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Abstract: Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily
because of association with a variety of incurable human and animal diseases (termed amyloidoses),
including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion
diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect
hundreds of millions of people all over the world. However, recently it has become evident that
many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to
organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals.
These amyloids are involved in vital biological functions such as long-term memory, storage of peptide
hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm
formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in
biological and pathological processes. This review is focused on functional amyloids in mammals and
summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
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1. Introduction

For a long time, the term “amyloid” was used to describe extracellular tissue deposits of protein
fibrils with a characteristic appearance in electron microscope (EM), typical X-ray diffraction pattern,
and an affinity to Congo red dye (CR) resulting in green-yellow birefringence [1]. It was thought
that amyloids are primarily associated with human and animal diseases (termed “amyloidoses”).
Later studies broadened the term “amyloid” and emphasized its structural characteristics so that
now it is generally used for the cross β-sheet non-covalent unbranched fibrous protein polymers
formed both in vivo and in vitro. In an amyloid, β strands of repeated units are placed perpendicular
to the fiber axis, forming an intermolecular cross-β sheet [2]. An amyloid polymer can immobilize
non-amyloid monomeric protein molecules of the same sequence, and thus grow via a process of
nucleated polymerization. Due to its highly ordered structure, amyloid fibrils as well as oligomers
are characterized by resistance to ionic detergents (such as sodium dodecyl sulfate (SDS) or sarcosyl)
and some proteases. In addition, they demonstrate an affinity to dyes such as CR, thioflavin T (ThT),

Life 2020, 10, 156; doi:10.3390/life10090156 www.mdpi.com/journal/life

http://www.mdpi.com/journal/life
http://www.mdpi.com
https://orcid.org/0000-0002-7428-120X
https://orcid.org/0000-0002-7825-273X
https://orcid.org/0000-0002-8934-9051
https://orcid.org/0000-0001-6203-2006
http://dx.doi.org/10.3390/life10090156
http://www.mdpi.com/journal/life
https://www.mdpi.com/2075-1729/10/9/156?type=check_update&version=2


Life 2020, 10, 156 2 of 32

and thioflavin S (ThS). Amyloids can also be detected with some amyloid-specific antibodies [3] or
aptamers [4]. To date, 37 amyloidogenic proteins that are associated with about 70 different human
diseases are known [5]. The most important amyloid-associated diseases include Alzheimer’s and
Parkinson’s diseases, type 2 diabetes, and transmissible spongiform encephalopathies (TSEs), or prion
diseases, such as Creutzfeldt-Jakob disease [6]. Recent data indicate that amyloids are also associated
with preeclampsia and some forms of cancer, although this is unclear whether amyloids cause these
diseases or arise as a consequence of the disease and serve as biomarkers [7–11].

In addition to pathogenic amyloids, amyloids participating in a wide range of physiological
functions have been identified in various organisms, from bacteria to higher eukaryotes such
as vertebrates, plants, and humans. These amyloids are termed as functional amyloids [12–14].
For example, the CPEB proteins of Aplysia californica, as well as its orthologs in Drosophila melanogaster
and Mus musculus (see below) form amyloid-like SDS-resistant oligomers that are involved in the
maintenance of long-term memory [15–17]. Spider spidroins form amyloid-based insoluble silk fibrils
that are stronger than steel [18]. The protein Luminidependens of the plant Arabidopsis thaliana,
that is capable of forming amyloid-like oligomers, is involved in the regulation of flowering by
temperature [19]. Notably, this protein is a chromatin remodeler [20], albeit a connection of this
function to amyloidogenecity is still hypothetical [21]. Curli proteins in Escherichia coli are assembled
on a bacterial cell surface as a part of the extracellular matrix during biofilm formation and control
resistance to a variety of environmental stresses [22,23].

In yeast and filamentous fungi, amyloid- based protein polymers can be transmitted from cell
to cell during a cell division or by a cytoplasm exchange and control phenotypically detectable
traits [24–26]. These self-perpetuating amyloids provide a basis for protein-based inheritance and are
termed yeast (or fungal) prions. While some of them are clearly pathogenic, others are hypothesized
or (in a very few cases) shown to be associated with adaptive roles [27]. Specifically, prion [Het-s]
of the fungus Podospora anserina is involved in the control of vegetative incompatibility through the
destruction of a mycelium not containing the prion at the position of contact in a manner similar to
programmed cell death [28,29].

Constructs based on the translation termination factor Sup35, that can convert into the prion
form termed [PSI+], are frequently applied to studying amyloid properties of mammalian and human
proteins (see [30] and below).

A significant fraction of proteins involved in transcriptional regulation both in yeast and
mammalian cells contain sequences, enriched by Q and/or N residues that are similar to prion
domains (PrDs) of yeast prions [31–33] and therefore termed PrD-like domains (PrDL). However,
the abilities of the majority of these proteins to form an amyloid and their potential role as amyloids
are not studied.

To conclude, literature data indicate that the ability to form amyloids under physiological
conditions is a characteristic feature of many proteins (including a variety of human proteins) [34],
that could be linked to both pathological processes and normal biological functions. This review
summarizes data on functional amyloids in mammals and describes approaches for identifying new
potentially amyloidogenic proteins and domains.

2. Functional Amyloids in Mammals

2.1. Peptide Hormones in Secretory Granules

Storage of hormones inside the cell can be challenging due to their chemical activity. Some protein
and peptide hormones of secretory cells such as neuroendocrine cells and exocrine cells can be stored
for a long time in high concentration in membrane-enclosed secretory storage granules (StGs) until an
outside signal for their excretion to the extracellular space is received. The first direct evidence for
the storage of hormones and pro-hormones in granules has been reported for insulin by Steiner [35].
Further investigation indicated that growth hormone (GH) [36], prolactin [37], adrenocorticotropic
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hormone (ACTH) [38], and parathyroid hormone [39] form storage granules as well. Maji and
colleagues later showed that over 30 of pro-hormones form amyloid structures during storage [40].

The formation of the StG starts from the self-association of hormone molecules in the Golgi
complex [41]. As a rule, each StG contains insoluble aggregates of one secretory protein or peptide [42].
Amyloid properties of proteins forming these aggregates have been studied by Riek lab [14,40],
by employing a set of approaches such as ThT and CR binding, luminescent conjugated polyelectrolyte
probes (LCP), electron microscopy, circular dichroism (CD) spectroscopy, X-ray diffraction. 42 peptide
hormones associated with StGs of multiple species and organs were analyzed. It has been shown
that most of them can form amyloid aggregates [40]. Aggregation of some peptide hormones and/or
prohormones can be initiated spontaneously after reaching a critical concentration threshold at pH 5.5,
reflecting conditions in StGs. However, the presence of helper molecules such as glycosaminoglycans,
GAGs (for example, heparin), was required for most peptide hormones, presumably for stabilizing the
amyloid conformation [40]. Prolactin did not form aggregates in the presence of heparin but showed
an aggregation in the presence of chondroitin sulfate A [40], which is a GAG compound found in
prolactin-specific granules [43]. An aggregation of ACTH required the presence of an amyloid form of
β-endorphin. ACTH andβ-endorphin are processed from the same prohormone (proopiomelanocortin)
and are stored in StGs together. Besides, aggregation of peptide hormones was also affected by bivalent
metal cations [44]. In particular, Zn(II) was shown to initiate an early oligomerization of GH in the
pituitary of rat, which may facilitate GH aggregation and amyloid formation [45].

Studies of StGs of the mouse pituitary tumor neuroendocrine cell line AtT20 confirmed their
amyloid nature. Purified granules from AtT20 cells reacted to amyloid-specific OC antibodies, and were
stained with ThT and CR dyes (also showing the birefringence in the latter case) [45]. In addition,
X-ray diffraction of the membrane-less secretory StGs pattern was typical for the cross-β structure.
Moreover, β-endorphin, GH, oxytocin, prolactin, vasopressin, and ACTH were stained by ThS or
reacted to fibril-specific antibody OC in the mouse pituitary tissue [40]. It was also shown that amyloid
fibrils formed by hormones can release monomers [46] if pH is increased to 7.4, the same pH to which
hormones are exposed during secretion.

