

SU (ξ) + (1 − f )βS(ISU (ξ) + δ IST (ξ))S − (kU + μ)ISU (ξ). (18)

Take the limit on both sides of equality (18), in order to make the limiting equation
still hold, we have I

′′
SU (+∞) = 0 and IST (+∞) = I ∗

ST = 0. Similar to the proof of
V ∗
SU = 0, we can show V ∗

ST = 0.
Through similar discussions, we can also prove the following results (b) and (c).

(b) I ∗
ST = 0 ⇒ V ∗

ST = I ∗
SU = V ∗

SU = 0;
(c) I ∗

R = 0 ⇒ V ∗
R = I ∗

SU = V ∗
SU = I ∗

ST = V ∗
ST = 0.

By (a), (b) and (c), we can find that I ∗
SU = 0 ⇔ I ∗

ST = 0, I ∗
R = 0 ⇒ I ∗

SU = I ∗
ST = 0,

while I ∗
SU = I ∗

ST = 0 does not imply I ∗
R = 0. So we only need to show that X2

excludes X1, if we want to prove that S(ξ), ISU (ξ), IST (ξ) and IR(ξ) are persistent.
Now we study the dynamics of system (16) in X2. Equivalently, we consider the
subsystem of system (16)

{
S′ = VS, dSV ′

S = cVS − Λ + μS + βR IRS,

I ′
R = VR, dRV ′

R = cVR − βR IRS + (kR + μ)IR .
(19)
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If RRC < 1, system (19) has a unique equilibrium Ē0(S0, 0, 0, 0). Nowwe consider
the Jacobian matrix of (19) at Ē0, which has the form

J̄ =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
μ
dS

c
dS

βR S0

dS
0

0 0 0 1

0 0 kR+μ−βR S0

dI R
c

dI R

⎞

⎟
⎟
⎟
⎠

.

Thecharacteristic equationof J̄ is (dSλ2−cλ−μ)
[
dRλ2 − cλ + βRS0 − (kR + μ)

] =
0. It is easy to calculate the eigenvalues of J̄ as follows:

λ±
S = c ± √

c2 + 4dSμ

2dS
, λ±

R = c ± √
c2 + 4dR(kR + μ)(1 − RRC )

2dR
.

When RRC < 1 and c > 0, the real part of all eigenvalues of J̄ is nonzero, by the Hopf
bifurcation theorem (Marsden and McCracken 1976), we know there is no periodic
solution around Ē0. Obviously, there is no heteroclinic orbit connecting Ē0 for any
c > 0 as RRC < 1.

Finally, we need to rule out the possibility of a homoclinic connection at Ē0. For
the non-degenerated critical point Ē0, if there is a homoclinic orbit l connecting Ē0,
then we have l ⊆ WU (Ē0) ∩ WS(Ē0). The eigenvectors of matrix J̄ corresponding
to eigenvalues λ±

i , i = S, R are

h+
S = (1, λ+

S , 0, 0)T , h+
R = (βRS

0, λ+
RβRS

0, PS(λ
+
R ), λ+

R PS(λ
+
R ))T ,

h−
S = (1, λ−

S , 0, 0)T , h−
R = (βRS

0, λ−
RβRS

0, PS(λ
−
R ), λ−

R PS(λ
−
R ))T ,

where PS(λ) = dSλ2 − cλ − μ.
The unstable subspace of the linearized system of (19) at Ē0 is spanned by h+

S
and h+

R , and the stable subspace is spanned by h−
S and h−

R . If there is a homoclinic
connection at Ē0, then l − Ē0 �= ∅, we suppose that there is some point P0 ∈ l − Ē0

such that P0 ∈ WU (Ē0) ∩ WS(Ē0). Through simple calculations, together with
h+
S h

−
S < 0 and h+

Rh
−
R < 0, we can show P0 = Ē0, a contradiction. So there do not

exist homoclinic orbits in X2 for system (19).
The above discussions imply that the sets Ω2 and M in Lemma B.1 are given

by Ω2 = E0 = M . Obviously, M is an acyclic isolated covering of Ω2. Applying
Lemmas B.1 and B.2 completes the proof of the theorem. ��

In Theorem 4.7, we only give the existence of persistent traveling waves starting
from the disease-free equilibrium since it is difficult to construct a Lyapunov functional
or a pair of closed upper–lower solutionswhich converge to the positive equilibrium E∗
as ξ → +∞. Althoughwe can determine the components of the final state of persistent
travelingwaves are positive, it does notmean thefinal state of persistent travelingwaves
is E∗. At the end of influenza spread, susceptible individuals and infected individuals
with sensitive and resistant strains may coexist at constant levels (E∗) or periodically
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fluctuating state. However, Theorem 4.7 can still tell us the propagation speed of
infection into susceptible individuals.

Biologically, it is indeedof public health importance, indicating that if few infectives
are introduced into a completely susceptible population, then the infected individuals
with sensitive and resistant strains would not vanish at the end of the wavefront.
The condition RSC > 1 > RRC implies that sensitive strains are more competitive
than resistant strain. During the proof process, we find that two types of sensitive
strains cannot disappear alone; moreover, the extinction of resistant strain must be
accompanied by the extinction of sensitive strains.

5 Nonexistence of Semi-travelingWaves and Estimation of Minimal
Wave Speed for the Diffusive Model

Now we show the nonexistence of semi-traveling waves for the diffusive model (2)
in the following three cases: (I) RC < 1 and c > 0; (II) RRC > 1, RSC �= 1 and
0 < c < c∗

1; and (III) RSC > 1, RRC �= 1 and 0 < c < c∗
2. In addition, we also give

an estimation of minimal wave speed.

5.1 Nonexistence of Semi-travelingWaves

5.1.1 Case I: RC < 1 and c > 0

Theorem 5.1 Suppose that RC < 1, then for any c > 0, the diffusive model (2) has
no nonnegative bounded semi-traveling waves (nontrivial) satisfying the asymptotic
boundary condition (13). That is, in addition to the trivial semi-traveling wave, the
diffusive model (2) does not admit any traveling wave connecting the disease-free
steady state E0 itself.

Proof Suppose that the diffusive model (2) admits a nonnegative bounded semi-
travelingwave (nontrivial) satisfying the asymptotic boundary condition (13).Without
loss of generality, we assume that 0 ≤ S(ξ) ≤ S0 and I (ξ) ≥ 0 for ξ ∈ R.

Note that the three equations for (ISU , IST , IR) in wave Eq. (36) of the diffusive
model (2) can be transformed into

ISU (ξ) =
∫ ξ

−∞
kU + μ

ρSU
eλ−

SU (ξ−t) 1

kU + μ
HSU (t)dt

+
∫ +∞

ξ

kU + μ

ρSU
eλ+

SU (ξ−t) 1

kU + μ
HSU (t)dt,

IST (ξ) =
∫ ξ

−∞
kT + μ

ρST
eλ−

ST (ξ−t) 1

kT + μ
HST (t)dt

+
∫ +∞

ξ

kT + μ

ρST
eλ+

ST (ξ−t) 1

kT + μ
HST (t)dt,
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IR(ξ) =
∫ ξ

−∞
kR + μ

ρR
eλ−

R (ξ−t) 1

kR + μ
HR(t)dt

+
∫ +∞

ξ

kR + μ

ρR
eλ+

R (ξ−t) 1

kR + μ
HR(t)dt, (20)

where λ±
SU = c±

√
c2+4dSU (kU+μ)

2dSU
, λ±

ST = c±
√

c2+4dST (kT +μ)

2dST
,

λ±
R = c ± √

c2 + 4dR(kR + μ)

2dR
, ρSU = λ+

SU − λ−
SU , ρST = λ+

ST − λ−
ST ,

ρR = λ+
R − λ−

R ,

HSU (t) = (1 − f )βS(ISU (t) + δ IST (t))S(t),

HST (t) = f (1 − r)βS(ISU (t) + δ IST (t))S(t),

HR(t) = [ f rβS(ISU (t) + δ IST (t)) + βR IR(t)]S(t).

According to (20) and assumptions, we have

ISU (ξ) ≤
∫ ξ

−∞
kU + μ

ρSU
eλ−

SU (ξ−t) 1

kU + μ
(1 − f )βS(ISU (t) + δ IST (t))S0dt

+
∫ +∞

ξ

kU + μ

ρSU
eλ+

SU (ξ−t) 1

kU + μ
(1 − f )βS(ISU (t) + δ IST (t))S0dt,

IST (ξ) ≤
∫ ξ

−∞
kT + μ

ρST
eλ−

ST (ξ−t) 1

kT + μ
f (1 − r)βS(ISU (t) + δ IST (t))S0dt

+
∫ +∞

ξ

kT + μ

ρST
eλ+

ST (ξ−t) 1

kT + μ
f (1 − r)βS(ISU (t) + δ IST (t))S0dt,

IR(ξ) ≤
∫ ξ

−∞
kR + μ

ρR
eλ−

R (ξ−t) 1

kR + μ
[ f rβS(ISU (t) + δ IST (t)) + βR IR(t)]S0dt

+
∫ +∞

ξ

kR + μ

ρR
eλ+

R (ξ−t) 1

kR + μ
[ f rβS(ISU (t) + δ IST (t)) + βR IR(t)]S0dt . (21)

Making further simplification of inequalities (21) yields

ISU (ξ) ≤ (V−1F)1

[∫ ξ

−∞
kU + μ

ρSU
eλ−

SU (ξ−t) I (t)dt +
∫ +∞

ξ

kU + μ

ρSU
eλ+

SU (ξ−t) I (t)dt

]

,

IST (ξ) ≤ (V−1F)2

[∫ ξ

−∞
kT + μ

ρST
eλ−

ST (ξ−t) I (t)dt +
∫ +∞

ξ

kT + μ

ρST
eλ+

ST (ξ−t) I (t)dt

]

,

IR(ξ) ≤ (V−1F)3

[∫ ξ

−∞
kR + μ

ρR
eλ−

R (ξ−t) I (t)dt +
∫ +∞

ξ

kR + μ

ρR
eλ+

R (ξ−t) I (t)dt

]

, (22)
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where (V−1F)i , i = 1, 2, 3 denotes the i th row of the matrix V−1F and

V−1F =

⎛

⎜
⎜
⎝

(1− f )βS S0

kU+μ
(1− f )βSδS0

kU+μ
0

f (1−r)βS S0

kT +μ
f (1−r)βSδS0

kT +μ
0

f rβS S0

kR+μ
f rβSδS0

kR+μ
βR S0

kR+μ

⎞

⎟
⎟
⎠ , I (t) =

⎛

⎝
ISU (t)
IST (t)
IR(t)

⎞

⎠ .

