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Abstract

Purpose: Assessment of the accuracy of geometric tests of a linac used in external

beam therapy is crucial for ensuring precise dose delivery. In this paper, a new simu-

lation‐based method for assessing accuracy of such geometric tests is proposed and

evaluated on a set of testing procedures.

Methods: Linac geometry testing methods used in this study are based on an estab-

lished design of a two‐module phantom. Electronic portal imaging device (EPID)

images of fiducial balls contained in these modules can be used to automatically

reconstruct linac geometry. The projection of the phantom modules fiducial balls

onto the EPID detector plane is simulated for assumed nominal geometry of a linac.

Then, random errors are added to the coordinates of the projections of the centers

of the fiducial balls and the linac geometry is reconstructed from these data.

Results: Reconstruction is performed for a set of geometric test designs and it is

shown how the dispersion of the reconstructed values of geometric parameters

depends on the design of a geometric test. Assuming realistic accuracy of EPID

image analysis, it is shown that for selected testing plans the reconstruction accu-

racy of geometric parameters can be significantly better than commonly used action

thresholds for these parameters.

Conclusions: Proposed solution has the potential to improve geometric testing design

and practice. It is an important part of a fully automated geometric testing solution.
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1 | INTRODUCTION

A precise dose delivery to a target location during radiotherapy is a

crucial requirement of an external beam therapy. This requirement

may be met provided that the geometry of the beam agrees with

the geometry defined in the treatment planning system (TPS).

In practice, the nominal geometry of a linac as defined in TPS

agrees with the real geometry of the device only to a limited

accuracy. The discrepancies between a nominal and a real geometry

have the source in the construction of linear accelerator components

and especially in their enormous weights leading to flexing or sag-

ging of the system components during gantry rotation.1 To keep

dose delivery errors at a sufficiently low level, the discrepancies

between a nominal and a real geometry must not exceed strict toler-

ance limits. To check whether the tolerance limits are met, a detailed

inspection of the operation of each of the movable elements of a
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linac is periodically conducted as a part of quality assurance pro-

grams in radiotherapy departments.2

Each country has its own legislation or recommendations for the

quality tests, for example, in a form of papers prepared by national

societies of medical physicists which specify types of tests to per-

form, their frequency, and proposed tolerance values, based on inter-

national guidelines.2–4 The most important geometric tests include

estimation of the position of isocenter, jaws offsets, and precision of

movements of a gantry, a collimator and a couch.

A generic procedure for a geometric test (e.g., the Winston‐Lutz
test) consists of positioning of a special phantom containing one or

more radiopaque fiducial markers in a radiation beam, acquisition of

MeV images of the phantom (most frequently electronic portal imag-

ing device (EPID) images) and then—based on dedicated image anal-

ysis methods—determination of the quantities of interest like

isocenter position, source to detector distance (SDD) etc.1,5–13

Finally, the value of the geometric parameter as computed from the

test results (e.g., EPID images) is compared against the assumed

nominal value. If the difference exceeds an action threshold, the

device does not pass the test.

There are at least three weak points in this procedure. First, the

EPID images offer limited resolution with a pixel size of only about

0.35 mm. The geometric tests are based on prior determination of

the positions of the projection of the centers of phantom fiducials

onto the EPID image plane. Consequently, the accuracy of the con-

secutive analysis steps and in particular accuracy of the estimation

of geometric parameters are limited by the resolution of EPID detec-

tors. Next, the EPID images are corrupted by noise and for this rea-

son analysis of two projection images of a phantom acquired under

exactly the same geometric settings may return different results of

geometric testing. Finally, there is no systematic way for setting

action thresholds for the values of the geometric parameters. In par-

ticular, without knowing how big the random errors introduced by

an image noise and systematic errors introduced by limited EPID res-

olution are, it is not clear if the accuracy requirements can be met

or, contrary, if the requirements are too loose posing a hazard of a

malfunctioning device passing a test.

This paper is an extension of a previous work13 where a design

of a multimodular phantom is presented and a set of reconstruction

procedures for this phantom is briefly analyzed. In this paper, we

focus on the problem of how the design of a geometric testing pro-

cedure and phantom influences the accuracy of estimation of param-

eters related to the geometry of linac C‐arms. We show in

simulations how the distributions of the results of geometric tests

depend on testing plans and uncertainties related to EPID imaging.