Some mammalian amyloids, including aggregates of the Aβ peptide (associated with Alzheimer’s
disease), are toxic to neuronal cells [47]. Maji et al. demonstrated that typically, amyloid aggregates
of peptide hormones formed in vitro were less toxic to culture neuronal cells than Aβ aggregates,
although some aggregated hormones (for example, ovine CRH, mUcnIII, hUcnIII, human GRF,
and glucagon-like peptide-2), demonstrated toxicity comparable to Aβ, whereas aggregated glucagon
was much more toxic than Aβ in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay [40]. Apparently, for these hormones condensation in StGs serves as a tool counteracting the
toxicity of aggregated hormones to the cell.

Taken together, in vitro and in vivo data confirm the amyloid nature of protein and peptide
hormones stored in StGs. Due to the high stability of amyloids, StGs can exist for long periods until
the cell receives a signal to excrete hormones, leading to the disaggregation of amyloid assemblies into
a functional soluble hormone, that is promoted by an increase in pH from 5.5 (dormant StGs) to 7.4
(blood). In addition, extracellular chaperones may be involved in disaggregation [14,40].

2.2. PMEL Protein and Melanin Biosynthesis

Melanins are chemically heterogeneous pigment molecules found in most organisms. There are
three major types of melanin in mammals: eumelanin, neuromelanin, and pheomelanin. Eumelanin
and pheomelanin are the ubiquitous pigments present in skin, eye, and hairs that effectively absorb
ultraviolet (UV) and visible light [48,49] and protect against sunlight, UV radiation, small toxic
molecules as well as involved in thermoregulation and control of coloring. Neuromelanin is present in
the human central nervous system [50–52], specifically, it is found in large quantities in neurons of the
Substantia nigra, ventral tegmental area, and Locus coeruleus [53–55]. It has been linked to etiology and
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pathogenesis of Parkinson’s disease [56,57]. Neuromelanin is composed of lipid, melanine, and peptide
components, with the melanic portion being a mixture of pheomelanin and eumelanin [58,59].

Melanin’s synthesis takes place in melanosomes, specialized acidic organelles of pigmented
cells (melanocytes). Melanosomes are derived from lysosomes. Formation of luminal amyloid fibrils
originated from the melanocyte-specific pre-melanosomal protein PMEL17 has been detected during
melanosome biogenesis and maturation, confirmed by ThS and CR staining of melanosomes [60].
Amyloid matrix of PMEL fibrils apparently serves as a scaffold for melanin polymerization,
thus promoting melanin synthesis; it is also implicated in sequestering the toxic intermediates
of melanin biosynthetic pathway [60–62]. These toxic intermediates possess some structural similarity
to the amyloid-binding dye ThT. Binding to PMEL17 accelerates the conversion of intermediate
5,6-dihydroxyindole into the covalent melanin polymers [60]. PMEL17-derived amyloid fibrils are
mainly detected during the eumelanin production, while PMEL17 participation in the formation
of neuromelanin and pheomelanin remains questionable, as PMEL17 fibrils were not detected in
pheomelanosomes [62,63]. PMEL17 deficiency did not affect production of pheomelanin [64] and
PMEL17 has not been found at significant levels in neuromelanin-producing organelles [65]. However
isolated neuromelanin shows a typical cross-β sheet structure X-ray diffraction pattern of 4.7 Å,
indicating the presence of amyloid fibrils [66]. The neuromelanin-producing organelles contain
alpha-synuclein and a PMEL homolog, the glycoprotein NMB, that can produce amyloid fibrils,
which probably starts neuromelanin synthesis [65].

Eumelanosome maturation includes four different stages, and it is accompanied by functional
and morphological changes [67]. Stage I and stage II melanosomes are referred to as
immature/premelanosomal compartments, and lack pigment. Melanosome maturation is accompanied
by an increase in intraluminal pH, from pH 4 in stages I and II to near neutral pH upon full
maturation [68]. PMEL17 fibrils start to form in stages I and II, and are organized into parallel sheets
that elongate the compartment. An acidic environment of organelles at I and II stages is optimal for
the assembly of PMEL17 amyloid fibrils. However, melanin biosynthesis is suppressed at low pH,
therefore it begins at stage III melanosomes and is complete at stage IV [63,69].

PMEL is a melanocyte-specific type I transmembrane glycoprotein. PMEL contains a short
cytoplasmic C-terminal domain, a transmembrane domain, a luminal N-terminal domain, and an
N-terminal signal peptide. The long luminal domain consists of four sub-domains: (1) N-terminal
region (NTR), that contains 3 highly conserved N-glycosylation sites and 3 cysteine residues that might
form disulfide bonds; (2) polycystic kidney disease-like domain (PKD), that, as predicted, might adopt
β-sheet conformation [70]; (3) repeat domain (RPT) containing one conserved cysteine residues and 10
imperfect direct repeats of 13 amino acids sequence rich in glutamic acid, proline, serine, and threonine;
(4) Kringle-like domain (KLD), a cysteine-rich region that also has an N-linked glycosylation site
essential for protein folding and secretion [71].

PMEL17 fibril formation is tightly regulated and restricted to melanosomes, that allows the
protection of the cell from the potential toxic effect of an amyloid (Figure 1). During synthesis, PMEL17
protein is targeted to the endoplasmic reticulum (ER), and is modified via the removal of the signal
peptide, the addition of N-linked core oligosaccharides, and formation of disulfide bonds [72–74].
Then PMEL17 is transferred from ER to the Golgi complex, where it is O-glycosylated [75–78] and
transported to the premelanosomal vesicles [68,79]. Within the acidic premelanosomal compartment,
PMEL17 is proteolytically cleaved by a proprotein convertase, resulting in the large luminal α fragment
(Mα), encompassing residues 25-467 that cover NTR, PKD, and RPT sub-domains, and smaller integral
membrane β fragment (Mβ), encompassing residues 468-668 that cover the KLD sub-domain as
well as transmembrane and cytosolic domains. Mα and Mβ fragments remain linked by disulfide
bonds [80,81]. The Mβ transmembrane fragment is then cleaved by protease β-secretase 2 (BACE2) that
releases the Mα fragment, associated with a luminal part of Mβ (MβN), from the membrane [82–84].
Then a series of proteolytic cleavages of Mα produce smaller N-terminal MαN and C-terminal MαC
fragments, forming amyloid fibrils in acidic pH [85]. MαN contains the NTR and the PKD sub-domains,
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and the subsequent truncation at NTR leads to the formation of the PKD-containing fragment [86].
MαC is also further processed, resulting in a ladder of fragments [85,87].

Figure 1. The PMEL17 processing and formation of amyloid fibrils. The PMEL17 is cut in endoplasmic
reticulum and then transported to Golgi apparatus for O-glycosylation. Later in the acidic environment
of premelanosomes, the proprotein convertase cuts it to the Mα (an N-terminal ectodomain) and the
Mβ (the C-terminal polypeptide containing the transmembrane domain) fragments. The fragments
remain connected via the disulfide bond. The BACE2 cuts the Mβ fragment out of the membrane,
and so the Mα with the attached KLD domain becomes luminal. Serial cleavages later process the Mα

fragment into subfragments, which can create amyloid fibrils in premelanosome. NTR—N-terminal
region; PKD—polycystic kidney disease domain; RPT—proline, serine, threonine-rich repeat domain;
KLD—kringle-like domain; TM—transmembrane domain; C—cytoplasmic domain.