Let I 0j := supξ∈R I j (ξ), j = SU , ST , R. Then, I 0 := (I 0SU , I 0ST , I 0R)T ≥ 0 and

I 0 �= 0, where T represents the transpose of vectors. Furthermore, by (22), we have

I 0 ≤ (V−1F)I 0. (23)

In Sect.A.2, we have proven that ρ(V−1F) = ρ(FV−1) = RC . Through the
Perron–Frobenius theorem, we see that there exists a vector P = (p1, p2, p3)T ∈ R3

with pi > 0, i = 1, 2, 3 such that (V−1F)P = RC P . As I 0 is bounded, we can sup-
pose that there exists a constant χ > 0 such that I 0 ≤ χ P . Iterating inequalities (23),
we have I 0 ≤ (V−1F)n I 0 ≤ χ(V−1F)n P = χ(RC )n P.

When RC < 1, by selecting a sufficiently large n, we get I 0 = 0, which is in
contradiction with the assumption. Thus, we complete the proof. ��

Theorem 5.1 determines whether nonnegative bounded semi-traveling waves con-
necting the disease-free equilibrium E0 itself exist in the first case of Table 1 in
Sect. 3. The extinction of influenza in all local areas will inevitably make it difficult
for influenza to spread globally. The results show that the control reproduction number
RC is a critical threshold determining whether nonnegative bounded semi-traveling
waves exist.

5.1.2 Case II: RRC > 1, RSC �= 1 and 0 < c < c∗1

Theorem 5.2 If RRC > 1 and RSC �= 1 are satisfied, then for any c ∈ (0, c∗
1), the

diffusive model (2) has no nonnegative bounded semi-traveling waves satisfying the
asymptotic boundary condition (13), where c∗

1 = 2
√
dR(kR + μ)(RRC − 1).

Proof We first define the two-sided Laplace transform by

L[U (·)](λ) :=
∫ +∞

−∞
e−λtU (t)dt, (24)

for λ ≥ 0.
We can rewrite (24) as follows

L[U (·)](λ) = L−[U (·)](λ) + L+[U (·)](λ), (25)

where L−[U (·)](λ) := ∫ 0
−∞ e−λtU (t)dt is referred to as the negative one-sided

Laplace transform (see Zhang et al. 2016), L+[U (·)](λ) := ∫ +∞
0 e−λtU (t)dt .
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It follows from (25) that, if the function U (t) is bounded in [0,+∞), the con-
vergence of L[U (·)](λ) is equivalent to that of L−[U (·)](λ). From the definition of
L−[U (·)](λ), we can find that L−[U (·)](λ) is increasing in [0, λ∗), where λ∗ = +∞
or λ∗ < +∞ with limλ→λ∗ L[U (·)](λ) = +∞.

It is easy to verify that the two-sided and negative one-sided Laplace transforms
have the following properties:

L[U ′(·)](λ) = λL[U (·)](λ), L[U ′′(·)](λ) = λ2L[U (·)](λ),

and
L−[U ′(·)](λ) = λL−[U (·)](λ) +U (0),
L−[U ′′(·)](λ) = λ2L−[U (·)](λ) + λU (0) +U ′(0). (26)

Set Ji (λ) := L[Ii (·)](λ), i = SU , ST , and J−
R (λ) := L−[IR(·)](λ), for λ ∈

[0, λ∗
i ), i = SU , ST , R. By Lemma C.1, it follows that λ∗

i ≥ η, i = SU , ST , R.
The latter three equations ofwaveEq. (36) of the diffusivemodel (2) can be rewritten

as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSU I ′′
SU − cI ′

SU + [(1 − f )βS S0 − (kU + μ)]ISU
= (1 − f )βS(S0 − S)(ISU + δ IST ) − (1 − f )βSδS0 IST ,

dST I ′′
ST − cI ′

ST + [ f (1 − r)βS S0 − (kT + μ)]IST
= f (1 − r)βS(S0 − S)(ISU + δ IST ) − f (1 − r)βS S0 ISU ,

dR I ′′
R − cI ′

R + [βRS0 − (kR + μ)]IR
= (S0 − S)[ f rβS(ISU + δ IST ) + βR IR] − f rβS S0(ISU + δ IST ).

(27)

Define υ = min{PR(λ) : λ ≥ 0}, where PR(λ) = dRλ2 − cλ + βRS0 − (kR + μ).
It follows from the condition 0 < c < c∗

1 = 2
√
dR(kR + μ)(RRC − 1) that υ > 0.

Now we suppose that system (2) has a nonnegative semi-traveling wave (S(ξ),
ISU (ξ), IST (ξ), IR(ξ)) satisfying the asymptotic boundary condition (13). According
to the boundary condition (13), without loss of generality, we can assume S0− S(ξ) <
υ
2 for all ξ < 0. By the third equation of (27), we get

dR I
′′
R − cI ′

R + [βRS
0 − (kR + μ)]IR = βR(S0 − S)IR − f rβS S(ISU + δ IST )

≤ βR(S0 − S)IR ≤ υβR

2
IR ≤ υ

2
IR .

Taking the negative one-sided Laplace transform of the above inequality and making
use of the properties of L−[·] in (26), we obtain

PR(λ)J−
R (λ) + Q(λ) ≤ υ

2
J−
R (λ), (28)

where Q(λ) = (dRλ − c)IR(0) + dR I ′
R(0). Therefore, by (28), we have

Ξ(λ) :=
[
PR(λ) − υ

2

]
J−
R (λ) + Q(λ) ≤ 0. (29)
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If λ∗
R < +∞, we have limλ→λ∗−

R
J−
R (λ) = +∞, which implies limλ→λ∗−

R
Ξ(λ) =

+∞, which is in contradiction with (29). If λ∗
R = +∞, since J−

R (λ) is mono-
tonically increasing, together with the definitions of PR(λ) and Q(λ), we have
limλ→λ∗−

R
Ξ(λ) = +∞, which is still in contradiction with (29). Thus, the proof

of the theorem is completed. ��

5.1.3 Case III: RSC > 1, RRC �= 1 and 0 < c < c∗2

Theorem 5.3 If RSC > 1 and RRC �= 1 are satisfied, then for any c ∈ (0, c∗
2), the

diffusive model (2) has no nonnegative bounded semi-traveling waves satisfying the
asymptotic boundary condition (13).

Proof We prove the theorem by contradiction. For fixed c ∈ (0, c∗
2), we suppose that

there exists a nonnegative bounded semi-traveling wave of the diffusive model (2)
satisfying the asymptotic boundary condition (13).

Based on the definition of the two-sided Laplace transform [see (24)] in Sect. 5.1.2,
we take the two-sided Laplace transform of first and second equations of (27), yielding

{
PSU (λ)JSU (λ) = (1 − f )βSG(λ) − (1 − f )βSδS0 JST (λ),

PST (λ)JST (λ) = f (1 − r)βSG(λ) − f (1 − r)βS S0 JSU (λ),
(30)

where G(λ) = L[g(·)](λ), g(t) = (S0 − S)(ISU + δ IST ).
Now, we illustrate λ∗

i < +∞, i = SU , ST . By the first equation of (30), we obtain

HSU (λ) := [dSUλ2−cλ−(kU+μ)]JSU (λ)+(1− f )βSL[S(·)(ISU (·)+δ IST (·))](λ) = 0.
(31)

By the aid of the two-sided Laplace transform in (24), we have

JSU (λ) > 0, (32)

and, for λ ∈ [0, λ∗
SU ),

L[S(·)(ISU (·) + δ IST (·))](λ) > 0. (33)

If λ∗
SU = +∞, using (32) and (33), we get HSU (+∞) = +∞, which is in contra-

diction with (31). So we can conclude that λ∗
SU < +∞. Similarly, we can also prove

that λ∗
ST < +∞.

Then, we show λ∗
SU = λ∗

ST . Assume that λ∗
SU < λ∗

ST , which means
limλ→λ∗

SU
JSU (λ) = +∞ and limλ→λ∗

SU
JST (λ) = JST (λ∗

SU ) < +∞. From
Lemma C.1 and the definition of the two-sided Laplace transform in (24), together
with the boundedness of semi-traveling waves, we know that G(λ∗

SU ) < +∞, which
follows that the second equation of (30) does not hold. So, λ∗

SU ≥ λ∗
ST . On the other

hand, we suppose that λ∗
SU > λ∗

ST , by a similar discussion, we have λ∗
SU ≤ λ∗

ST .
Based on the above analysis, we can get the conclusion that λ∗ := λ∗

SU = λ∗
ST .
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Next, let us further consider PSU (λ∗) and PST (λ∗). If PSU (λ∗) ≥ 0, we have

PSU (λ∗)JSU (λ∗) + (1 − f )βSδS
0 JST (λ∗) = +∞ > (1 − f )βSG(λ∗),

which is in contradiction with the first equation of (30). So, we have PSU (λ∗) < 0.
Similarly, we can also prove PST (λ∗) < 0.