This is, to the best of our knowledge, the first work considering the

influence of inaccuracies of imaging on the accuracy of geometric

tests.5,6 Based on simulation results, we postulate a probability‐
based extension to the geometric tests of linear accelerators. In par-

ticular, given an actual value of a difference between a nominal and

a measured value of a geometric parameter (for example the isocen-

ter position or the size of a radiation field), one may estimate some

probability associated with this value for a device with all

subsystems correctly set and for uncertainty of the geometric

parameter measurement introduced only at the stage of imaging of a

phantom used in geometrical testing (as explained above, this uncer-

tainty may arise for example due to noise and finite resolution of

EPID used to capture phantom images). From this probability, one

may infer if the device operates correctly or if there are other fac-

tors besides uncertainties in image acquisition (e.g., a malfunctioning

subsystem of a linac) which account for the observed discrepancies

between a nominal and an observed value of a geometric parameter

under test. In the present paper, we consider geometry testing pro-

cedures based on a phantom proposed in an earlier paper,13 how-

ever the proposed approach can be applied to other phantoms

described in the literature as well.

2 | MATERIALS AND METHODS

2.A | Simulations

In this work, the process of projecting fiducial markers onto the

EPID matrix is simulated, taking into account errors caused by finite

resolution of the detector and noise inherently associated with imag-

ing process. In the simulations, we assume that all the subsystems of

a simulated device are set correctly, that is, there is no difference

between nominal and actual device settings like gantry or collimator

angle, SDD, jaw positions, and other. Acquisition of images of a mul-

timodule multifiducial phantom13 by an EPID is simulated using

these nominal settings. The phantom13 consists of two modules, the

first one, mounted on a treatment table, contains a set B = {Bk:

k = 1, 2, …, NB} of NB fiducial balls and the second one, mounted on

a gantry head, contains a set C = {Cl: l = 1, 2,..., NC} of NC fiducial

balls.13

Let Q denote a parameter which must be estimated during a

geometrical testing of a linac (e.g., isocenter position). Q, like any

other geometrical parameter, has some preset nominal value QN,

which is used to simulate the process of acquisition of phantom

EPID images. We denote by QM a value of Q estimated based on

analysis of EPID images.

Due to inherent noise present in images captured by ionizing

radiation detectors, QM is a random variable sampled from some dis-

tribution with probability density function fQ(x|PT, B, C, σ) where PT

describes the testing procedure and σ is the standard deviation

quantifying the uncertainty of the EPID image analysis. The proce-

dure PT = {(θi, ψj): i = 1, 2,..., NΘ, j = 1, 2,..., Nψ} of geometrical testing

of a linac consists of a set of pairs of collimator angles θi and gantry

angles ψj. The testing procedure depends also on other geometrical

settings like table position or rotation. These settings were fixed in

the simulations, although both table translation and rotation can be

determined from the projection images of the phantom used in the

simulation.13

The nominal coordinates of the projections of the centers of Bk

and Cl onto the EPID imaging plane are determined for each element

of PT using nominal settings of a linac. It is assumed that the mea-

sured coordinates P(Bk) and P(Cl) of the projections of centers of Bk
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and Cl, respectively, onto the EPID imaging plane are random vari-

ables with a two‐dimensional symmetric Gaussian distribution cen-

tered at the nominal projection points of the centers of the ball

markers and standard deviation equal to σ.

Given the measured coordinates P(Bk) and P(Cl) of the projections

of the centers of fiducial markers Bk and Cl for each element of PT, Q is

recomputed from these data resulting in QM. QM differs from QN to an

extent that depends on how big the uncertainty σ is, on the phantom

design (i.e., on B and C) and on the testing procedure PT. While PT, B

and C are a part of the designed testing procedure, the value of σ can

be reduced by for example increasing the irradiation time or by increas-

ing the resolution of the EPID detector matrix.

Fixing PT, B, C, and σ and repeating the simulation multiple times,

we find the probability density function fQ(x|PT, B, C, σ) of the mea-

sured values. QM of Q. fQ(x|PT, B, C, σ) is then used to determine

how the selection of testing procedure PT, the phantom design B

and C and the uncertainty of image analysis σ influence the accuracy

of estimating Q.

Further details concerning the simulations and reconstruction of

the geometry of the linac are described in Data S1.

2.B | Geometrical quantities

Following quantities are computed based on simulation results:

1. Radiation isocenter position. To find the radiation isocenter I,

rotation axes of the collimator are determined for a sequence ψ

= {ψ1, ψ2,..., ψN} of angular positions of a gantry. Let these axes

be denoted by R1, R2,..., RN. Then, the position of the isocenter is

defined as follows:

I ¼ arg minP∈R3 ∑
N

i¼1
d P;Rið Þ2; (1)

where d(P, Ri) is the distance from a point P to the axis Ri. Nominally,

isocenter is located at the origin, that is, the point with coordinates

(0, 0, 0). From the simulations, we determine the distribution of the

distance from the nominal to the calculated position of the isocenter

as well as distributions of the components of the calculated isocen-

ter position. The reconstruction procedure is performed using Algo-

rithm 2 from Data S1

2. Source to detector distance, which is the distance from the source

of the MeV radiation to the EPID detector plane. The nominal

value of SDD is 180 cm. The value of SDD is calculated based on

the isocenter position calculated using Algorithm 2 and equation of

the detector plane obtained using Algorithm 4 from Data S1.