It is still being debated which PMEL17 region is a primary amyloid-forming region. The RPT
sub-domain had initially been proposed to form the amyloid core in vivo [85,87], and this has indeed
been shown that RPT fragment forms amyloid in vitro at acidic pH, resembling conditions at early
stages of the melanosome biogenesis [87–89]. Moreover, preformed fibrils can be rapidly dissolved at
neutral pH, which has been proposed as an evolutionary mechanism designed to prevent toxicity of
PMEL17 fibrils occasionally released into cytosol [87]. However, other researchers showed that the
RPT domain is dispensable for the amyloid formation in vivo, and point to the PKD domain (residues
201–314) [86] and/or core amyloid fragment (residues 148–223) [90] as potential amyloid-forming
regions, considering the RPT subdomain as a regulator of the matrix morphology, that maximizes the
surface area available for pigment [91]. Further work is needed to determine the which PMEL17 region
plays a primary role in the amyloid formation in vivo, although it is possible that different regions of
PMEL17 possess amyloid properties, that are involved in various aspects of melanosome biogenesis
and melanin production.

2.3. CPEB3 Protein and Long-Term Memory

Cytoplasmic polyadenylation element-binding (CPEB) protein has been implicated as a regulator
of local protein synthesis at active synapses in neurons of the mollusk Aplysia [92]. CPEB modulates
translation of mRNAs by regulating cytosolic mRNA polyadenylation (see [93,94] for review). Aplysia
CPEB [15] and the CPEB isoform Orb2 [16] in the fruit fly Drosophila are shown to be required for the
maintenance, but not for the formation, long-term memory and synaptic plasticity [95,96]. Notably,
Aplysia CPEB protein exhibits prion-like properties when expressed in yeast cells [97] and can form
amyloid-like oligomers, assembled into punctate structures in active synapses [15].



Life 2020, 10, 156 6 of 32

Human and mice genomes contain four CPEB coding genes (CPEB1-4). All mammalian CPEB
protein isoforms contain RNA-binding domains at the C-terminus, but only CPEB2 and CPEB3 contain
a glutamine (Q)-rich domain at the N-terminus [98]. Aggregation properties and regulation of mouse
CPEB3 have been studied in more detail. Similar to some other amyloidogenic proteins CPEB3 can
exist either as soluble monomer form or as a self-sustained oligomer or aggregate. Recombinant CPEB3
isolated from bacteria forms fibrils that bind CR and exhibit a green/yellow birefringence in polarized
light [99]. Expression of recombinant CPEB3 fused to yellow fluorescent protein or 3 x hemagglutinin
tag in yeast cells results in the formation of detergent-resistant aggregates [99], controlled by the
Q-rich domain of CPEB3 and depending on the chaperone Hsp104, required for the propagation of
endogenous yeast prions (see [26] for review).

CPEB3 has been shown to bind specific neuronal mRNAs, such as mRNAs for GluR2 and
beta-actin, and inhibit their translation [99,100]. Monoubiquitination of CPEB3 with Neuralized1
ubiquitin ligase (Neurl1) abolished CPEB3 dependent repression and activated translation [101].
The study of the CPEB3 conditional knockout (cKO) mice revealed that the CPEB3-modulated protein
synthesis is necessary for the maintenance but not for the acquisition of long-term memory [17].
Likewise, CPEB3 cKO does not affect the early phase of long-term potentiation (E-LTP) but inhibits the
formation of the late phase of long-term potentiation (L-LTP) that lasts more than 24 h and is dependent
on protein synthesis. The most interesting property of CPEB3 is its ability to transition from the soluble
to aggregated form in response to synaptic stimulation, which leads to the cessation of target RNAs
repression, and local activation of translation in active synapses [102]. Removal of the amyloidogenic
Q-rich domain of CPEB3 has been shown to repress the stimulation-induced changes in the CPEB3
activity; this repression has led to profound deficits in LTP and memory [17]. Taken together, these data
indicate that CPEB3 dependent upregulation of translation (supposedly due to CPEB3 conformational
changes in response to neuronal activity) is crucial for the retention of memories [102].

In its soluble form, CPEB3 is SUMOylated and acts as a translation inhibitor in cytoplasmic P-bodies,
non-membrane cell compartments accumulating translationally repressed mRNAs and promoting
their degradation [103–105]. SUMOylation of CPEB3 in hippocampal neurons is decreased in response
to the stimulation of learning and to the dendritic activity, accompanied by an increase in the levels
of Neurl1, which leads to ubiquitination of CPEB3 and its translocation to polysomes. Translational
upregulation coincides with the appearance of detergent-resistant CPEB3 aggregates [101,103,104].
As a result, protein synthesis is induced and LTP is maintained for several days [17,99]. Interestingly,
SUMO-2 mRNA is also found among mRNAs upregulated in these conditions, which suggests the
existence of a negative feedback loop including CPEB3 and SUMO proteins, a possible regulatory
mechanism preventing excessive aggregation of CPEB3 [103].

According to the model proposed by Si and Kandel [102], the CPEB-dependent activation of
translation in active synapses is mediated by an aggregated form of CPEB, as aggregates contain the
exposed RNA binding domain [102]. Binding of multiple mRNAs on the surface of the fibrous CPEB3
scaffold could allow for the coordinated translation of a variety of coregulated mRNAs, products of
which are required for the stabilization of synaptic growth. It is however unclear whether self-sustaining
fibrillar amyloids or small oligomers are crucial for translational activation. Existing data are also
compatible with an alternative hypothesis, suggesting that aggregation of CPEB induces translation
via downregulating the repressive activity, exhibited by the soluble form of CPEB [106]. Besides, it has
been reported that the CPEB-dependent activation of translation in Aplysia is required only during the
first 72 h after training; after that period, protein synthesis inhibitors and CPEB knockdowns no longer
affect synaptic growth [107]. Thus, further studies are needed to decipher the exact mechanism by
which CBEP3 oligomerization and/or aggregation modulate long-term potentiation and memory.

A recent study of Hervas and colleagues confirmed an amyloid structure, revealed a formation
of the amyloid core, and thoroughly described a mechanism of activity [108]. According to the
group, the Orb2 filament was composed of a hydrophilic core with a stabilization via interdigitated
glutamines [108].
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2.4. RNA-Binding Protein FXR1

Fragile X-related Proteins (FXR1 and FXR2) are RNA-binding proteins that regulate transcription,
translation, and RNA stability [109–111]. FXRs are associated with ribosomes, predominantly with
the large (60S) ribosomal subunits [112], and with the RNA-induced silencing complex via Argonaute
2 (AGO2) [113,114]. Small FXR1/AGO2-containing ribonucleoprotein (RNP) granules associate with
TNFα AU-rich elements (ARE) facilitating reporter translation under conditions of growth inhibition.
However, in dividing cells, FXR1 forms insoluble complexes and the TNFα 3′-UTR-containing reporter
RNA translation is blocked [115,116]. The repression of translation is accompanied by translocation
of FXR1 from the AGO2-bound polysomal mRNP to the P-body positive foci [115]. In addition,
FXR1 is possibly involved in the formation of stress granules known to accumulate stalled translation
initiation complexes during unfavorable conditions [117,118]. It was shown that the highly conserved
N-terminus of human FXR proteins forms aggregates with amyloid properties in vitro [119].

Using PSIA-LC-MALDI approach (proteomic screening and identification of amyloids/liquid
chromatography coupled with mass-spectrometry) for searching amyloids in the rat brain, Sopova et al.
observed that FXR1 forms SDS-resistant aggregates of amyloid type [120]. Authors demonstrated that
FXR1 is binding CR, ThS, and ThT in rat brain cells, as well as in human neuroblastoma cell culture.
Formation of the amyloid form of FXR1 in tissues possibly depends on the conserved N-terminal
fragment of the protein. It was suggested that an aggregated state of FXR1 is important for the
inhibition of translation and protection of mRNA from degradation [120], which could be crucial for
long-lived cells such as neurons.