Finally, we multiply the first equation by the second one of (30), yielding

H(λ)JSU (λ)JST (λ) = f (1 − f )(1 − r)β2
SG(λ)[G(λ) − S0(JSU (λ) + δ JST (λ))].

Consequently, we have

H(λ∗) = lim
λ→λ∗−

f (1 − f )(1 − r)β2
SG(λ)[G(λ) − S0(JSU (λ) + δ JST (λ))]

JSU (λ)JST (λ)
= 0,

which is in contradiction with Lemma C.2. Therefore, the proof is completed. ��
Combined with Lemma C.1, Theorems 5.2 and 5.3, we can give the following

proposition directly.

Proposition 5.4 If RC > 1 and Ri �= 1, i = SC, RC are satisfied, then for any c ∈
(0,min{c∗

1, c
∗
2}), the diffusive model (2) has no nonnegative bounded semi-traveling

waves satisfying the asymptotic boundary condition (13).

When the control reproduction number RC is greater than 1, the range of the wave
speed c determines whether nonnegative traveling waves exist. Fixed RC > 1, the
diffusion rates of three infectious subclasses affect the critical wave speeds c∗

1 and c
∗
2,

determining the possibility of the existence of nonnegative traveling waves. From the
expressions of c∗

1 and c
∗
2 (see Theorem 5.2 and LemmaC.2), we can see that the critical

wave speed c∗
1 is related to the diffusion coefficient dR of resistant strain, while the

critical wave speed c∗
2 is related to the diffusion coefficients dSU and dST of sensitive

strains. When RC > 1, influenza will spread locally in a certain area. If RRC > 1,
then c∗

1 > 0, indicating that the movement of individuals with resistant strains will
accelerate the spatial spread of influenza. If RSC > 1, then c∗

2 > 0, indicating that
the movement of individuals with sensitive strains will play an important role in the
spatial spread of influenza. In short, the movement of infected individuals in space
increases the possibility of a global outbreak of influenza.

5.2 Estimation of MinimalWave Speed

The minimal wave speed for a traveling wave is a key parameter to characterize the
speed at which the disease spreads in a spatial domain (Huang 2016; Zhang 2017;
Zhang et al. 2016). Biologically speaking, epidemics can spread for c ≥ cmin while
they cannot spread for any c < cmin, where cmin is minimal wave speed, an important
threshold value to determine whether epidemics can spread or not. Proposition 5.4
provides the basis for our estimation of the range of minimal wave speed. Combining
with Theorem 4.5, we can conjecture that minimal wave speed cmin of the diffusive
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model (2) satisfies cmin ∈ [min{c∗
1, c

∗
2}, c∗]. We find that the lower bound of minimal

wave speed cmin depends on the minimum value of minimal wave speeds of its two
subsystems where IR = 0 or ISU = IST = 0, which seems to be a new phenomenon.
This also provides suggestions for us to control influenza in reality. By calculating the
minimal wave speeds of two kinds of strains, an optimal scheme for influenza control
can be scientifically formulated.

6 Conclusions and Discussions

Antiviral treatment remains a major pharmaceutical intervention in the management
of influenza infection. This is particularly important in the absence of preventive mea-
sures (such as vaccination). However, antiviral resistance may develop during the
treatment of drug-sensitive strains. The emergence and spread of resistant strains dur-
ing influenza pandemics has the possibility of causing major morbidity and mortality,
becoming one of the most challenging public health issues. To better understand the
temporal and spatial characteristics of influenza transmission and reduce the risk of
future influenza pandemic, in this paper,we incorporate antiviral resistance, population
diffusion and demographic processes (recruitment and natural deaths) into the previ-
ous influenza models, forming a diffusive influenza model (1) with multiple strains,
where a population is divided into five disjoint classes: susceptible individuals, indi-
viduals infected with the sensitive strain and untreated, individuals infected with the
sensitive strain and treated, individuals infected with the resistant strain and recovered
individuals.

First of all, we analyze its corresponding reactionmodel. By solving algebraic equa-
tions, we find all equilibria of the reaction model (3) and the corresponding conditions
that guarantee their existence (see Table 1). There are three possible equilibria for
the reaction model, i.e., two boundary equilibria (the disease-free equilibrium E0 and
the boundary equilibrium Ê) and an interior (positive) equilibrium E∗. We introduce
three parameters, RSC , RRC and RC , to determine the region where each equilibrium
exists. The disease-free equilibrium E0 always exists.When the reproduction numbers
of both strains are less than one, then all strains will die out. When at least one of the
reproduction numbers is greater than one, the strain with the higher reproduction num-
ber is certain to persist. If the reproduction number RSC of the drug-sensitive strains is
greater than 1 and exceeds the reproduction number RRC of the drug-resistant strain,
then there is an equilibrium state at which three pathogen strains are present. If the
reproduction number RRC of the drug-resistant strain is greater than 1, then there is an
equilibrium state at which only the drug-resistant strain is present. We conjecture that
the single-strain (drug-resistant strain) equilibrium is globally asymptotically stable
when RRC > 1 and RRC > RSC . In general, the sensitive strain is the one that is
more dominant, but it can be eliminated by treatment. Depending on the reproduction
number of the drug-resistant strain, if increasing the treatment rate reduces the repro-
duction number of the drug-sensitive strains to a value below the reproduction number
of the drug-resistant strain, then influenza may move the three-strain equilibrium state
to the disease-free equilibrium state or to the boundary equilibrium state where only
drug-resistant infection is present.
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Next, we study the existence of the three kinds of traveling waves in the diffusive
model (2) which starts from the disease-free equilibrium E0 (at the initial stage of
influenza transmission): semi-traveling waves, strong traveling waves and persistent
traveling waves. As it is well known, traveling waves starting from the disease-free
equilibrium are of biological significance since we can get a lot of information from
them, such as whether epidemics will spread, asymptotic speed of propagation and
the final state of the wavefront. Note that the diffusive model (2) is a non-monotone
system containing four equations and is full of complexity (such as time-varying
population and crossed reaction items), some dynamical problems on this system
become very challenging. To over those difficulties, we first technically introduce the
auxiliary system (35). Then, a bounded cone is achieved through a pair of upper–lower
solutions associated with Schauder’s fixed-point theorem. The existence of positive
semi-traveling waves of the diffusive model (2) is obtained by the limiting techniques
andArzelà–Ascoli theorem, and aprior estimate of exponential decayof semi-traveling
waves ismade.Wefind that the existence of positive semi-travelingwaves starting from
the disease-free equilibrium E0 is jointly decided by the control reproduction number
RC and the critical wave speed c∗. On the basis of the existence of semi-traveling
waves, we construct an appropriate Lyapunov functional and use LaSalle’s invariance
principle to obtain the existence condition of strong traveling waves connecting the
disease-free equilibrium E0 and boundary equilibrium Ê for the diffusive model (2).
The results show that if strong traveling waves connecting E0 and Ê exist, in addition
to RC > 1 and c > c∗, it also requires RSU ≤ RR and RST ≤ RR . Furthermore,
persistence theory of dynamical systems is creatively applied to prove the existence
of persistent traveling waves starting from the disease-free equilibrium E0. In this
case, we have more stringent requirements on the reproduction numbers and the wave
speed, that is, RSC > 1 > RRC and c > max{c∗, c̃∗}.

In view of these three types of traveling waves, we give some biological interpre-
tations about their analytical results in each subsection, respectively. Biologically, the
existence of semi-traveling waves starting from the disease-free equilibrium E0 indi-
cates that the spread of influenza will occur. The existence of strong traveling waves
which connect the disease-free equilibrium E0 and boundary equilibrium Ê indicates
that there is a transition zone moving from the steady state with no infective individ-
uals to the steady state with only drug-resistant infected individuals. In particular, the
presence of persistent traveling waves indicates that the infection with sensitive and
resistant strains does not disappear at the end of the wavefront.

On the other hand, the nonexistence of nonnegative bounded semi-traveling waves
connecting the disease-free steady state E0 itself in three cases is proved by the com-
parison principle, the negative one-sided and two-sided Laplace transforms. We show
that the diffusive model (2) has no nontrivial traveling waves when (i) RC < 1 and
c > 0; (ii) RRC > 1, RSC �= 1 and 0 < c < c∗

1; or (iii) RSC > 1, RRC �= 1 and
0 < c < c∗

2. When the control reproduction number RC is larger than 1, the conditions
for the existence and nonexistence of traveling waves for the diffusive model (2) are
determined completely by the reproduction numbers RSC , RRC and the wave speed c.
Theorem 4.5 and Proposition 5.4 combined provide an interval estimation of minimal
wave speed cmin , which satisfies cmin ∈ [min{c∗

1, c
∗
2}, c∗].
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In this study, we consider the use of antiviral treatment and population diffusion in
order to gain more insights on the implementation of control measures of influenza
among human population. Antiviral resistance in influenza may have devastating con-
sequences, which poses a significant challenge in the control of influenza. Our findings
demonstrate that the control of influenza depends not only on the rates of resis-
tance emergence and transmission during treatment, but also on the diffusion rates
of influenza strains, which has been overlooked in previous modeling studies. This
suggests that antiviral treatment should be implemented appropriately, and infected
individuals (especially with the resistant strain) should be tested and controlled effec-
tively. The current study provides two policy recommendations: (i) apply control
theory to find the optimal timing and level of treatment profile that minimize the
cumulative number of infections (i.e., the epidemic final size) and resistance; (ii)
make scientific screening for people in disaster areas and restrict infected individuals’
travel, providing sufficient time for vaccine development and the preparation of treat-
ment regime. The model presented in this work provides a simplified framework for
the dynamics of drug resistance emergence and diffusion in the population and has
important guiding significance formathematical epidemiological modeling in general.