3. Source to axis distance (SAD), which is the distance from the

source to the projection of the source onto the plane normal to

the rotation axis of the collimator and containing the isocenter.

The nominal value of SAD is 100 cm. It is calculated using isocen-

ter position, reconstructed collimator axis and reconstructed radi-

ation source position (see Algorithms 2 and 4).

4. Gantry rotation axis. Nominally, gantry rotation axis is equal to a

vector (0, 1, 0), that is a vector parallel to the Y axis of the

coordinate frame of the isocenter. First, positions of fiducial ball

markers and radiation sources are collected for a set of gantry

angles and collimator angles. Gantry rotation axis is estimated by

calculating the extrinsic mean of directions of optimal rotations

of collected points for different gantry angles (see Algorithm 2 in

Data S1).

5. Gantry rotation angle, which is the angle between the local verti-

cal direction and the axis of rotation of the collimator for the

actual gantry angular position (see Algorithms 1 and 4 in Data

S1).

6. The radiation field size. To find the radiation field size for some

fixed angular position of the gantry, one determines the rotation

axis R of the collimator, the source position S and the coordi-

nates of the projections AP, BP, CP, and DP of the corners of the

radiation field onto the detector plane. Then, one finds a plane H,

normal to R and containing the isocenter I. Then for each line

APS, BPS, CPS, and DPS one finds its intersection with H. The pro-

jection points are the corners A, B, C, and D of the radiation field

in the isocentric plane H. From the simulations, we determine the

distances between the nominal AN, BN, CN, and DN and calculated

positions of the corners A, B, C, and D of the radiation field, the

distribution of the lengths of the edges AB, BC, CD, DA of the

radiation field and the distribution of the angles ABC, BCD, CDA,

DAB formed by the consecutive edges of the radiation field. In

the simulations, we fix the radiation field size to a square

20 cm × 20 cm.

3 | RESULTS

The simulations were run for experimental plans consisting of from

5 to 25 gantry angles (in the range from −180° to 180°, an interval

from 15° to 90°), from 5 to 25 collimator angles (in the range from

−165° to 165°, an interval from 15° to 90°). Random selection of

gantry and collimator angles was also tested. The number of fiducial

balls of phantom modules was varied from 4 to 8 for the collimator‐
mounted module and from 6 to 10 for the table‐mounted module.

The fiducial markers of the table‐mounted module were organized in

parallel planes, at most four markers within one plane. All used mark-

ers had the radius of 3 mm. In any case it was checked that all the

markers are projected onto EPID for every angular position of the

gantry head contained in the testing plan and that their projections

onto EPID do not overlap (to fulfill the last condition it is enough

that each marker has a different coordinate along the rotation axis

of the gantry). In the case of a collimator‐mounted module, the ball

markers are projected onto EPID provided that they are within the

radiation field. The fiducial markers of the collimator‐mounted mod-

ule were also organized in parallel planes, at most three markers

within one plane. The standard deviation of the uncertainty of deter-

mination of the projection of the phantom balls centers was varied

in the range from 0.1 to 0.5 mm. While the actual size of an EPID

pixel depends on an EPID model, currently, the smallest size of an

EPID pixel is approximately equal to 0.35 mm.
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In Fig. 1 histograms of the estimation errors of geometrical quan-

tities with respect to the nominal values of these quantities are plot-

ted. The plots demonstrate the results found for five collimator

angles (−165°, −90°, 0°, 90°, and 165°), 25 gantry angles (in the

range from −180° to 180° with the interval equal to 15°), the stan-

dard deviation of the uncertainty of determination of the projection

of the phantom balls centers equals to 0.5 mm, six balls in the table‐
mounted phantom module and four balls in the collimator‐mounted

phantom module. The balls of the table‐mounted module were

enclosed within a cube of size 8 cm × 8 cm × 8 cm. The balls of the

collimator‐mounted module were enclosed within a cube of size

6 cm × 6 cm × 6 cm.