2.5. Zona Pellucida Proteins

Zona Pellucida (ZP) is an extracellular fibrillar coat of oocytes that plays a vital role during
fertilization and preimplantation development. ZP consists of three (mouse) or four (human)
glycoproteins (ZP1–4) that are produced by growing oocytes [121,122]. Each ZP protein contains a
ZP polymerization domain that controls the formation of fibrils and their assembly into a porous
three-dimensional ZP matrix [123]. Mouse ZP1 and ZP2 are shown to form heterodimers with ZP3,
which are assembled into long filaments cross-linking through ZP1 homodimers [124–126]. Isolated
ZP possess amyloid features, as shown by their reaction to amyloid-specific antibodies, CR binding
and green/yellow birefringence, ThS binding, and detergent resistance [127]. So, all three mice ZP
proteins are probably included in the ZP matrix in an amyloid shape.

Comparison of the ZP3 polymerization domains among various vertebrates from fish to humans
demonstrated the lack of overall sequence conservation; however, conserved stretches were found in
sites that are predicted to be amyloidogenic [127]. Some of these sites are localized in regions for which
the formation of β-strands is expected according to the crystal structure of monomeric chicken ZP3,
including regions important for the interaction between ZP subdomains [128]. Other amyloidogenic
sites have been found in regions located outside of the ZP polymerization domain, including ZP-N
repeats, which mediate interactions with spermatozoid cells [129]. None of ZP proteins contains QN-rich
prion-like domains that would be similar to aggregation-prone sequences of yeast prion proteins.

Like some other functional amyloids, ZP can switch between distinct functional states, as a part
of the cell physiological response to external factors. After the sperm and egg fusion, a cascade of
biochemical reactions is launched, leading to the exocytosis of cortical vesicles that release proteases
and other enzymes into the perivitelline space between ZP and the cell membrane and modify ZP
by cleaving the polypeptide fragment from ZP2 [130]. As a result, additional spermatozoa are no
longer able to penetrate ZP. Transgenic female mice with truncated ZP2 are sterile [131]. The presence
of 6–8 amyloidogenic sites in each of the ZP proteins generates a potential for a variety of cross-β
structures [132].

ZP amyloids may protect the oocyte after fertilization when it is surrounded by proteases and
other hydrolytic enzymes released from the sperm. The protective function of ZP amyloids is probably
required in subsequent processes of early embryogenesis since ZP holds together the blastomeres
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devoid of cell contacts [133,134]. In addition, based on the fact that the acrosomal matrix (insoluble
fraction in the acrosome of spermatozoon) has an amyloid cortex, which includes ZP binding proteins,
it is suggested that sperm-ZP binding can also occur through amyloid-amyloid interactions [132].

2.6. RIP1 and RIP3 Proteins

RIP1 and RIP3 are critical receptor-interacting serine/threonine kinases responsible for mediating
necroptosis [135–137], a process that has been implicated as an important driver of inflammation and
pathology in certain human diseases, such as ischemic brain injury, immune system disorders, some
forms of neurodegeneration, and cancer [138–140]. Necroptosis is one of the regulated forms of necrosis.
Conventionally, necrosis was considered as unprogrammed cell death in contrast to the standard
programmed cell death via apoptosis, however recent data uncovered multiple caspase-independent
pathways of regulated necrosis, including RIP1/RIP3-mediated necroptosis [136,141,142]. Both RIP1
and RIP3 contain the N-proximal Ser/Thr kinase domains (KDs), encompassing aa residues 17–289
(RIP1), or 21–287 (RIP3), and RIP homotypic interaction motifs, (RHIMs) encompassing aa residues
531–547 (RIP1) or 450–466 (RIP3) [143]. RIP1 also contains a C-terminal death domain” (DD) located at
aa positions 583–669 and implicated in the recruitment of RIP1 into the TNFR1 (tumor necrosis factor
receptor 1) signaling complex [144–146]. RIP1 and RIP3 can form mixed amyloid fibrils mediated by
their RHIM domains, and this amyloid-based complex actually serves as an inducer of necroptosis [137].
The amyloid nature of the RIP1/RIP3 complex was confirmed in vitro by its ability to bind ThT and CR,
circular dichroism, infrared spectroscopy, X-ray diffraction pattern, and solid-state NMR analysis, as
well as in vivo by using ThT staining of RIP1/RIP3-containing puncta in necrotic HeLa cells [147].

It appears that various modifications of RIP1 determine various cell fates, such as survival,
apoptosis, or necroptosis. For example, ubiquitination of RIP1 promotes cell survival due to activation
of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases, while non-ubiquitinated RIP1
induces the caspase-8-mediated apoptosis pathway [148]. Amyloid RIP1/RIP3 complex, also known
as necrosome or ripoptosome is formed in the conditions when caspase-8 is inhibited [136]. During
necrosome formation, RIP1 and RIP3 autophosphorylate and transphosphorylate each other [136,149].
Then, RIP3 phosphorylates the mixed lineage kinase domain-like protein (MLKL) [143], resulting in
its oligomerization and translocation in the membrane that causes pore formation and disruption of
membrane integrity [139,150]. Interestingly, some viruses such as Herpes Virus 1 [151] or Epstein–Barr
Virus [152] interfere with amyloid formation via RHIM-less proteins mimicking RIP1 and RIP3.

Some mutations in the RHIM domains of RIP1 or RIP3 impair amyloid formation and protect
cells from necroptosis in vitro, thus signifying the importance of an amyloid formation for the process
of necroptosis [147]. Presumably, RIP1 and RIP3 form hetero-amyloid structures. High-resolution
solid-state NMR structural studies of amyloids formed by RIP1, RIP3, or RIP1 and RIP3 together show
that the RIP1/RIP3 heteroamyloid is energetically favorable in comparison to either homoamyloid [153].
To date, the immunoprecipitation method revealed that RIP1/RIP3 can compose a heteroamyloid [149],
although the structural and functional relationships require further clarification. It is also worth noting
that the RHIM motifs of RIP proteins are homologous to the prion domain of Het-s, a prion protein of
the fungus Podospora anserina, that is also involved in the programmed mycelium destruction process,
controlling the cytoplasmic incompatibility, a biologically advantageous process in fungi [154,155].
Proteins with similar domains and roles are also found in other fungi [156]. These findings point to the
evolutionary conservation of the amyloid-based triggering of programmed cell death.

2.7. MBP-1 Protein

Eosinophil major basic protein 1 (MBP-1) is a component of eosinophil membrane-enclosed
granules that are released in the inflammation foci. These granules also include two ribonucleases,
ECP and EDN/RNase2, and peroxidase EPO, which together participate in the destruction of bacteria,
viruses, and helminths [157,158]. Inactive MBP-1 is accumulated in granules in the form of amyloid-type
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aggregates that could be stained with ThT and conformation-specific antibodies [159]. The MBP-1
monomers aggregate in vitro, as visible by transmission electron microscopy [159].

When eosinophils are activated at the site of inflammation, granules are acidified, and their
contents are released into the extracellular space by piecemeal degranulation [157,160]. Acidification of
the granule contents promotes disassembly of insoluble aggregates into monomers and/or oligomers,
and therefore, conversion of MBP-1 into an active toxic form [159]. This secretion into the neutral
pH of cellular milieu favors binding of soluble MBP-1 to the surface of bacterial cells, resulting in the
membrane damage and bacterial death. It is believed that after binding to the bacterial membrane,
activated MBP-1 aggregates into toxic β-sheet-rich clusters.

In silico analysis reveals a 5-aa stretch in MBP-1 that shows a tendency to form β-crosslinks [159].
It was shown that MBP-1-derived peptide encompassing aa residues 18–45 [161] and including
this amyloidogenic stretch, causes toxicity via thinning the keratinocyte layer and promoting DNA
fragmentation in keratinocytes when injected into the mouse dermis [159].