Finally, we should remark that althoughwe discover some rich dynamical behaviors
for a diffusive influenza model (1) with multiple strains, there are quite a few problems
that deserve further investigation in future work. For example, we have not showed
whether the critical wave speed c∗ is equal to the minimal wave speed cmin, that is, we
have not completely determined the nonexistence of nonnegative bounded traveling
wave solutions connecting the disease-free equilibrium E0 for 0 < c < c∗. Moreover,
from the viewpoint of mathematical biology, it is an important problem to consider
the asymptotic speeding of the diffusive model (2). We here conjecture that c∗ is the
asymptotic speeding of the diffusive model (2); however, we do not verify it and we
also leave it for another future work.

Acknowledgements X. C. Fu was supported by the NSFC under Grant 11572181.

A Semi-travelingWaves for the Auxiliary System

A.1 An Auxiliary System

An auxiliary system related to the diffusive model (2) can be described by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂S
∂t = dS

∂2S
∂x2

+ Λ − μS − [βS(ISU + δ IST ) + βR IR]S,

∂ ISU
∂t = dSU

∂2 ISU
∂x2

+ (1 − f )βS(ISU + δ IST )S − (kU + μ)ISU − Υ I 2SU ,

∂ IST
∂t = dST

∂2 IST
∂x2

+ f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST − Υ I 2ST ,

∂ IR
∂t = dR

∂2 IR
∂x2

+ [ f rβS(ISU + δ IST ) + βR IR]S − (kR + μ)IR − Υ I 2R,

(34)

where Υ is a small positive constant.
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Substituting the wave profile S(x, t) = S(ξ), Ii (x, t) = Ii (ξ), i = SU , ST , R, x+
ct = ξ into (34), we obtain the corresponding wave equations

⎧
⎪⎪⎨

⎪⎪⎩

cS′ = dSS′′ + Λ − μS − [βS(ISU + δ IST ) + βR IR]S,

cI ′
SU = dSU I ′′

SU + (1 − f )βS(ISU + δ IST )S − (kU + μ)ISU − Υ I 2SU ,

cI ′
ST = dST I ′′

ST + f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST − Υ I 2ST ,

cI ′
R = dR I ′′

R + [ f rβS(ISU + δ IST ) + βR IR]S − (kR + μ)IR − Υ I 2R .

(35)

The limiting equations of (35) when Υ → 0 become the wave equations of the
diffusive model (2). For the convenience of use, we give their specific form as follows:

⎧
⎪⎪⎨

⎪⎪⎩

cS′ = dSS′′ + Λ − μS − [βS(ISU + δ IST ) + βR IR]S,

cI ′
SU = dSU I ′′

SU + (1 − f )βS(ISU + δ IST )S − (kU + μ)ISU ,

cI ′
ST = dST I ′′

ST + f (1 − r)βS(ISU + δ IST )S − (kT + μ)IST ,

cI ′
R = dR I ′′

R + [ f rβS(ISU + δ IST ) + βR IR]S − (kR + μ)IR .

(36)

A.2 Linearization of theWave System at E0

Linearizing system (36) at the equilibrium E0(S0, 0, 0, 0) and only considering the
last three equations of the linearized system, we have

⎧
⎨

⎩

cϕ′
2 = dSUϕ′′

2 + (1 − f )βS(ϕ2 + δϕ3)S0 − (kU + μ)ϕ2,

cϕ′
3 = dSTϕ′′

3 + f (1 − r)βS(ϕ2 + δϕ3)S0 − (kT + μ)ϕ3,

cϕ′
4 = dRϕ′′

4 + [ f rβS(ϕ2 + δϕ3) + βRϕ4]S0 − (kR + μ)ϕ4,

(37)

where the functions ϕi (ξ), i = 2, 3, 4 correspond to I j (ξ), j = SU , ST , R, respec-
tively.

We look for the solutions with the form (ϕ2(ξ), ϕ3(ξ), ϕ4(ξ)) = eλξ (κ2, κ3, κ4),
where κi > 0, i = 2, 3, 4 and λ > 0. Substituting them into Eq. (37), we obtain the
following eigenvalue equations

⎧
⎨

⎩

cλκ2 = dSUλ2κ2 + (1 − f )βS(κ2 + δκ3)S0 − (kU + μ)κ2,

cλκ3 = dST λ2κ3 + f (1 − r)βS(κ2 + δκ3)S0 − (kT + μ)κ3,

cλκ4 = dRλ2κ4 + [ f rβS(κ2 + δκ3) + βRκ4]S0 − (kR + μ)κ4.

(38)

Let Ã = diag(dSU , dST , dR), B̃ = diag(c, c, c) and M̃(λ, c) := Ãλ2 − B̃λ +
F − V , where the matrices F and V are given by (4) and (5). Then, by denoting
K = (κ2, κ3, κ4)

T , the eigenvalue Eq. (38) can be rewritten as M̃(λ, c)K = 0. By the
transformations A = V−1 Ã and B = V−1 B̃, we obtain an equivalent form of these
equations as follows M(λ, c)K = K, with M(λ, c) = (−Aλ2 + Bλ + I )−1(V−1F),
which is

M(λ, c) =

⎛

⎜
⎜
⎝

(1− f )βS S0

Θ2(λ,c)
(1− f )βSδS0

Θ2(λ,c) 0
f (1−r)βS S0

Θ3(λ,c)
f (1−r)βSδS0

Θ3(λ,c) 0
f rβS S0

Θ4(λ,c)
f rβSδS0

Θ4(λ,c)
βR S0

Θ4(λ,c)

⎞

⎟
⎟
⎠ ,
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where Θ2(λ, c) = −dSUλ2 + cλ + kU + μ, Θ3(λ, c) = −dST λ2 + cλ + kT + μ and
Θ4(λ, c) = −dRλ2 + cλ + kR + μ.

Denoting d = max{dSU , dST , dR}, since Θi
( c
2d , c

)
is strictly increasing and non-

negative in c ∈ [0,+∞), we can deduce that the matrix M
( c
2d , c

)
is decreasing for

c ∈ [0,+∞).
Denote by ρ(M(λ, c)) the principal eigenvalue of the nonnegative matrix M(λ, c)

for λ ∈ [
0, c

2d

]
. Since ρ(M(λ, c)) is continuous and monotonically increasing

with respect to the nonnegative matrix M(λ, c), ρ
(
M

( c
2d , c

))
is strictly decreas-

ing in c ∈ [0,+∞). In particular, we have ρ(M(0, 0)) = ρ(V−1F), and
limc→+∞ ρ

(
M

( c
2d , c

)) = 0.
For the continuation of the analysis, here, we give a brief proof of ρ(V−1F) = RC .

By the definition of the control reproduction number RC in (9), we know RC =
ρ(FV−1), implying that RC is the Perron–Frobenius eigenvalue of the matrix FV−1.
So there exists a positive eigenvector P = (p1, p2, p3)T with pi > 0, i = 1, 2, 3
such that (FV−1)P = RC P . Then, we have V−1P > 0 and (V−1F)(V−1P) =
V−1(FV−1)P = RCV−1P . This implies that RC is a nonnegative eigenvalue of
the matrix V−1F with positive eigenvector V−1P . It is easy to see that V−1F is
irreducible, that is, (V−1F + I )2 > 0. Using Perron–Frobenius theorem, we get
ρ(V−1F) = RC .

Combining with ρ(M(0, 0)) = ρ(V−1F) yields ρ(M(0, 0)) = RC . Consequently,
when RC > 1, there exists a unique c∗ > 0 such that

ρ(M(
c

2d
, c))

⎧
⎨

⎩

> 1, c ∈ [0, c∗);
= 1, c = c∗;
< 1, c ∈ (c∗,+∞).

Now we fix c > c∗, note that Θi (λ, c)(i = 2, 3, 4) is strictly increasing in
λ ∈ [

0, c
2d

]
, then we obtain that ρ(M(λ, c)) is strictly decreasing and nonnega-

tive in λ ∈ [
0, c

2d

]
. In view of the facts ρ(M(0, c)) = ρ(M(0, 0)) = RC > 1 and

ρ
(
M

( c
2d , c

))
< 1, then there exists a λc ∈ (

0, c
2d

)
such that

ρ(M(λ, c))

⎧
⎨

⎩

> 1, λ ∈ [0, λc);
= 1, λ = λc;
< 1, λ ∈ ( λc,

c
2d ] .

Based on the above discussions, we have the following lemma.

Lemma A.1 Assume that RC = ρ(FV−1) > 1. Then, there exists c∗ > 0 such that
for any c > c∗, we can always find λc ∈ (0, c

2d ) and Kc = (κ2, κ3, κ4)
T with

κi > 0, i = 2, 3, 4 satisfying det M̃(λc, c) = 0 and M̃(λc, c)Kc = 0.

Proof It follows from the above arguments that ρ(M(λc, c)) = 1. By the Perron–
Frobenius theorem, we conclude that there is a vector Kc ∈ R3 with positive
components such that M(λc, c)Kc = Kc. Multiplying the matrix −Aλ2c + Bλc + I
on both sides of the above equality, we have (Aλ2c − Bλc + V−1F − I )Kc = 0. Mul-
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tiplying the diagonal matrix V to both sides of the above equality, we finally obtain
( Ãλ2c − B̃λc + F − V )Kc = M̃(λc, c)Kc = 0. This completes the proof. ��

Let Kc = (κ2, κ3, κ4)
T as obtained in Lemma A.1, then the following lemma is

straightforward.