In Tables 1–7, we show how the standard deviations of the

errors of estimation of geometrical quantities with respect to the

nominal values of these quantities depend on the number of gantry

and collimator angles used to estimate these quantities and on the

uncertainty in estimating the coordinates of the projection of the

phantom fiducial balls onto the detector plane. With the number of

measurements exceeding one thousand, the confidence limits for the

standard deviations are approximately ±5%. The values of the stan-

dard deviations do not depend on the actual selection of the collima-

tor or gantry angles: random selection of these angles in the

accessible range leads to similar results provided that the number of

selected angles remains fixed. The values of the standard deviations

do not depend also on the actual placement of the markers as long

as the volume occupied by the markers remains fixed and the mark-

ers are projected onto EPID for all gantry angles used in the analysis.

The results presented in Tables 1–7 were calculated for six balls in a

table‐mounted phantom module and four balls in a collimator‐
mounted phantom module. The balls of the table‐mounted module

were enclosed within a cube of size 8 cm × 8 cm × 8 cm. The balls

of the collimator‐mounted module were enclosed within a cube of

size 6 cm × 6 cm × 6 cm. In Tables 8 and 9 we show how the stan-

dard deviation of the differences between the estimated and nomi-

nal values of the geometrical parameters depends on the number of

balls in a collimator and in a table‐mounted modules, respectively.

These results were found for nine gantry angles and 25 collimator

angles. The balls of the table‐mounted module were enclosed within

a cube of size 8 cm × 8 cm × 8 cm. The balls of the collimator‐
mounted module were enclosed within a cube size of size 6 cm × 6

cm × 6 cm.

In the final experiment, we considered a case of a bigger phan-

tom, occupying a cuboid of size 26 cm × 18 cm × 26 cm, containing

18 fiducial balls in the table‐mounted module and eight fiducial balls

in the collimator‐mounted module. The balls of the table‐mounted

module were distributed along a spiral pattern whose axis was paral-

lel to the axis of a gantry rotation. The fiducial markers of the colli-

mator‐mounted module were contained in parallel planes, at most

four markers within each plane. The configuration of both modules

is depicted in Fig. 2. Smaller modules considered in other experi-

ments had similar configuration. To ensure that all the fiducial mark-

ers of the table‐mounted module are projected onto the EPID plane,

SDD was decreased from 180 cm as in previous numerical

experiments to 140 cm. The simulations were run for gantry and col-

limator angles incremented by 5°. In Table 10, we show the values

of standard deviation of the differences between the estimated and

nominal values of the geometrical parameters calculated for such

testing plan.

4 | DISCUSSION

In this paper, we demonstrated how the dispersion of geometric

parameters derived from the projection images of a specialized phan-

tom depends on the design of a testing procedure and the design of

the phantom. The simulations were run assuming that there is an

error in estimating the coordinates of the projections of phantom

markers onto the EPID detector plane. This error was modeled as a

Gaussian random variable with standard deviation ranging from 0.1

to 0.5 mm. The smallest size of pixel in currently used EPID devices

is approximately equal to 0.35 mm. Given the state‐of‐the‐art image

analysis methods like circle Hough transform and knowing the

approximate position of each marker already from the nominal set-

tings of a linac, it can be safely agreed that the error in determining

the coordinates of the projections of phantom markers onto an EPID

detector plane will be never greater than ±2 pixels. For reference,

Du and Yang14 developed a method for center localization based on

Hough Transform with accuracy below 1 pixel even for small phan-

tom markers and noisy images. Also, another method15 can be used

to locate ellipses with mean Hausdorff distance of 2.3 pixels to

ground truth, which would result in even more accurate determina-

tion of ellipse centers. As for Gaussian distributions almost 100% of

results fall within ± 3 σ range, it can be reasonably assumed that the

results found for σ = 0.2 mm and σ = 0.3 mm correspond to clinical

settings.

The construction of phantom modules together with the proce-

dure used in these simulations guarantee that the procedure is not

influenced by certain types of error that have to be taken into

account in standard geometry tests.13 For example, the procedure

does not assume accurate positioning of the phantom modules while

errors in determining the positions of fiducial markers can be made

negligibly small by the means of precise measurement of their real

positions using coordinate‐measurement devices. Moreover, certain

systematic errors can be detected by the procedure, for example the

sagging during gantry rotation. The precise determination of the

source of an error that can be detected is not our goal and therefore

such errors do not need to be explicitly modeled.