Several diseases associated with massive eosinophil infiltration and degranulation, such as
eosinophilic asthma, atopic dermatitis, etc., are caused by MBP-1 toxicity to the host cells in inflammatory
loci [162,163]. Anti-amyloid antibodies and other amyloid-binding substances such as heparin
accelerate MBP-1 aggregation and significantly suppress the toxic effect of MBP-1 [164]. In addition,
large extracellular amyloid deposits of MBP-1 are often found both in tissues infiltrated with eosinophils
and in those with relatively little evidence for eosinophil-associated tissue damage [165,166]. Heparin is
known to be released by mast cells, granulated white blood cells, which are also present in the sites of
inflammation. This could serve as a mechanism accelerating aggregation and subsequent inactivation
of MBP-1, and therefore protecting tissues from the toxic effects of MBP-1 [159,167].

2.8. CRES and PAP

Functional amyloids have also been found in the epididymis, a convoluted tubule that is located
in the testis. During migration through the epididymis, spermatozoa undergo maturation and acquire
motility and the potential for fertility. The maturation of spermatozoa requires interactions with
proteins secreted by the epididymal epithelium. The epididymis is also involved in protection against
pathogens [168]. Proteins secreted by the epididymal epithelium produce an amyloid-based matrix,
consisting of multiple members of the family 2 cystatins, including the cysteine protease inhibitors
(such as cystatin C) and four members of the cystatin-related epididymal spermatogenic subgroup,
namely CRES, CRES2, CRES3 and cystatin E2 [169].

Several standard techniques such as binding to ThS, ThT, and anti-amyloid antibodies, X-ray
diffraction, and negative-stain transmission electron microscopy confirmed the amyloid nature of the
CRES-based epidydimal matrix [168]. However, the physiological function of these amyloids is not
clear. In mouse models, it has been demonstrated that disruption of the amyloid matrix can result in
epididymal pathology, including infertility [170,171], lysosomal storage disease, and decreased sperm
survival [172].

Amyloid structures were also found in the acrosomal matrix (AM) and an equatorial segment
of a spermatozoon, as confirmed in vivo by ThT staining and by resistance to SDS and formic acid
treatments [132]. AM contains fifty-nine proteins, including known amyloidogenic proteins such
as cystatin C, CRES (same as in epididymal matrix), lysozyme, transglutaminase 3, zonadhesin,
zona pellucida 3 receptor and others [173]. To date, it is not clear which proteins form amyloid in AM.
Moreover, the functional role of the amyloid structures in AM is not determined. It was suggested that
the AM amyloid could be crucial for the acrosome exosomal reaction during fertilization and/or for
proper orientation of signaling complexes during fertilization [129,172,174].

Prostate acidic phosphatase (PAP) is a semen-derived protein, which is not studied well yet,
but there is some evidence of the formation of amyloid structure by this protein and in particular,
by its region encompassing aa residues 248–286, based on X-ray scanning [175]. It tends to form
structured fibrils in the alkaline or neutral environment but produces amorphous agglomerates in the
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acidic environment [176]. PAP fibrils apparently produce a fibrous network in the vagina. Additional
evidence of the amyloid nature of PAP fibrils is that they are destroyed by anti-amyloid β agents
(such as (−)-Epigallocatechin-3-gallate [177]) or by yeast chaperone Hsp104 [178] involved in the
fragmentation of yeast amyloid-based prions [26,179].

It is possible that the PAP network is involved in antibacterial protection during sexual
intercourse [180]. Unfortunately for humankind, some viruses such as HIV or herpes virus have
adapted to this mechanism, so the naturally occurred protection mechanism now provides an increase
of virus infiltration 4–5 fold [181]. Locking the virus with the mechanism described above is one of the
promising ways to decrease virus spreading [182].

2.9. MAVS Proteins

The system composed of the MDA5 (melanoma differentiation-associated 5) protein and MAVS
(mitochondrial antiviral signaling protein) is involved in defense against viral agents and targets
genetic material or replication intermediates of many viruses [183]. MDA5-MAVS system is a primary
aim of the viral immune system. Hepatitis C [184], enterovirus 71 [185], and coxsackievirus [186] target
MDA5 and inhibit downstream signaling.

MDA5 includes the N-proximal caspase recruitment domains (CARDs), middle DExD/H-box
helicase domain, and C-terminal domain (CTD) [187]. MDA5 binds non-specifically to long nucleic
acid molecules that are frequently associated with viral invasion (such as dsDNA viral genomes
and viral replication products e.g., folded RNA) via its helicase and CTD domains and forms a
polar helical structure with a twist around dsDNA [188]. This conformation allows exposure of
CARDs, enabling them to bind MAVS proteins, anchored into membranes of mitochondria and
peroxisomes [189]. Thus, CARDs of MDA5 seed the MAVS filaments formation. MAVS protein consists
of the transmembrane domain, long cytosolic domain containing the CARD-binding site, and targeting
domain (TM). Amyloid nature of MAVS fibrils was confirmed by electron microscopy, resistance to
detergents (using semidenaturating detergent-agarose gel electrophoresis), and resistance to high
concentrations of proteases; MAVS depositions were also studied using fluorescence microscopy [190].
Polymeric (but not monomeric) MAVS activates downstream RLR signaling pathway by inducing
IRF3 and HF-kB via its TM domains [191,192]. Hou and colleagues report that one mitochondria with
polymerized MAVS can initiate the same process on another MAVS protein in another mitochondria
and so drastically increase signal propagation [190]. On the other hand, a cell can regulate the RLR
signaling activity with a truncated alternatively spliced form of MAVS (mini MAVS) antagonizing
activation by polymeric MAVS [193].

2.10. Fibrin

Fibrin is a polymeric protein component of blood clots, formed from fibrinogen via its cleavage by
thrombine protease, followed by polymerization. Fibrin mesh is necessary for the prevention of blood
loss and healing the wounds [194].

Fibrinogen is a hexamer of three pairs of polypeptide chains, Aα, Bβ, and γ [195,196]. During
fibrin formation, thrombine cleaves the small fibrinopeptides A and B (FpA and FpB) of fibrinogen
to yield the α, β and γ chains, forming the fibrin monomer. Then monomeric fibrin self-assembles
spontaneously to yield polymeric fibrin mesh [194].

The first evidence of amyloidogenic properties of fibrin was reported by Kranenburg et al. [197],
who demonstrated that in the conditions, mimicking the physiological situation, a peptide
corresponding to the aa positions 148–160 within the fibrin α chain can form amyloid fibrils in vitro,
as confirmed by ThT binding and X-ray diffraction patterns. The fibrin peptide and fibrin in the
polymerized cross-β form are binding tissue plasminogen activator (tPa), thus stimulating tPA-mediated
plasmin formation, and proteolysis of fibrin itself (fibrinolysis) in vitro [197]. Moreover, Kranenburg et al.
showed that some other proteins in cross-β form (Aβ, Human islet amyloid polypeptide (hIAPP) and
endostatin) also support tPA-mediated plasminogen activation [197].
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However, it is still not clear whether or not fibrin forms the amyloid-type cross-β structure in vivo.
Some authors suggested that polymerized fibrin retains α-helical secondary structure [198–201],
but can undergo structural transformation into cross-β amyloids under certain conditions, such
as mechanical stretching [202,203], in individuals with certain amyloidosis such as Alzheimer’s or
Parkinson’s diseases, type 2 diabetes and others [204–208], or in a result of a mutation [11,209–211].
Thus, the α-helix to β-sheet transition could be a sign of an anomalous blood clotting, leading to
hypercoagulability and hypofibrinolysis [212]. For example, Aβ (a peptide related to Alzheimer’s
disease, which is also present in blood) binds fibrinogen with high affinity, and such an interaction
induces abnormal fibrin clotting that is resistant to degradation [213–215]. These abnormal clots are
stained with ThT, but it is not clear whether fibrin in clots is in amyloid form or not, and whether
fibrinogen provokes aggregation of Aβ or vice versa [212]. According to these findings, amyloid
formation by fibrin is mostly related to pathological amyloidosis rather than to the fibrin function.
However, this issue remains unclear, and further investigation on the role of fibrin-based amyloid
fibrils in vivo is needed.