Lemma A.2 The vector valued function ϕ(ξ) = (ϕ2(ξ), ϕ3(ξ), ϕ4(ξ)) with ϕi (ξ) =
κi eλcξ , i = 2, 3, 4 satisfies Eq. (37).

A.3 Construction and Properties of Upper–Lower Solutions

In the next subsection, by using the Schauder’s fixed-point theorem, we establish the
existence of semi-traveling waves of the auxiliary system (35). For this purpose, we
need to define a pair of upper–lower solutions of system (35) as follows.

S̄(ξ) := S0, S(ξ) := max{S0 − σeαξ , 0},
ĪSU (ξ) := min{κ2eλcξ , κ2K ∗}, I SU (ξ) := max{κ2eλcξ (1 − Qeεξ ), 0},
ĪST (ξ) := min{κ3eλcξ , κ3K ∗}, I ST (ξ) := max{κ3eλcξ (1 − Qeεξ ), 0},
ĪR(ξ) := min{κ4eλcξ , κ4K ∗}, I R(ξ) := max{κ4eλcξ (1 − Qeεξ ), 0},

(39)

where the constantsκ2, κ3, κ4 andλc havebeendetermined inLemmaA.1.Thepositive
constants K ∗, σ, α, Q, ε will be determined later.

We next show that such constructed upper and lower solutions satisfy some prop-
erties in Lemmas A.3, A.4 and A.5.

Lemma A.3 For K ∗ > 1 large enough, the functions ĪSU (ξ), ĪST (ξ) and ĪR(ξ) satisfy
the following inequalities

⎧
⎨

⎩

cĪ ′
SU ≥ dSU Ī ′′

SU + (1 − f )βS( ĪSU + δ ĪST )S0 − (kU + μ) ĪSU − Υ Ī 2SU ,

cĪ ′
ST ≥ dST Ī ′′

ST + f (1 − r)βS( ĪSU + δ ĪST )S0 − (kT + μ) ĪST − Υ Ī 2ST ,

cĪ ′
R ≥ dR Ī ′′

R + [ f rβS( ĪSU + δ ĪST ) + βR ĪR]S0 − (kR + μ) ĪR − Υ Ī 2R,

(40)

for any ξ �= ξ1 := ln K ∗
λc

.

Proof Define the operator L[ISU (·), IST (·), IR(·)](ξ) :=
⎛

⎝
dSU I ′′

SU − cI ′
SU + (1 − f )βS(ISU + δ IST )S0 − (kU + μ)ISU

dST I ′′
ST − cI ′

ST + f (1 − r)βS(ISU + δ IST )S0 − (kT + μ)IST
dR I ′′

R − cI ′
R + [ f rβS(ISU + δ IST ) + βR IR]S0 − (kR + μ)IR

⎞

⎠ ,

then (40) can be transformed into the following equivalent operator inequalities

L[ISU (·), IST (·), IR(·)](ξ) ≤ Υ
(
Ī 2SU , Ī 2ST , Ī 2R

)
. (41)

So, as long as we prove operator inequality (41), we complete the proof of LemmaA.3.
We now prove operator inequalities (41) in two cases:
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When ξ < ξ1, by the definition of the upper solutions in (39), we have

(
ĪSU (ξ), ĪST (ξ), ĪR(ξ)

) = (κ2, κ3, κ4)e
λcξ .

Substituting it into the equations of operator L yields

L[ISU (·), IST (·), IR(·)](ξ) = eλc M̃(λc, c)Kc = 0.

Obviously, operator inequalities (41) hold.
When ξ > ξ1, by (39), we have ( ĪSU (ξ), ĪST (ξ), ĪR(ξ)) = (κ2, κ3, κ4)K ∗. Taking

the first inequality of operator inequalities (41) as an example, we substitute the upper
solutions into it, yielding

dSU Ī ′′
SU − cĪ ′

SU + (1 − f )βS( ĪSU + δ ĪST )S0 − (kU + μ) ĪSU − Υ Ī 2SU

=
{
[(1 − f )βS S

0 − (kU + μ)]κ2 + (1 − f )βSδS
0κ3 − Υ κ2

2K
∗} K ∗.

To ensure that the value of the above equality is smaller or equal to 0, we require

K ∗ >
[(1 − f )βS S0 − (kU + μ)]κ2 + (1 − f )βSδS0κ3

Υ κ2
2

.

To make the remaining two inequalities of operator inequalities (41) also hold, simi-
larly, we can choose

K ∗ >
f (1 − r)βS S0κ2 + [ f (1 − r)βSδS0 − (kT + μ)]κ3

Υ κ2
3

,

and

K ∗ >
f rβS S0(κ2 + δκ3) + [βRS0 − (kR + μ)]κ4

Υ κ2
4

.

By selecting K ∗ > 1 satisfying the above three inequalities, we complete the proof of
operator inequalities (41) when ξ > ξ1. Overall, the proof of the lemma is completed.

��
Lemma A.4 For 0 < α < min

{
c
dS

, λc

}
, σ > max

{
S0, [βS(κ2+δκ3)+βRκ4]S0

(c−dSα)α+μ

}
, the

function S(ξ) satisfies the following inequality

cS′ ≤ dSS
′′ + Λ − μS − [βS( ĪSU + δ ĪST ) + βR ĪR]S (42)

for any ξ �= ξ2 := 1
α
ln S0

σ
.
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Proof If ξ > ξ2, then S(ξ) = 0. Obviously, the inequality (42) holds.
If ξ < ξ2, then S(ξ) = S0 − σeαξ . From the choice of K ∗ and σ , we know that

ξ2 = 1
α
ln S0

σ
< 0 < ξ1, implying ( ĪSU (ξ), ĪST (ξ), ĪR(ξ)) = (κ2, κ3, κ4)eλcξ when

ξ < ξ2. Through direct calculations, we have

dSS
′′ − cS′ + Λ − μS − [βS( ĪSU + δ ĪST ) + βR ĪR]S

= −dSσα2eαξ + cσαeαξ + Λ − μ(S0 − σeαξ )

− [βS(κ2e
λcξ + δκ3e

λcξ ) + βRκ4e
λcξ ](S0 − σeαξ )

= {cσα + μσ − dSσα2 − [βS(κ2 + δκ3) + βRκ4](S0 − σeαξ )e(λc−α)ξ }eαξ

≥ {(cα + μ − dSα
2)σ − [βS(κ2 + δκ3) + βRκ4]S0}eαξ ≥ 0,

where we use the fact that e(λc−α)ξ < 1 due to α < λc and ξ < 0, and the conditions

that 0 < α < c
dS

and σ >
[βS(κ2+δκ3)+βRκ4]S0

(c−dSα)α+μ
. Thus, the proof is completed. ��

Lemma A.5 Let ε > 0 be small enough with ε < α, ε < λc and λc + ε < c
2d , then for

sufficiently large Q > 1, and for any ξ �= ξ3 := − ln Q
ε
, the functions I SU (ξ), I ST (ξ)

and I R(ξ) satisfy the following inequalities

⎧
⎨

⎩

cI ′
SU ≤ dSU I ′′

SU + (1 − f )βS(I SU + δ I ST )S − (kU + μ)I SU − Υ I 2SU ,

cI ′
ST ≤ dST I ′′

ST + f (1 − r)βS(I SU + δ I ST )S − (kT + μ)I ST − Υ I 2ST ,

cI ′
R ≤ dR I ′′

R + [ f rβS(I SU + δ I ST ) + βR I R]S − (kR + μ)I R − Υ I 2R .

(43)

Proof Choose Q > 1 sufficiently large and ε small enough such that ξ3 < ξ2 < 0,

this implies that Q > max

{(
σ
S0

) ε
α

, 1

}

.

When ξ > ξ3, based on the definition of the lower solutions in (39), we have
I SU (ξ) = I ST (ξ) = I R(ξ) = 0. It is clear that inequalities (43) hold.

When ξ < ξ3, by (39), we have (I SU (ξ), I ST (ξ), I R(ξ)) = (κ2, κ3, κ4)eλcξ (1 −
Qeεξ ) and S(ξ) = S0 − σeαξ . For the first inequality of (43), we can show

cI ′
SU − dSU I ′′

SU − (1 − f )βS(I SU + δ I ST )S + (kU + μ)I SU + Υ I 2SU

= eλcξ {cκ2[λc(1 − Qeεξ ) − Qεeεξ ] − dSUκ2

[λ2c(1 − Qeεξ ) − λcQεeεξ − (λc + ε)Qεeεξ ]}
− (1 − f )βS(κ2 + δκ3)e

λcξ (1 − Qeεξ )(S0 − σeαξ ) + (kU + μ)κ2e
λcξ (1 − Qeεξ )

+ Υ [κ2eλcξ (1 − Qeεξ )]2
= eλcξ (1 − Qeεξ ){[−dSUλ2c + cλc − (1 − f )βS S

0 + kU + μ]κ2 − (1 − f )βSδS
0κ3}

+ e(λc+ε)ξ {[(2λc + ε)dSU − c]Qεκ2 + (1 − f )βS(κ2 + δκ3)σe
(α−ε)ξ (1 − Qeεξ )

+ Υ κ2
2e

(λc−ε)ξ (1 − Qeεξ )2}
= e(λc+ε)ξ {[(2λc + ε)dSU − c]Qεκ2 + (1 − f )βS(κ2 + δκ3)σe

(α−ε)ξ (1 − Qeεξ )

+ Υ κ2
2e

(λc−ε)ξ (1 − Qeεξ )2}
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≤ e(λc+ε)ξ
{
[(2λc + ε)dSU − c]Qεκ2

+ (1 − f )βS(κ2 + δκ3)σe
−(α−ε)

ln Q
ε + Υ κ2

2e
−(λc−ε)

ln Q
ε

}
.