It is important to assess how the design of the testing procedure

and the design of the phantom influence the accuracy of a measure-

ment of geometrical parameters. The accuracy of a measurement of

the angle between the axis of rotation of a collimator and a local

vertical direction increases with increasing the number of collimator

angles included in the testing procedure, the number of markers

within the phantom modules and with phantom size. By increasing

the number of collimator angles from 9 to 25, the error α is reduced

by approximately 40%. By increasing the number of markers within
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F I G . 1 . Histograms of estimation errors of controlled geometrical quantities: differences α between estimated and nominal angle between
the rotation axis of the collimator and a vertical direction (a), angles θ between estimated and nominal axes of gantry rotation (b), differences ω
between estimated and nominal angles formed by the edges of a radiation field in an isocentric plane (c), differences between estimated and
nominal lengths L of the edges of a radiation field in an isocentric plane (d), estimated components s of the position of the isocenter in space
(e), estimated distances l of the isocenter from the nominal position (f), differences between estimated and nominal SAD (g), differences
between estimated and nominal SDD (h).
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the collimator‐mounted module by a factor of two, the error α is

reduced by a factor of three. These dependencies are clear as the

axis of collimator rotation is determined from the coordinates of the

markers of the collimator‐mounted module. To determine these

coordinates, the projections of the markers of the table‐mounted

module are used. For this reason, the accuracy of the measurement

of the angle between the axis of rotation of a collimator and a local

vertical direction must depend on the design of the table‐mounted

module, in particular on its size and the number of markers. For

TAB L E 1 Standard deviations (in degrees) of α, that is, the
difference between estimated and nominal angle between the
rotation axis of the collimator and a vertical direction.

Number
of gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 0.083 0.236 1.290 5.420 13.20

25 9 0.060 0.138 0.409 1.160 5.290

25 25 0.037 0.083 0.227 0.461 0.765

9 5 0.088 0.226 0.960 6.470 15.10

9 9 0.064 0.139 0.447 1.080 3.590

9 25 0.040 0.088 0.238 0.500 0.822

5 5 0.093 0.200 0.875 4.000 14.60

5 9 0.069 0.151 0.456 1.060 6.660

5 25 0.042 0.090 0.240 0.506 0.853

TAB L E 2 Standard deviations of angles θ between estimated and
nominal rotation axis of a gantry.

Number of
gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 0.66 0.67 0.64 0.64 0.67

25 9 0.69 0.69 0.69 0.71 0.71

25 25 0.72 0.71 0.72 0.73 0.76

9 5 2.16 2.16 2.10 2.12 2.17

9 9 2.19 2.28 2.22 2.29 2.33

9 25 2.31 2.25 2.34 2.34 2.41

5 5 4.81 4.84 4.87 4.73 4.94

5 9 5.10 5.02 4.91 5.12 5.11

5 25 5.21 5.13 5.03 5.41 5.26

TAB L E 3 Standard deviations (in degrees) of ω, that is, the
difference between estimated and nominal angle formed by the
edges of a radiation field in an isocentric plane.

Number of
gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 0.29 0.52 0.75 0.97 1.21

25 9 0.29 0.53 0.75 0.99 1.21

25 25 0.29 0.52 0.75 0.98 1.22

9 5 0.47 0.65 0.83 1.04 1.26

9 9 0.46 0.63 0.84 1.04 1.24

9 25 0.45 0.63 0.83 1.03 1.24

5 5 0.86 0.96 1.09 1.25 1.44

5 9 0.83 0.94 1.07 1.22 1.42

5 25 0.82 0.91 1.07 1.21 1.40

TAB L E 4 Standard deviations (in centimeters) of the differences L
between estimated and nominal lengths of the edges of a radiation
field in an isocentric plane.

Number of
gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 0.073 0.130 0.189 0.252 0.323

25 9 0.072 0.130 0.187 0.248 0.309

25 25 0.072 0.129 0.187 0.245 0.304

9 5 0.124 0.166 0.218 0.287 0.374

9 9 0.122 0.162 0.213 0.269 0.332

9 25 0.118 0.161 0.212 0.262 0.317

5 5 0.301 0.320 0.349 0.416 0.500

5 9 0.298 0.315 0.346 0.388 0.444

5 25 0.304 0.313 0.348 0.381 0.423

TAB L E 5 Standard deviations (in centimeters) of the estimated
components s of the position of the isocenter in space.

Number of
gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 0.012 0.034 0.125 0.311 0.537

25 9 0.009 0.021 0.063 0.152 0.313

25 25 0.005 0.012 0.034 0.072 0.124

9 5 0.020 0.053 0.238 0.518 0.890

9 9 0.015 0.034 0.108 0.254 0.506

9 25 0.009 0.021 0.058 0.119 0.201

5 5 0.027 0.062 0.262 0.714 1.163

5 9 0.020 0.043 0.137 0.330 0.604

5 25 0.012 0.027 0.073 0.153 0.260

TAB L E 6 Standard deviations (in centimeters) of the differences
between estimated and nominal SAD.