2.11. TIA-1 Protein and Stress Granules

During stress, cells have to suppress particular metabolic pathways and block some functions,
simultaneous increasing production of components needed for the defense against stress, such as heat
shock proteins. For the rapid reorganization of the translational machinery, eukaryotic cells transiently
assemble the non-essential translational pre-initiation complexes into formations, termed stress granules
(SGs). SGs contain mRNAs (not coding for the stress response proteins), translational factors, and
small ribosomal subunits, as well as some additional components, such as helicases, ribonucleases,
kinases, and signaling molecules [216]. After return to normal conditions, SGs disassemble; otherwise,
they can turn into solid aggregates [217].

SGs are non-membranous organelles, which possess features of liquid-liquid phase separation
assemblies (biocondensates); however, they are nucleated by a protein that has been historically named
T-cell intracellular antigen-1 (TIA-1) and is suspected to possess amyloid properties. TIA-1 contains
RNA-recognition motifs at the N-terminus and a Q/N-rich domain, similar to prion domains (PrDs) of
yeast proteins, and therefore termed the PrD-like domain (PrDL), at the C-terminus [218]. TIA-1 is
associated with mRNAs via the RNA-recognition motifs, while PrDL mediates interactions between
TIA-1 molecules. TIA-1 formed fibrillar structures in vitro; when expressed in yeast, mammalian TIA-1
produces filamentous detergent-resistant polymers with prion-like features and interacts with PrD
of the yeast translation termination factor Sup35 [218]. Notably, Sup35 PrD can substitute for the
TIA-1 PrDL domain in the process of SG nucleation in mammalian cells [219]. Additionally, Sup35
PrD fused to hemagglutinin tag is recruited into SGs in non-stressed cells of the N2a cell line [220].
Rayman and Kandel reported a transition of TIA-1 from the monomeric state into an SDS-resistant
(possibly amyloid-like) structure in a mouse brain [221]. Notably, TIA-1 regulates the synthesis of
stress-related chaperones Hsp40 and Hsp70 [219,222]. Still, it remains unclear whether TIA-1 polymers
formed in the process of SG formation represent amyloids.

The TIA-1-deficient mice are viable, but exhibit high mortality at early stages of development
and elevated susceptibility to lipopolysaccharide-associated toxicity [223], as well as alterations in
lipid dynamics [224]. The depletion of the TIA-1 also increases susceptibility to a viral infection,
in agreement with increased accumulation of SGs are the sites of viral assembly in wild-type cells [225].
Some viruses such as rhabdovirus modulate or inhibit SG formation [226]. There is also evidence of the
association of the AD-related amyloidogenic proteins, Aβ, and tau with SGs [227]. Tau, in particular,
plays an important role in the formation of solid aggregates via regulating TIA-1 distribution and
promoting SG formation and transition to the solid aggregated state [228].

Information about all the proteins described in this section is summarized in Table 1.
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Table 1. Functional mammalian amyloids considered in this review.

Protein Proposed Function in the
Amyloid Form Evidence for Amyloid Formation References

Peptide hormones Storage of hormones and
pro-hormones

In vitro: EM; Luminescent conjugated
polyelectrolyte probes; CD spectrum; ThT
and CR staining; X-ray fiber diffraction.
In vivo: CD spectrum; ThT, ThS, and CR
staining with birefringence; binding to
amyloid-specific antibody; X-ray fiber
diffraction.

[40]

PMEL17 Templates the synthesis of
melanin in melanosomes

In vitro: EM; CD spectrum; X-ray fiber
diffraction; ThT and CR staining,
In vivo: ThS and CR staining; resistance to
detergents.

[60,87]

CPEB3 Modulation of long-term
memory, synaptic plasticity

In vitro: ThS staining; CR staining with
birefringence; resistance to detergents.
In vivo: ThS staining; resistance to
detergents.
Heterologous model systems: yeast.

[99]

FXR1 Regulation of RNA stability and
translation

In vitro: EM; CR staining with
birefringence.
In vivo: ThT, ThS and CR staining;
resistance to detergents.
Heterologous model systems: E. coli
(C-DAG).

[120]

Zona pellucida proteins Oocyte protection and
facilitation of fertilization.

In vitro: EM; ThS staining; CR staining
with birefringence.
In vivo: X-ray fiber diffraction; resistance to
detergents; binding to amyloid-specific
antibodies; Protein aggregation disease
(PAD) ligand pulldown.

[127]

RIP1 and RIP3 Regulation of necroptosis

In vitro: CD spectrum; solid-state NMR
spectrum; X-ray fiber diffraction; ThT and
CR staining.
In vivo: ThT staining.

[147]

MBP-1 Storage of toxic antibacterial
protein

In vitro: EM; X-ray fiber diffraction; ThT
staining; conjugation to luminescent
polyelectrolyte probes.
In vivo: CR staining with birefringence;
binding to amyloid-specific antibody.

[159]

CRES Spermatozoa maturation

In vitro: EM; X-ray fiber diffraction; ThT
staining; binding to amyloid specific
antibody.
In vivo: ThS staining; PAD ligand
pulldown.

[169]

Sperm acrosomal matrix
(AM)

The acrosome reaction during
fertilization of oocytes.

In vivo: EM; X-ray fiber diffraction; ThS
staining; binding to amyloid-specific
antibodies.

[173]

PAP Protective network in vaginal
pathways

In vitro: CD spectrum; ThT staining; CR
staining with birefringence; X-ray
diffraction; atomic force microscopy;
hydrogen-deuterium exchange; deep
ultraviolet Raman resonance spectra.

[175]

MAVS Downstream signaling in
anti-viral pathways

In vitro: EM; resistance to detergents;
protease resistance. [190]

Fibrin Component of blood cloth In vitro: CD spectrum; ThT and CR
staining; X-ray fiber diffraction. [197]

TIA-1 Formation of stress granules In vivo: EM; resistance to detergents.
Heterologous model systems: yeast [218]

3. Approaches for Identification of New Amyloids and Potentially Amyloidogenic Proteins

Most amyloids known to date were identified either due to their accumulation in specific diseases
or through detailed studying of the mechanisms of the impact of specific proteins on particular
biological or pathological processes. Unfortunately, the initial identification of many amyloids and
potentially amyloidogenic proteins in biological samples cannot be carried out based on Congo red
staining, EM or X-ray diffraction data, because these can be used for characterization of purified
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proteins or large deposits, but are not directly applicable to the detection of small qualities of fibrils or
oligomers proteins in the cells, organisms or body fluids. Until recently, no unbiased approaches for
the identification of amyloids and potentially amyloidogenic proteins existed. While the formation
of insoluble aggregates is a characteristic feature of many amyloids, not all insoluble aggregates are
amyloids. Various computational tools for amyloid prediction were developed, however most of
them work well for short peptides and/or in vitro conditions, but not for full-length proteins in vivo
(for review, see [229,230]). The matter is further complicated by the fact that many (if not most)
proteins can form amyloid in vitro depending on concentrations and conditions (such as pH, etc.) [231];
however, amyloidogenic potential of the majority of protein sequences is suppressed in cells and
organisms, as it interferes with normal protein functions. Therefore, there is a significant demand for
developing unbiased approaches to identification of in vivo, amyloid potential, capable of composing
actual and potential “amyloidomes” (i.e., complete cells of amyloid or potentially amyloidogenic
proteins in proteomes) of living cells and organisms.

3.1. Identification of Amyloid Proteins Based on Their Biochemical Properties

One of the tools for universal identification of amyloids is based on a common biochemical
property of most amyloid fibrils, that is, their high resistance to ionic detergents such as SDS
or sarcosyl, which solubilize almost all non-amyloid complexes and disrupt lateral interactions
between amyloid fibrils, but don’t monomerize fibrils per se [232]. Amyloids are sedimented from
detergent containing solutions and further analyzed by either 2D gel electrophoresis, or liquid
chromatography followed by mass-spectrometry (Figure 2) [117,233–235]. By using the latter
combination, the proteome-wide approach termed PSIA (Proteomic Screening and Identification
of Amyloids) has been developed [117,234,235]. PSIA method was applied to identification of new
amyloid proteins (potential functional amyloids) in bacteria [236,237] and yeast [238], as well as in the
rat hippocampus [120]. Amyloidogenic properties of some of these proteins, including bacterial proteins
YghJ, RopA and RopB, yeast proteins Gas1, Toh1 and Ygp1, and the abovementioned rat Fxr1 have
been then confirmed by using a variety of standard amyloid characterization techniques [117,237–240].
An approach similar to PSIA has been independently developed by F. Shewmaker lab and applied to
identification of yeast prions [241].