In view of the conditions that ε > 0 and λc + ε < c
2d , we have

(2λc + ε)dSU − c < 2(λc + ε)dSU − c < 2(λc + ε)d − c < 0.

Thus, we can choose sufficiently large Q > 1 such that

[(2λc + ε)dSU − c]Qεκ2 + (1 − f )βS(κ2 + δκ3)σe
−(α−ε)

ln Q
ε + Υ κ2

2e
−(λc−ε)

ln Q
ε ≤ 0,

indicating that the first inequality of (43) holds. Similarly, we can verify the second
and third inequalities of (43) also hold. This completes the proof. ��

A.4 The Existence of Semi-travelingWaves

We look for semi-traveling waves of the auxiliary system (35) in the following profile
set

L = {(S(·), ISU (·), IST (·), IR(·)) ∈ Cν(R,R4)

: S(ξ) ≤ S(ξ) ≤ S̄(ξ), I j (ξ) ≤ I j (ξ) ≤ Ī j (ξ), j = SU , ST , R, for all ξ ∈ R}.
(44)

Note that Cν(R,R4) is a Banach space with the norm ‖ · ‖ formulated by

‖Φ‖ := |Φ(·)|ν = max

{

sup
ξ∈R

|ϕi (ξ)|e−ν|ξ |, i = S, SU , ST , R

}

, (45)

where Φ(ξ) = (ϕ1(ξ), ϕ2(ξ), ϕ3(ξ), ϕ4(ξ)) ∈ Cν(R,R4), ν is a positive constant
which will be determined later. Obviously, L is a bounded nonempty closed convex
subset of Cν(R,R4).

Cν(R,R) is a Banach space with the sup norm |ϕ(·)|ν := supξ∈R |ϕ(ξ)|e−ν|ξ |,
where ϕ(ξ) ∈ Cν(R,R). Let Ti : L → Cν(R,R), i = S, SU , ST , R be operators
defined by

TS(S, ISU , IST , IR)(ξ) := ϑS S(ξ) + Λ − μS(ξ)

− [βS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)]S(ξ),

TSU (S, ISU , IST , IR)(ξ) := ϑSU ISU (ξ) + (1 − f )βS(ISU (ξ)

+ δ IST (ξ))S(ξ) − (kU + μ)ISU (ξ) − Υ I 2SU (ξ),

TST (S, ISU , IST , IR)(ξ) := ϑST IST (ξ) + f (1 − r)βS(ISU (ξ)

+ δ IST (ξ))S(ξ) − (kT + μ)IST (ξ) − Υ I 2ST (ξ),
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TR(S, ISU , IST , IR)(ξ) := ϑR IR(ξ) + [ f rβS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)]S(ξ)

− (kR + μ)IR(ξ) − Υ I 2R(ξ),

where

ϑS > μ + [βS(κ2 + δκ3) + βRκ4]K ∗, ϑSU > 2Υ κ2K
∗ + (kU + μ),

ϑST > 2Υ κ3K
∗ + (kT + μ), ϑR > 2Υ κ4K

∗ + (kR + μ).

Then, the auxiliary system (35) can be now rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

−dSS′′(ξ) + cS′(ξ) + ϑS S(ξ) = TS(S, ISU , IST , IR)(ξ),

−dSU I ′′
SU (ξ) + cI ′

SU (ξ) + ϑSU ISU (ξ) = TSU (S, ISU , IST , IR)(ξ),

−dST I ′′
ST (ξ) + cI ′

ST (ξ) + ϑST IST (ξ) = TST (S, ISU , IST , IR)(ξ),

−dR I ′′
R(ξ) + cI ′

R(ξ) + ϑR IR(ξ) = TR(S, ISU , IST , IR)(ξ).

(46)

Let ζi1 < 0 < ζi2 be the roots of the quadratic equation diζ 2
i − cζi − ϑi = 0, then

define the operators Gi : L → Cν(R,R) by

Gi (S, ISU , IST , IR)(ξ) := 1
di ζi

[∫ ξ

−∞
eζi1(ξ−s)Ti (S, ISU , IST , IR)(s)ds

+
∫ +∞

ξ

eζi2(ξ−s)Ti (S, ISU , IST , IR)(s)ds

]

,

where ζi = ζi2 − ζi1, i = S, SU , ST , R. Then, G = (GS,GSU ,GST ,GR) : L →
Cν(R,R4) is a well-defined map and satisfies

⎧
⎪⎪⎨

⎪⎪⎩

−dSG ′′
S(ξ) + cG ′

S(ξ) + ϑSGS(ξ) = TS(GS,GSU ,GST ,GR)(ξ),

−dSUG ′′
SU (ξ) + cG ′

SU (ξ) + ϑSUGSU (ξ) = TSU (GS,GSU ,GST ,GR)(ξ),

−dST G ′′
ST (ξ) + cG ′

ST (ξ) + ϑST GST (ξ) = TST (GS,GSU ,GST ,GR)(ξ),

−dRG ′′
R(ξ) + cG ′

R(ξ) + ϑRGR(ξ) = TR(GS,GSU ,GST ,GR)(ξ),

for any (S(·), ISU (·), IST (·), IR(·)) ∈ Cν(R,R4). Thus, any fixed point of the operator
G is a solution of (46), which is a traveling wave of the auxiliary system (35). On the
other hand, a solution of (46) is also a fixed point of the operator G.

To apply Schauder’s fixed-point theorem, we need to prove that the operators
GS,GSU , GST and GR admit the following properties:

Lemma A.6 The operator G maps L into L, i.e., G(L) ⊂ L.

Proof If (S(·), ISU (·), IST (·), IR(·)) ∈ L, that is,

S(ξ) ≤ S(ξ) ≤ S̄(ξ) = S0, I i (ξ) ≤ Ii (ξ) ≤ Īi (ξ), i = SU , ST , R

for any ξ ∈ R. Then, it suffices to show

S(ξ) ≤ GS(S, ISU , IST , IR)(ξ) ≤ S̄(ξ) = S0,
I i (ξ) ≤ Gi (S, ISU , IST , IR)(ξ) ≤ Īi (ξ), i = SU , ST , R.
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Wenow prove the first inequality about the operatorGS . First consider the left-hand
side of the first inequality.

If ξ ≥ ξ2, then S(ξ) = 0 by (39). Based on the choice of ϑS , it is obvious that

TS(S, ISU , IST , IR)(ξ) ≥ 0

for all ξ ∈ R, which implies that GS(S, ISU , IST , IR)(ξ) ≥ 0 = S(ξ) when ξ ≥ ξ2.
If ξ < ξ2, then by Lemma A.4, we obtain

− dSS
′′(ξ) + cS′(ξ) + ϑS S(ξ)

≤ ϑS S(ξ) + Λ − μS(ξ) − [βS( ĪSU (ξ) + δ ĪST (ξ)) + βR ĪR(ξ)]S(ξ)

= {ϑS − μ − [βS( ĪSU (ξ) + δ ĪST (ξ)) + βR ĪR(ξ)]}S(ξ) + Λ

≤ {ϑS − μ − [βS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)]}S(ξ) + Λ

= TS(S, ISU , IST , IR)(ξ),

which follows

GS(S, ISU , IST , IR)(ξ)

= 1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)
]

TS(S, ISU , IST , IR)(s)ds

≥ 1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)
]

[−dSS
′′(s) + cS′(s) + ϑS S(s)]ds

= 1

dSζS

∫ ξ

−∞
eζS1(ξ−s)[−dSS

′′(s) + cS′(s) + ϑS S(s)]ds

+ 1

dSζS

∫ ξ2

ξ

eζS2(ξ−s)[−dSS
′′(s) + cS′(s) + ϑS S(s)]ds

+ 1

dSζS

∫ +∞

ξ2

eζS2(ξ−s)[−dSS
′′(s) + cS′(s) + ϑS S(s)]ds

= S(ξ) + 1

ζS
eζS2(ξ−ξ2)[S′(ξ2 + 0) − S′(ξ2 − 0)]

≥ S(ξ),

where the final inequality uses the fact that S′(ξ2 + 0) = 0 and S′(ξ2 − 0) < 0.
To summarize, GS(S, ISU , IST , IR)(ξ) ≥ S(ξ) for all ξ ∈ R.
Next,weprove the right-hand sideof thefirst inequality, i.e.,GS(S, ISU , IST , IR)(ξ)

≤ S̄(ξ) = S0, for all ξ ∈ R.
It is easy to verify the validity of the following inequality for all ξ ∈ R

cS̄′(ξ) ≥ dS S̄
′′(ξ) + Λ − μS̄(ξ) − [βS(I SU (ξ) + δ I ST (ξ)) + βR I R(ξ)]S̄(ξ),
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it follows that

− dS S̄
′′(ξ) + cS̄′(ξ) + ϑS S̄(ξ)

≥ ϑS S̄(ξ) + Λ − μS̄(ξ) − [βS(I SU (ξ) + δ I ST (ξ)) + βR I R(ξ)]S̄(ξ)

= {ϑS − μ − [βS(I SU (ξ) + δ I ST (ξ)) + βR I R(ξ)]}S̄(ξ) + Λ

≥ {ϑS − μ − [βS(ISU (ξ) + δ IST (ξ)) + βR IR(ξ)]}S(ξ) + Λ

= TS(S, ISU , IST , IR)(ξ).

Through the above inequality, we can prove that, for all ξ ∈ R,

GS(S, ISU , IST , IR)(ξ)

= 1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)
]

TS(S, ISU , IST , IR)(s)ds

≤ 1

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)
]

[−dS S̄
′′(s) + cS̄′(s) + ϑS S̄(s)]ds

= 1

dSζS

∫ ξ

−∞
eζS1(ξ−s)[−dS S̄

′′(s) + cS̄′(s) + ϑS S̄(s)]ds

+ 1

dSζS

∫ ξ

+∞
eζS2(ξ−s)[−dS S̄

′′(s) + cS̄′(s) + ϑS S̄(s)]ds
= S̄(ξ).