Number of
gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 2.7 5.7 8.7 11.8 15.7

25 9 2.7 5.7 8.7 11.8 15.4

25 25 2.7 5.7 8.6 11.9 15.5

9 5 2.8 5.6 8.5 12.1 15.5

9 9 2.8 5.6 8.7 11.9 15.3

9 25 2.8 5.7 8.8 11.8 15.7

5 5 2.7 5.5 8.1 11.4 14.2

5 9 2.8 5.4 8.3 11.2 14.6

5 25 2.7 5.4 8.2 11.2 14.8
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almost minimal set of markers and a bigger phantom modules, it is

possible to reduce the error α to approximately 0.02 degrees for

clinical settings and 25 collimator angles used in a testing procedure.

The accuracy of a measurement of the deviation θ between

nominal and calculated axis of gantry rotation depends on the num-

ber of gantry angles used to estimate it. With 25 gantry angles error

θ is approximately equal to 0.7°. Increasing number of gantry angles

by a factor of two decreases error θ by the same factor. With such a

trend it follows that probing gantry angles at an interval of 1 degree,

the error of estimation of the gantry rotation axis corresponds to

about 1.5 mm deviation at 2 m distance from the isocenter.

The value of the angular difference ω between the estimated

and nominal angle formed by the edges of a radiation field in an

isocentric plane depends weakly on the number of gantry angles and

the number of balls within the table‐mounted module. It is an indi-

rect dependence as the contours of a radiation field are determined

for a plane containing the isocenter and the accuracy in determining

isocenter depends on the number of gantry angles. The measure-

ment error ω depends more strongly on phantom size. With bigger

phantom modules the error of a measurement ω can be reduced to

0.2° that correspond to 0.35 mm (one pixel) for a 10 cm × 10 cm

radiation field.

The values of differences L between estimated and nominal

lengths of the edges of a radiation field in an isocentric plane

depend on the same components of the testing procedure as ω.

With the bigger phantom design, the error of a measurement L can

be reduced to 0.5 mm which is slightly larger than an EPID pixel.

The values of the components s of the isocenter position in

space depend on all components of the testing plan and on the

phantom design. Increasing the number of gantry and collimator

angles, the number of ball markers and the phantom size decreases

the error s to different extents. It, however, follows that even for

TAB L E 7 Standard deviations (in centimeters) of the differences
between estimated and nominal SDD.

Number of
gantry
angles

Number of
collimator
angles

σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

25 5 4.9 10.1 15.3 20.5 26.2

25 9 4.9 10.1 15.4 20.5 25.9

25 25 4.9 10.1 15.1 20.6 26.0

9 5 5.0 10.0 15.0 21.0 26.1

9 9 5.0 10.0 15.4 20.6 25.8

9 25 5.0 10.1 15.5 20.4 26.3

5 5 4.9 9.9 14.4 19.7 24.3

5 9 5.0 9.8 14.8 19.6 24.4

5 25 4.9 9.8 14.5 19.6 25.2

TAB L E 8 Standard deviations (in degrees for parameters in rows 1 to 3 and in centimeters for parameters in rows 4 to 7) of the differences
between estimated and nominal values of geometrical parameter in function of the number of balls in the collimator-mounted phantom
module.

Parameter Number of balls in the collimator module σ = 0.1 mm σ = 0.2 mm σ = 0.3 mm σ = 0.4 mm σ = 0.5 mm

α 4 0.040 0.088 0.238 0.500 0.822

6 0.021 0.041 0.065 0.097 0.134

8 0.016 0.031 0.052 0.085 0.137

θ 4 2.31 2.25 2.34 2.34 2.41

6 2.37 2.39 2.36 2.36 2.41

8 2.31 2.34 2.35 2.30 2.41

ω 4 0.45 0.63 0.83 1.03 1.24

6 0.45 0.62 0.83 1.04 1.25

8 0.45 0.62 0.83 1.04 1.25

L 4 0.12 0.16 0.21 0.26 0.32

6 0.12 0.16 0.21 0.26 0.32

8 0.12 0.16 0.21 0.26 0.31

s 4 0.009 0.021 0.058 0.119 0.201

6 0.004 0.008 0.014 0.023 0.032

8 0.002 0.005 0.009 0.017 0.031

SAD 4 2.8 5.7 8.8 11.8 15.7

6 2.8 5.6 8.6 11.8 15.2

8 2.7 5.6 8.7 11.9 15.5

SDD 4 5.0 10.1 15.5 20.4 26.3

6 5.0 9.9 15.3 20.4 25.7

8 4.9 9.9 15.3 20.7 26.1
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not very complex testing plans it is possible to reduce the error s to

a submillimeter range.