Figure 2. A scheme of proteomic screening and identification of amyloids (PSIA) method for amyloid
screening. The pellet fraction of a homogenized sample, that is resistant to sodium dodecyl sulfate
or sarcosyl is analyzed by high performance liquid chromatography followed by mass-spectrometry.
Individual candidate proteins, identified by PSIA, can be further investigated in vivo and in vitro using
conventional approaches such as circular dichroism spectrum, X-ray fiber diffraction, ability to bind
Congo red dye with green/yellow birefringence in polarized light, etc.

A disadvantage of this approach is that PSIA is not completely selective and can also detect some
non-amyloid formations that are stable in detergent [120]. In addition, proteins forming amyloids only
in certain physiological conditions would not be detected if proper conditions are not used.
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3.2. C-DAG

The ability of E. coli cells to produce extracellular fibers known as “curli”, inspired the creation of a
new system for amyloid detection called curli-dependent amyloid generator (C-DAG) [242]. When the
export signal sequence of CsgA protein is fused to an amyloidogenic protein (or its amyloidogenic
domain), the resulting chimeric protein is secreted and can form amyloid fibrils, anchored into the
outer membrane and exposed to the outside environment (Figure 3). When plated on Congo red
containing media, these amyloid-producing colonies become reddish due to the binding of CR to
amyloids. Amyloid nature of CR-bound fibrils is further confirmed by apple-green birefringence in
the polarized light, and fibrils can also be visualized by electron microscopy [243]. This approach
was successfully tested using several known yeast amyloidogenic proteins (Sup35NM, Rnq1, Cyc8,
and New1) and polyQ (aggregating) region of human huntingtin (Htt72Q), while the non-aggregating
linker domain of yeast Sup35 protein (Sup35M) and non-aggregating derivative of human huntingtin
(Htt25Q) were used as negative controls [242]. At subsequent stages, the C-DAG system was used
to confirm the amyloidogenic properties of several yeast proteins (Mss11 and Pub1 [242], Gas1 and
Ygp1 [238], and Toh1 [240]), some bacterial proteins (biofilm-associated proteins especially from
Enterococcus faecalis and Bap from S. aureus [244], RopA and RopB from Rhizobium leguminosarum [237],
and YghJ from E.coli [239]), and Fxr1 protein from rat Rattus norvegicus [120]. C-DAG approach was
suggested as a convenient method for screening of potentially amyloidogenic proteins from DNA
libraries [242]. This approach can also be used to identify mutations that influence the process of
amyloidization, as shown for the Sup35NM variant lacking four oligopeptide repeat sequences [242].
However, the C-DAG approach has several limitations. First, colony coloration may vary depending on
the particular protein [242]. Second, not all mammalian proteins are efficiently produced and exported
in E. coli [245]. Third, an extracellular environment might potentially antagonize amyloid formation.

Figure 3. The principle of C-DAG approach (for detail, see [244]). A chimeric protein, containing the
export signal sequence of CsgA protein fused to the protein of interest is exposed to the extracellular
space. If the protein of interest is amyloidogenic, it forms a “curli”-like fibril. Amyloid-producing
colonies become reddish on the medium containing Congo red (CR). Moreover, binding of CR to
amyloid fibrils results in apple-green birefringence in polarized light. Images are obtained by J.V.
Sopova (unpublished data).
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3.3. Approaches Based on Phenotypic Detection of Prion Formation in Yeast

The yeast Saccharomyces cerevisiae contains endogenous self-perpetuating amyloids (yeast prions)
that serve as a convenient and reliable model for studying amyloid aggregation (for review, see [25,26]).
Aggregation of a variety of mammalian human amyloidogenic proteins has also been reproduced and
studied in yeast. These topics, especially in regard to studies of pathogenic mammalian amyloids
in yeast, have been comprehensively covered in recent reviews (see [26,30]). Here, we only mention
yeast-based approaches that can be applied to the identification of new amyloidogenic proteins (among
them, potential functional amyloids).

The major advantage of the yeast model is that amyloid formation by yeast proteins can be
detected phenotypically, via growth and/or color of specially engineered yeast strains on specific media.
These phenotypes are usually resulting from the partial inactivation of a yeast protein in a prion
form, thus chimeric constructs based on the fusion of a portion of the yeast protein to the potentially
amyloidogenic region of a mammalian protein can utilize yeast protein as a reporter for the amyloid
formation by a mammalian protein, allowing for easy phenotypic readout.

Prion-forming protein Sup35 that is most frequently employed in such studies is a yeast counterpart
of the translation termination (release) factor, eRF3 [246,247]. Sup35 protein is composed of three
major regions, namely: (a) N-terminal PrD, or Sup35N that is responsible for amyloid formation,
(b) middle region or Sup35M that promotes Sup35 solubility in a pH-dependent manner, and (c) the
C-proximal functional region, that is essential and sufficient for the role of Sup35 in termination of
translation [25,248]. While Sup35N and Sup35M are dispensable for translation termination and cell
viability, Sup35 can antagonize this function of Sup35C by incorporating the Sup35 protein into [PSI+]
prion aggregates. Prion aggregation of Sup35 results in a decrease of its ability to access terminating
ribosomes, thus causing readthrough of nonsense codons [25]. Therefore, formation of the Sup35 prion
state can be phenotypically detected, for example in yeast strains with a premature stop codon in the
ADE1 gene (the UGA mutation ade1-14). In normal conditions, such a strain is typically incapable
of growing on the medium lacking adenine (-Ade) and accumulates red pigment (a polymerized
intermediate of the adenine biosynthetic pathway) on complete organic (Yeast extract with Peptone
and Dextrose, or YPD) medium. However, UGA readthrough due to partial inactivation of Sup35 in
the prion ([PSI+]) form leads to growth on -Ade and more whitish color on YPD (Figure 4).

One approach for uncovering and/or studying amyloidogenic potential of proteins of various
origins (for example, see [249]), is based on the substitution of the whole Sup35N domain (or in some
cases, its N-terminal aggregation-prone QN-rich stretch, e.g., see [250]) by the known or suspected
amyloidogenic sequence. If this sequence can promote amyloid formation, Sup35 protein can be turned
into a phenotypically detectable prion. While this approach has been and is continued to be used
successfully for some mammalian proteins associated with amyloid diseases (for review, see [30,251]),
it also has certain limitations. First, some fusions antagonize Sup35 function by mechanisms not
related to amyloid formation; second, in some cases when partial inactivation of Sup35 occurs due to
instant amyloid formation by a chimeric protein in yeast, this system becomes difficult to apply when
studying transitions between non-amyloid and amyloid states.

Another approach, specifically targeting de novo amyloid nucleation in yeast [252], has been
developed on the basis of the ability of yeast prions to promote formation of other prions [253–255].
This approach employs the fusion of a candidate protein or protein domain to Sup35N or NM fragment
that is expressed in a yeast cell separately from the full-length Sup35 protein. Transient overproduction
of Sup35 or its PrD-containing fragments is known to nucleate formation of the [PSI+] prion in yeast
cells [256,257]. However, this process is efficient only in the presence of another preexisting prion,
such as [PIN+], a prion form of Rnq1 protein [253–255]. Possibly Rnq1 prion (or another prion,
typically with a QN-rich domain) is needed to cross-seed the initial nucleation of the Sup35 prion
in trans. However, when Sup35N or Sup35NM fragment is fused to another amyloidogenic protein
(not necessarily QN-rich) in cis, such a construct can nucleate a prion on its own when overproduced
(and for some highly amyloidogenic proteins, even at moderate levels of expression) [252]. The most
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likely scenario is that the amyloidogenic protein or domain attached to Sup35 PrD forms an amyloid
aggregate in yeast, thus bringing together the Sup35 PrD regions and facilitating promoting conversion
of these regions into a cross-β nucleus. Complete Sup35 protein, present in the same cell, is then
immobilized into such a nucleus via the PrD-PrD interaction, and converted into a prion form, thus
producing the [PSI+] prion and allowing for a phenotypic detection.