In a similar way, we can also show that the remaining three inequalities about
operators Gi , i = SU , ST , R hold for any ξ ∈ R. Thus, we complete the proof of the
lemma. ��

In what follows, we shall apply Schauder’s fixed-point theorem to the operator
G, which requires the continuity and compactness of G. To achieve the two proper-
ties, we need to introduce a topology in Cν(R,R4). Let ν ∈ (0,min{−ζi1, ζi2, i =
S, SU , ST , R}). Denote

Bν(R,R4) = {Φ(ξ) = (ϕ1(ξ), ϕ2(ξ), ϕ3(ξ), ϕ4(ξ)) ∈ Cν(R,R4) : |Φ(·)|ν < +∞}

with the same norm as that in (45), then it is easy to verify that (Bν(R,R4), | · |ν) is a
Banach space.

Lemma A.7 The operator G = (GS,GSU ,GST ,GR) : L → L is continuous with
respect to the norm | · |ν in Bν(R,R4).

Proof ForΦ(ξ) = (ϕ1(ξ), ϕ2(ξ), ϕ3(ξ), ϕ4(ξ)), Ψ (ξ) = (ψ1(ξ), ψ2(ξ), ψ3(ξ), ψ4(ξ)) ∈
L, by the definition of the operator TS , we easily get

|TS(Φ)(ξ) − TS(Ψ )(ξ)|e−ν|ξ |

= |{ϑS − μ − [βS(ϕ2(ξ) + δϕ3(ξ)) + βRϕ4(ξ)]}(ϕ1(ξ) − ψ1(ξ))
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+ ψ1(ξ){βS[(ψ2(ξ) − ϕ2(ξ)) + δ(ψ3(ξ) − ϕ3(ξ))] + βR(ψ4(ξ) − ϕ4(ξ))}|e−ν|ξ |

≤ NS|Φ(·) − Ψ (·)|ν,

where NS = ϑS − μ − [βS(κ2 + δκ3) + βRκ4]K ∗ + [βS(1+ δ) + βR]S0 > 0. Then,
by the definition of the operator GS , we obtain

|GS(Φ)(ξ) − GS(Ψ )(ξ)|e−ν|ξ |

≤ e−ν|ξ |

dSζS

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)
]

|TS(Φ)(s) − TS(Ψ )(s)|ds

≤ NSe−ν|ξ |

dSζS

[∫ ξ

−∞
eζS1(ξ−s)+ν|s|ds +

∫ +∞

ξ

eζS2(ξ−s)+ν|s|ds
]

|Φ(·) − Ψ (·)|ν

= NS

dSζS

[∫ ξ

−∞
eζS1(ξ−s)−ν|ξ |+ν|s|ds +

∫ +∞

ξ

eζS2(ξ−s)−ν|ξ |+ν|s|ds
]

|Φ(·) − Ψ (·)|ν

≤ NS

dSζS

[∫ ξ

−∞
eζS1(ξ−s)+ν|ξ−s|ds +

∫ +∞

ξ

eζS2(ξ−s)+ν|ξ−s|ds
]

|Φ(·) − Ψ (·)|ν

= NS

dSζS

ζS1 − ζS2 + 2ν

(ζS1 + ν)(ζS2 − ν)
|Φ(·) − Ψ (·)|ν.

Hence, GS : L → Cν(R,R) is continuous with respect to the norm | · |ν in Bν(R,R).
Similarly, we can show the remaining operatorsGi : L → Cν(R,R), i = SU , ST , R
are also continuous with respect to the norm | · |ν in Bν(R,R). This implies that
G : L → L is continuous with respect to the norm | · |ν in Bν(R,R4). The proof is
completed. ��
Lemma A.8 The operator G = (GS,GSU ,GST ,GR) : L → L is compact with
respect to the norm | · |ν in Bν(R,R4).

Proof Let Φ(ξ) = (ϕ1(ξ), ϕ2(ξ), ϕ3(ξ), ϕ4(ξ)) ∈ L, obviously, for all ξ ∈ R, we
have

|TS(Φ)(ξ)| = |ϑSϕ1(ξ) + Λ − μϕ1(ξ) − [βS(ϕ2(ξ) + δϕ3(ξ)) + βRϕ4(ξ)]ϕ1(ξ)| ≤ ÑS,

where ÑS = Λ + {ϑS + μ + [βS(κ2 + δκ3) + βRκ4]K ∗}S0.
Consequently,

∣
∣
∣
∣
d

dξ
GS(Φ)(ξ)

∣
∣
∣
∣ = 1

dSζS

∣
∣
∣
∣

[

ζS1

∫ ξ

−∞
eζS1(ξ−s) + ζS2

∫ +∞

ξ

eζS2(ξ−s)
]

TS(Φ)(s)ds

∣
∣
∣
∣

≤ ÑS

dSζS

[

|ζS1|
∫ ξ

−∞
eζS1(ξ−s)ds + ζS2

∫ +∞

ξ

eζS2(ξ−s)ds

]

= 2ÑS

dSζS
,
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which implies
∣
∣
∣ d
dξ GS(Φ)(·)

∣
∣
∣
ν

<
2ÑS
dSζS

. So, we see that | d
dξ GS(Φ)(ξ)|ν is bounded.

Using similar arguments as above, we can show that | d
dξ Gi (Φ)(ξ)|ν, i = SU , ST , R

are also bounded. This means that G(L) is uniformly bounded and equicontinuous
with respect to the norm | · |ν .

For fixed positive integer n, we define an operator Gn = (Gn
S,G

n
SU ,Gn

ST ,Gn
R) by

Gn(Φ)(ξ) =
⎧
⎨

⎩

G(Φ)(−n), ξ ∈ (−∞,−n],
G(Φ)(ξ), ξ ∈ [−n, n],
G(Φ)(n), ξ ∈ [n,+∞).

By Arzelà–Ascoli theorem, Gn : L → L is compact with respect to the norm | · |ν in
Bν(R,R4). Since

|GS(Φ)(ξ)| = 1

dSζS

∣
∣
∣
∣

[∫ ξ

−∞
eζS1(ξ−s) +

∫ +∞

ξ

eζS2(ξ−s)
]

TS(Φ)(s)ds

∣
∣
∣
∣

≤ ÑS

dSζS

[∫ ξ

−∞
eζS1(ξ−s)ds +

∫ +∞

ξ

eζS2(ξ−s)ds

]

= ÑS

dS|ζS1|ζS2 ,

we have

|Gn
S(Φ)(·) − GS(Φ)(·)|ν = sup

ξ∈R
|Gn

S(Φ)(ξ) − GS(Φ)(ξ)|e−ν|ξ |

= sup
|ξ |≥n

|Gn
S(Φ(·))(ξ) − GS(Φ(·))(ξ)|e−ν|ξ | ≤ 2ÑS

dS |ζS1|ζS2 e
−νn .

When n → +∞, we have |Gn
S(Φ)(·) − GS(Φ)(·)|ν → 0. By similar arguments, we

can also show that |Gn
i (Φ)(·)−Gi (Φ)(·)|ν → 0 when n → +∞ for i = SU , ST , R.

Overall, |Gn(Φ)(·) − G(Φ)(·)|ν → 0 when n → +∞. By Proposition 2.12
in Zeilder (1986), we know that Gn converges to G in L with respect to the norm
| · |ν . Therefore, the operator G = (GS,GSU ,GST ,GR) : L → L is compact with
respect to the norm | · |ν in Bν(R,R4). This completes the proof. ��

B Lemmas B.1 and B.2

Lemma B.1 Let X be locally compact, and let X2 be compact in X and X1 be forward
invariant under the continuous semiflow Φ on X. Assume that Ω2, defined by

Ω2 =
⋃

y∈Y2
ω(y), Y2 = {x ∈ X2 : Φt (x) ∈ X2,∀t > 0},

has an acyclic isolated covering M = ⋃m
k=1 Mk. If each part Mk of M is a weak

repeller for X1, then X2 is a uniform strong repeller for X1.
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Lemma B.2 If RSC > 1 > RRC (defined in (7) and (8)), and c > max{c∗, c̃∗} (c∗ >

0 is defined by Lemma A.1, c̃∗ > max{2√dSU PSU (0), 2
√
dST PST (0)}) hold. Let

Ws(E0) denote the stable manifold of system (16) at the equilibrium E0, then we
have

Ws(E0) ∩ X1 = ∅,

where E0 = (S0, 0, 0, 0, 0, 0, 0, 0) and ∅ denotes the empty set.

Proof First, we calculate the Jacobian matrix of system (16) at E0 as follows:

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0
μ
dS

c
dS

βS S0

dS
0 βSδS0

dS
0 βR S0

dS
0

0 0 0 1 0 0 0 0

0 0 kU+μ−(1− f )βS S0

dSU
c

dSU
−(1− f )βSδS0

dSU
0 0 0

0 0 0 0 0 1 0 0

0 0 − f (1−r)βS S0

dST
0 kT +μ− f (1−r)βSδS0

dST
c

dST
0 0

0 0 0 0 0 0 0 1

0 0 − f rβS S0

dR
0 − f rβSδS0

dR
0 kR+μ−βR S0

dR
c
dR

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let

J11 =
(

0 1
μ
dS

c
dS

)

, J33 =
(

0 1
kR+μ−βR S0

dR
c
dR

)

,

J22 =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
kU+μ−(1− f )βS S0

dSU
c

dSU
−(1− f )βSδS0

dSU
0

0 0 0 1
− f (1−r)βS S0

dST
0 kT +μ− f (1−r)βSδS0

dST
c

dST

⎞

⎟
⎟
⎟
⎠

.