The pattern of the dependence of the measurement error of

SAD and SDD on the testing plan and the phantom design is the

same. The errors of both SAD and SDD are independent of the num-

ber of collimator and gantry angles and on the number of balls in a

collimator‐mounted module. This follows directly from the method

of applying the phantom for estimating the geometrical parame-

ters13. These errors are weakly reduced by increasing the number of

balls of a table‐mounted phantom module and strongly reduced by

increasing the size of a table‐mounted phantom module. The size of

a phantom is however limited by the maximal size of a radiation field

and by the geometrical constraints. For a single measurement using

the big phantom and decreased nominal SDD, the error of SAD is of

the order of 0.8 cm. Better estimation of SAD or SDD requires aver-

aging over multiple measurements instead of using the result of a

single measurement. If one averages values of SAD over, for exam-

ple, 100 collimator angles (these kind of data must be collected any-

way to find the rotation axis of a collimator), then the error of

estimation of an averaged SAD decreases to submillimeter accuracy.

It follows from the presented results that even when the resolu-

tion of an EPID is limited, it is still possible to perform geometric

testing with satisfactory accuracy by proper selection of an architec-

ture of the phantom and a testing plan. The presented results may

TAB L E 9 Standard deviations (in degrees for parameters in rows 1 to 3 and in centimeters for parameters in rows 4 to 7) of the differences
between estimated and nominal values of geometrical parameter in function of the number of balls in a table mounted phantom module.

Parameter
Number of balls
in the table module σ = 0.1 mm σ = 0.2 mm σ = 0.3 mm σ = 0.4 mm σ = 0.5 mm

α 6 0.040 0.088 0.238 0.500 0.822

8 0.034 0.070 0.154 0.329 0.568

10 0.032 0.064 0.130 0.282 0.482

θ 6 2.3 2.3 2.3 2.3 2.4

8 2.3 2.3 2.3 2.4 2.4

10 2.3 2.3 2.3 2.3 2.4

ω 6 0.45 0.63 0.83 1.03 1.24

8 0.42 0.57 0.74 0.91 1.11

10 0.42 0.55 0.70 0.87 1.04

L 6 0.12 0.16 0.21 0.26 0.32

8 0.11 0.15 0.19 0.23 0.28

10 0.11 0.14 0.18 0.22 0.26

s 6 0.009 0.021 0.058 0.119 0.201

8 0.008 0.016 0.034 0.075 0.129

10 0.007 0.014 0.029 0.062 0.108

SAD 6 2.8 5.7 8.8 11.8 15.7

8 2.3 4.6 7.0 9.5 12.2

10 2.1 4.3 6.4 8.5 10.9

SDD 6 5.0 10.1 15.5 20.4 26.3

8 4.1 8.3 12.5 16.8 21.2

10 3.7 7.6 11.4 15.0 18.9

(a) (b)

F I G . 2 . Configuration of balls in the two
phantom modules: the table-mounted
phantom module (a) and the collimator-
mounted phantom module (b).
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provide guidelines for selection of a testing plan to achieve the sub-

millimeter and subdegree accuracy of geometric testing procedures

used in quality control in radiotherapy.

4.A | Future work

The simulation tools developed in the present study and the results

presented can be used in a future study to design a probabilistic

framework for testing the geometry of a linac in a following way.

The geometry testing usually involves comparison of QM to the nom-

inal value QN of a parameter Q. For this reason one is, in practice,

interested in how big the absolute value of the difference between

QM and QN is. Thus, to evaluate the results of a geometric test we

have to calculate the probability Pr (|Q – QN| = Δ ≥ ΔM = |QM – QN|):

Pr Δ≥ΔMð Þ ¼
Z2QN�QM

�1
fQ x PT ;B;C; σjð Þdxþ

Z1

QM

fQ x PT ;B;C; σjð Þdx; (2)

where Pr(Δ ≥ ΔM) is the probability that in a device operating

according to the assumed model (defined by nominal settings) the

observed difference between measured value of Q and a QN is

greater than ΔM. Clearly, if Pr(Δ ≥ ΔM) becomes too low, one may

strongly conclude that the deviation of an actual device from the

model is too serious and appropriate measures must be taken to

correct it.