Figure 4. A scheme of testing heterologous proteins for amyloidogenicity in yeast. Yeast strain contains
an ade1-14 (UGA) reporter, allowing the detection of the Sup35 prion ([PSI+]) due to translational
readthrough. (a) Overexpression of Sup35 PrD alone or in fusion to non-amyloidogenic protein
(PrD-NAP) does not lead to efficient nucleation of the [PSI+] prion in the [pin−] cells yeast lacking
any known pre-existing prions. Respectively, there is no growth on the medium lacking adenine, and
red color is detected on complete (YPD) medium due to the accumulation and polymerization of an
intermediate in the adenine biosynthetic pathway. (b) An amyloidogenic protein (AP) attached to
Sup35 PrD forms an amyloid aggregate in yeast, thus bringing together the Sup35 PrD regions and
facilitating the conversion of these regions into a cross-β nucleus. Complete Sup35 protein, present in
the same cell, is then immobilized into such a nucleus via the PrD-PrD interaction, and converted into
a prion form, thus producing the [PSI+] prion and allowing for a phenotypic detection. Respectively,
there is growth on the medium lacking adenine, and a whitish color is detected on YPD medium.

This approach has worked successfully for known mammalian amyloidogenic proteins including
mouse PrP (an agent of transmissible spongiform encephalopathies, or prion diseases), Aβ (associated
with Alzheimer’s disease), α-synuclein (associated with Parkinson’s disease), and amylin, or IAPP
(associated with type II diabetes) [252]. Moreover, sequence alterations in PrP and Aβ that are known to
antagonize prion propagation or amyloid formation also decreased the ability of respective constructs
to nucleate the [PSI+] prion in yeast model system, while to the sequence alterations associated with
a heritable form of the disease promoted [PSI+] nucleation. The formation of detergent-resistant
aggregates by chimeric proteins and immobilization of full-length Sup35 into an aggregated state has
also been confirmed by biochemical approaches [252]. In contrast, non-amyloid proteins, including
those known to form globular multimeric assemblies, failed to nucleate the [PSI+] prion in the absence
of pre-existing prions when fused to Sup35 PrD. Even though further studies are needed to determine
if some proteins forming more complex non-globular non-amyloid assemblies, such as liquid droplets,
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hydrogels, or hydrophobic agglomerates, are capable of nucleating prion in yeast, existing data already
establish a fusion of the protein or domain of interest to Sup35 PrD as an assay for the initial phenotypic
detection of amyloidogenic properties of the proteins of various origins in yeast.

This assay is amenable to the large-scale screening and has been applied to studying human-derived
library and several human proteins whose amyloidogenicity has been predicted by a computational
algorithm (A. Zelinsky, N. Romanova, D. Kachkin, A. Aksenova, A. Rubel, and Y. Chernoff, unpublished
data). Several new amyloidogenic human proteins have indeed been identified and are currently under
detailed investigation by using standard amyloid detection techniques and studies of aggregation
properties in the native environment (human cells). Some of these proteins may represent candidates
for new functional amyloids in humans.

4. Conclusions

A number of examples of mammalian functional amyloids are described to date (see Table 1).
Recently developed unbiased approaches for amyloid detection can expand our knowledge of
mammalian amyloidomes very quickly. While functions of amyloids vary between different proteins
and tissues, some common features could be recognized as well. Typically, in contrast to pathogenic
or heritable amyloids, functional amyloids are dynamic formations that undergo structural changes
in response to physiological or external signals. In response to such signals, amyloidogenic proteins
can be assembled into oligomers or polymers (CPEB), solubilized from polymers into monomers
(MBP-1, peptide hormones) or undergo changes in structural and functional properties (ZP proteins).
For some mammalian functional amyloids, such dynamic transitions could be promoted by covalent
posttranslational modifications, such as SUMOylation/ubiquitination or site-specific proteolysis.
Such modifications of proteins regulating amyloid assembly or disassembly are also described for
other taxa [258–260].

Notably, some pathogenic amyloids have been hypothesized to also play biologically positive roles.
For example, Aβ (related to AD) and PrP (associated with transmissible spongiform encephalopathies)
were suggested to participate in the antimicrobial defense in brains [261,262]. This indicates that
some amyloid-related pathologies could represent a by-product of the functional manifestations of
certain amyloids. Mechanisms of pathological amyloidoses are still poorly understood, therefore the
study of functional amyloids could provide additional insights into the processes leading to amyloid
pathogenicity. While functional amyloids are formed (or disassembled) in a controlled manner for
performing certain biological functions, pathogenic amyloids escape the cellular or organismal control,
essentially becoming the spreading disease agents. Nevertheless, molecular mechanisms responsible
for the conversion of proteins to the amyloid form or for the disassembly/clearance of amyloids could
be similar for functional and pathological entities [263]. Thus, further investigation of functional
amyloids may help us to elaborate on new approaches to the treatment of amyloidosis.
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Abbreviations

aa Amino acid
ACTH Adrenocorticotropic hormone
AD Alzheimer’s disease
AGO2 Argonaute 2 complex
AM Acrosomal matrix
AMP Adenine mononucleotidephosphate
AP Amyloidogenic protein
ARE AU-rich elements
Aβ Amyloid beta
C-DAG Curli-dependent amyloid generator
CARD Caspase recruitment domains
cKO Conditional knockout
CPEB Cytoplasmic polyadenylation element binding protein
CD Circular dichroism
CR Congo red
CRH Corticotropin releasing hormone
CTD C-terminal domain
DD Death domain
E-LTP Early phase of long-term potentiation
EM Electron microscopy
ER Endoplasmic reticulum,
FXR Fragile X-related protein
GAG Glycosaminoglycans
GH Growth hormone
GRF Growth-hormone releasing factor
hIAPP Human islet amyloid polypeptide
IgG Immunoglobulin G
Igl Immunoglobulin light chains
KD Kinase domain
KLD Kringle-like domain
LCP Luminescent conjugated polyelectrolyte probes
L-LTP Late phase of long-term potentiation
LPS Lipopolysaccharide
MAVS Mitochondrial antiviral signaling protein
MBP-1 Eosinophil major basic protein 1
MDA5 Melanoma differentiation-associated 5
MLKL Mixed lineage kinase domain-like protein
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromideformazan
NAP Non-amyloidogenic protein
NF-κB Nuclear factor kappa B
NMR Nuclear magnetic resonance
NTR N-terminal repeats
PAD Protein aggregation disease
PAP Prostate acidic phosphatase
PD Parkinson’s disease
PE Preeclampsia
PKD Polycystic kidney disease-like domain
PrD Prionogenic domain
PrDL Prion-like domain
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Q-rich Glutamine-rich
QN-rich Glutamine/Asparagine-rich
RHIM RIP homotypic interaction motifs
RNP Ribonucleoprotein
RPT Repeat domain
SDS Sodium dodecyl sulfate
SGs Stress granules
StG Storage granule
T2D Type 2 diabetes
ThS Thioflavin-S
ThT Thioflavin-T
TIA-1 T-cell intracellular antigen-1
TM Targeting domain
TNF Tumor necrosis factor
tPA Tissue plasminogen activator
TSE Transmissible spongiform encephalopathy
UTR Untranslated terminal repeats
UV Ultraviolet
ZP Zona Pellucida
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