Obviously, the characteristic polynomial of J will be determined by the characteristic
polynomial of J11, J22 and J33. That is to say, the eigenvalues of J consist of the
eigenvalues of J11, J22 and J33, so we consider the characteristic equations of J11, J22
and J33 and calculate their eigenvalues, respectively.

Upon a direct computation, one is able to verify that J11 and J33 have eigenvalues

λ±
11 = c ± √

c2 + 4dSμ

2dS
, λ±

33 = c ± √
c2 + 4dR(kR + μ)(1 − RRC )

2dR
.

J11 has one positive eigenvalue λ+
11 and a negative eigenvalue λ−

11, the eigenvector
of matrix J corresponding to the negative eigenvalue λ−

11 is (1, λ−
11, 0, 0, 0, 0, 0, 0)

T .
When RRC < 1, J33 has one positive eigenvalue λ+

33 and a negative eigenvalue λ−
33,

the corresponding eigenvector to λ−
33 is (0, 0, 0, 0, 0, 0, 1, λ−

33)
T .

In addition, the characteristic equation of J22 is H(λ) := PSU (λ)PST (λ)− γ = 0,
where PSU (λ) = dSUλ2 − cλ + (1 − f )βS S0 − (kU + μ),
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PST (λ) = dST λ2 − cλ + f (1 − r)βSδS0 − (kT + μ) and γ = (1 − f )β2
Sδ f (1 −

r)(S0)2.
It is easy to verify that RSC > 1 if and only if A(S0) < 0, where A(S0) =

H(0). From Lemma 2.1 (e) in Zhang (2017), it follows that when c ≥ c̃∗ >

max(2
√
dSU PSU (0), 2

√
dST PST (0)), J22 has only one negative eigenvalue, denote

by λ−
22. Suppose that α = (α1, α2, α3, α4, α5, α6, α7, α8)

T is the eigenvector of matrix
J corresponding to λ−

22, wherein (α3,α4,α5,α6)
T is the eigenvector of matrix J22 cor-

responding to λ−
22, then the relationship among the components αi , i = 3, 4, 5, 6 can

be described by

λ−
22α3 = α4, PSU (λ−

22)α3 = −G0
23α5, PST (λ−

22)α5 = −G0
32α3, λ−

22α5 = α6,

(47)
where G0

23 = (1 − f )βSδS0,G0
32 = f (1 − r)βS S0.

It follows from (47) that (α3, α4, α5, α6) has the form

(
G0

23, λ
−
22G

0
23,−PSU (λ−

22),−λ−
22PSU (λ−

22)
)

or equivalent form (G0
32, λ

−
22G

0
32,−PST (λ−

22),−λ−
22PST (λ−

22)). From Lemma 2.1 (e)
in Zhang (2017), we know that PSU (λ−

22) > 0 when RSC > 1 and c ≥ c̃∗. So, α3 and
α5 have the opposite sign.

If λ−
11, λ−

22 and λ−
33 are not equal to each other, the stable subspace of the

linearized system of (16) at E0 is spanned by (1, λ−
11, 0, 0, 0, 0, 0, 0)

T , α and
(0, 0, 0, 0, 0, 0, 1, λ−

33)
T . In view of α3α5 < 0, λ−

11 < 0 and λ−
33 < 0, together with the

tangency of stable manifold to the stable subspace in stable manifold theorem (Perko
2001), then we have Ws(E0) ∩ X1 = ∅.

If only two of λ−
11, λ

−
22 and λ−

33 are equal or all three are equal, without loss of gener-
ality, we suppose that λ−

22 = λ−
11 or λ−

22 = λ−
11 = λ−

33. Since λ−
22 is a simple eigenvalue

of J22 and a multiple eigenvalue of J with multiplicity 1 or 2, then the stable subspace
of the linearized system of system (16) at E0 is spanned by (1, λ−

11, 0, 0, 0, 0, 0, 0)
T ,

α̃ and (0, 0, 0, 0, 0, 0, 1, λ−
33)

T , where the elements α̃3 and α̃5 of the eigenvector α̃

satisfy α̃3α̃5 < 0 by (47). Similar to the above discussion, we can get the conclusion
that Ws(E0) ∩ X1 = ∅. Thus, the proof of the lemma is completed. ��

C Lemmas C.1 and C.2

Lemma C.1 Suppose that RC > 1, Ri �= 1, i = SC, RC are satisfied. For any c > 0,
if (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) is a nonnegative semi-traveling wave of the diffusive
model (2) satisfying the asymptotic boundary condition (13), then there exists a positive
constant η such that

sup
ξ∈R

{|S0 − S(ξ)|e−ηξ } < +∞, sup
ξ∈R

{|I j (ξ)|e−ηξ } < +∞, j = SU , ST , R. (48)
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Proof Since nonnegative travelingwave (S(ξ), ISU (ξ), IST (ξ), IR(ξ)) of the diffusive
model (2) satisfies the boundary condition (13), we have, as ξ → −∞,

(S, VS, ISU , VSU , IST , VST , IR, VR)(ξ) → Ē0(S0, 0, 0, 0, 0, 0, 0, 0).

It is easy to calculate the characteristic polynomial of the linearized system of
equivalent system (16) of wave Eq. (36) at Ē0 as follows

PS(λ)H(λ)PR(λ) = 0, (49)

where PR(λ) = dRλ2 − cλ + βRS0 − (kR + μ).
When RRC �= 1, we know that the roots of the polynomials PS(λ) = 0 and

PR(λ) = 0 have no zero real part. Next, we determine whether the polynomial
H(λ) = PSU (λ)PST (λ) −γ = 0 has a eigenvalue with zero real part. Since
H(0) = PSU (0)PST (0) − γ = (kU + μ)(kT + μ)(1 − RSC ) �= 0 when RSC �= 1,
λ = 0 is not the root of H(λ) = 0. By H(λ) = 0, we get the following quartic
polynomial of λ

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (50)

where

a3 = −c(dSU + dST )

dSUdST
, a2 = c2

dSUdST
+ (1 − f )βS S0 − (kU + μ)

dSU

+ f (1 − r)βSδS0 − (kT + μ)

dST
,

a1 = −c[ f (1 − r)βSδS0 − (kT + μ) + (1 − f )βS S0 − (kU + μ)]
dSUdST

,

a0 = [(1 − f )βS S0 − (kU + μ)][ f (1 − r)βSδS0 − (kT + μ)]
dSUdST

− (1 − f )βSδS0 f (1 − r)βS S0

dSUdST
.

Suppose that (50) has a pure imaginary root, denoted by λ = βi, β �= 0, then we
substitute λ = βi into (50), yielding

β4 − a2β
2 + a0 = 0, a1 = a3β

2. (51)

On account of β2 > 0 and a3 < 0, we have a1 < 0, implying

f (1 − r)βSδS
0 − (kT + μ) + (1 − f )βS S

0 − (kU + μ) > 0.

Combining the two equalities in (51), we obtain

a21 + a0a
2
3 − a1a2a3 = 0. (52)
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Through calculations, we can get the following inequality

a21 + a0a
2
3 − a1a2a3

= − c2

d3SU d
3
ST

�(dSU + dST )[ f (1 − r)βSδS
0 − (kT + μ) + (1 − f )βS S

0 − (kU + μ)]c2

+ {dSU [ f (1 − r)βSδS
0 − (kT + μ)] − dST [(1 − f )βS S

0 − (kU + μ)]}2
+ (1 − f )βS S

0 f (1 − r)βSδS
0(dSU + dST )2�

< 0, for c > 0,

which is in contradiction with (52). Thus, when RC > 1 and Ri �= 1, i = SC, RC ,
the characteristic polynomial (49) has no roots with zero real parts for any c > 0,
implying that the equilibrium Ē0 is hyperbolic. By using stable manifold theorem
in Perko (2001), we know that there exists a positive constant η such that (48) holds.
The proof is therefore completed. ��
Lemma C.2 For any c ∈ (0, c∗

2), there does not exist positive real root λ
∗ for

H(λ) = PSU (λ)PST (λ) − γ = 0

such that PSU (λ∗) < 0 and PST (λ∗) < 0, where

c∗
2 := infλ>0

P̃SU (λ)+P̃ST (λ)+
√

(P̃SU (λ)−P̃ST (λ))2+4γ
2λ ,

P̃SU (λ) = dSUλ2 + (1 − f )βS S0 − (kU + μ),

P̃ST (λ) = dST λ2 + f (1 − r)βSδS0 − (kT + μ).

(53)

Proof Suppose that H(λ) = PSU (λ)PST (λ) − γ = 0 has a positive real root λ∗,
satisfying

H(λ∗) = PSU (λ∗)PST (λ∗) − γ = 0, (54)

and PSU (λ∗) < 0, PST (λ∗) < 0.
Since 0 < c < c∗

2, by the definition of c∗
2 in (53), we have

cλ∗ <
P̃SU (λ∗) + P̃ST (λ∗) +

√
(P̃SU (λ∗) − P̃ST (λ∗))2 + 4γ

2
.

Then, we obtain

0 > PSU (λ∗) = P̃SU (λ∗) − cλ∗

>
P̃SU (λ∗) − P̃ST (λ∗) −

√
(P̃SU (λ∗) − P̃ST (λ∗))2 + 4γ

2
,

and 0 > PST (λ∗) = P̃ST (λ∗) − cλ∗ >
P̃ST (λ∗)−P̃SU (λ∗)−

√
(P̃SU (λ∗)−P̃ST (λ∗))2+4γ
2 .

It follows that 0 < PSU (λ∗)PST (λ∗) < γ, which is in contradiction with (54).
Thus, we complete the proof of the lemma. ��
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