Then, to apply a geometry testing procedure, one may select a

probability threshold PrTH and if Pr(Δ ≥ ΔM) is less than PrTH, then

one concludes that the geometrical test has failed because for the

used testing plan PT the probability of observing an actual difference

ΔM in a correctly tuned device is lower than an accepted threshold

PrTH. Equivalently, one may define a tolerated difference ΔTH by:

Pr TH ¼
ZQN�ΔTH

�1
fQ x PT ;B;C; σjð Þdxþ

Z1

QNþΔTH

fQ x PT ;B;C; σjð Þdx; (3)

and conclude that the test has failed if ΔM is larger than ΔTH. The

distribution functions and probabilities can be derived directly from

the simulation results, as demonstrated in the previous section.

Within the probabilistic framework described above questions

about a testing plan, PT can be stated and answered in a future

study. First, assume that the value of a tolerated difference ΔTH

must be respected due to some factors of clinical relevance. If a

testing plan PT is not properly designed, the measured differences

ΔM can be larger than ΔTH in substantial percentage of cases of cor-

rectly tuned devices due to purely random factors. Thus one may

ask what must be the testing plan Pt,T if it is required that the

assumed value of ΔTH corresponds to some user‐specified probability

threshold PrTH. In other words, both PrTH and ΔTH are given and

only procedures Pt,T such that

Pr TH ≥
ZQN�ΔTH

�1
fQ x Pt;T ;B;C; σ

��� �
dxþ

Z1

QNþΔTH

fQ x Pt;TB;C; σ
��� �

dx; (4)

are admissible. In practice, a testing procedure will be selected from

the set of admissible plans for geometrical testing guided by some

requirement, for example minimal number of gantry and collimator

angles necessary to achieve the expected goal.

The final problem that may be also addressed in future

within a probabilistic testing framework is the independence of

measurements of various parameters. In particular, assume that

two geometrical parameters, say Q1 and Q2 are estimated

resulting in measured values Q1,M and Q2,M, while the nominal

values for Q1 and Q2 are Q1,N and Q2,N. We are interested in

how the discrepancies Δ1,M = |Q1,M–Q1,N| and Δ2,M = |Q2,M–Q2,N|

are correlated. In particular, for measurement discrepancies

that are not independent it is possible that observing some

specific pair of Q1,M and Q2,M is an unlikely event but such

conclusion cannot be drawn from the analysis of the distribu-

tions of Q1 and Q2 separately. In this analysis, the random vari-

able QJ = (Q1, Q2) with joint probability density function

fQJðx; yjPT ;B;C; σÞ must be considered.

In the context of geometrical testing, another important prob-

lem can be formulated. Assume that the decision that a device

passes or fails some geometrical test involving measurement of

some geometrical parameter is made based on a preselected

threshold probability PrTH, the geometrical testing procedure may

be complemented by a requirement that if an expected value of

the geometric parameter differs from the nominal value by more

than some acceptance threshold ΔTH, then such an event must be

detected with a probability PowTH. Now, if the testing procedure

must meet constraints about both PrTH and PowTH, the problem

is how to select an appropriate testing plan PT to address these

requirements. While the answer to this question is certainly

important, it would require simulation of possible mechanical fail-

ures of a linac, for example to estimate the distribution of a geo-

metrical quantity of interest in both correctly tuned and

malfunctioning devices (e.g., a device which introduces a random

error with an expected value of ΔTH to the measured quantity).

Our simulation does not address such cases because modeling fail-

ures of a linac are not possible without detailed knowledge of its

mechanical design.

TAB L E 10 Standard deviations (in degrees for parameters in rows
1 to 3 and in centimeters for parameters in rows 4 to 7) of the
differences between estimated and nominal values of geometrical
parameter for a big phantom modules.

Parameter
σ = 0.1
mm

σ = 0.2
mm

σ = 0.3
mm

σ = 0.4
mm

σ = 0.5
mm

α 0.004 0.009 0.014 0.019 0.023

θ 0.01 0.11 0.26 0.32 0.31

ω 0.05 0.12 0.18 0.24 0.30

L 0.02 0.039 0.068 0.095 0.12

s 0.0004 0.0009 0.0014 0.0017 0.0022

SAD 0.25 0.51 0.76 1.01 1.28

SDD 0.32 0.71 1.08 1.43 1.80
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5 | CONCLUSIONS

In this paper, a new simulation‐based method for assessing accuracy

of geometric tests of a linac is proposed and evaluated on a set of

testing procedures. Parameters describing geometry of a linac are

reconstructed from the projections of the centers of fiducial balls of

a two‐module phantom after adding random errors to the coordi-

nates of these projections. Assuming realistic accuracy of EPID

image analysis it is shown that for selected testing plans the recon-

struction accuracy of geometric parameters can be significantly bet-

ter than commonly used action thresholds for these parameters.

Proposed solution has the potential to improve geometric testing

design.
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