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Parallel molecular evolution is the independent evolution of the

same genotype or phenotype from distinct ancestors. The

simple genomes and rapid evolution of many viruses mean they

are useful model systems for studying parallel evolution by

natural selection. Parallel adaptation occurs in the context of

several viral behaviours, including cross-species transmission,

drug resistance, and host immune escape, and its existence

suggests that at least some aspects of virus evolution and

emergence are repeatable and predictable. We introduce

examples of virus parallel evolution and summarise key

concepts. We outline the difficulties in detecting parallel

adaptation using virus genomes, with a particular focus on

phylogenetic and structural approaches, and we discuss future

approaches that may improve our understanding of the

phenomenon.
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Introduction
The processes that drive the cross-species transmission

and emergence of viruses in natural systems are diverse

and involve a range of ecological, evolutionary, and

genetic factors. Amongst the evolutionary mechanisms,

molecular adaptation by natural selection is a key phe-

nomenon that entails the generation and spread of bene-

ficial mutations that increase virus fitness in a specific

environment. If rapidly evolving virus populations repeat-

edly experience comparable environmental changes and

similar selective pressures, then viruses may exhibit what

is known as parallel evolution.

The concept of parallel evolution is applied to organisms

across the tree of life and can refer to all manners of
Current Opinion in Virology 2019, 34:90–96 
phenotypes and traits at different levels of biological

organisation [1]. Parallel evolution manifests itself in a

variety of ways, from the repeated fixation of single point

mutations or larger genetic changes (e.g. indels or genome

rearrangements) [2], to the evolution of structural, func-

tional or behavioural phenotypes. The terms ‘parallel’

and ‘convergent’ evolution are sometimes given distinct

definitions: convergent evolution refers to the indepen-

dent evolution of similar traits from different ancestral

starting points [3], whereas parallel evolution describes

the independent emergence of similar traits from the

same state [4]. Here, we use ‘parallel’ to refer to both

situations. Further, we use ‘adaptation’ to refer to evolu-

tionary change through positive natural selection, and

‘evolution’ to encompass change via any process (e.g.

by random genetic drift).

Parallel evolution in viruses may arise from adaptation to

new host species [5] or different host demographic struc-

tures [6], evasion of host immune responses [7,8] or to

circumvent anti-viral drugs [9]. These situations involve

changes to the virus’ environment that generate strong

selective pressures, favouring the recurrent evolution of

certain genotypes. Here, we summarise the theoretical

concepts behind parallel molecular evolution in viruses,

and explore some of the methods that can be used to

identify such phenomena. We highlight the importance

of phylogenetic methods to detect recurring evolutionary

patterns generated by natural selection.

Parallel molecular evolution in viruses
Viruses are useful model systems for studying parallel

evolution and adaptation. Many viruses, particularly RNA

viruses, can adapt rapidly due to a combination of high

mutation rates, large population sizes, short generation

times, and large mutational selection coefficients [10��].
Further, the small genomes of RNA viruses (and some

DNA viruses) may limit the range of genetic solutions

available to viruses as they respond to environmental

change. In contrast, the larger genomes of DNA viruses,

such as Myxoma [11], may offer more potential genetic

routes to the same phenotype.

Perhaps the best described example of virus parallel

evolution is the development of anti-viral drug resistance

by the human immunodeficiency virus (HIV). HIV exhi-

bits all the features of rapid adaptation listed above [12�];
consequently, many HIV drug resistance mutations have

been identified, which independently and repeatedly

arise during chronic infection in different HIV patients

[12�,13,14]. Interestingly, even within a genome as con-

strained as HIV’s, different mutations can confer
www.sciencedirect.com
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Table 1

Selected examples of virus parallel evolution

Virus Gene Mutation Details Reference

Laboratory conditions

Vesicular stomatitis virus

(VSV)

Various Various Independent populations sequentially passaged showed 19 loci that

evolved shared alleles.

[64]

Middle East respiratory

syndrome coronavirus

(MERS-CoV)

S S465F Replicated sequential passaging in DDP4-expressing cells resulted in

the mutation Ser ! Phe in the spike protein

[65]

Natural systems

Human immunodeficiency

virus (HIV)

Gag M30R, Y30R A change from Met or Lys ! Arg observed in HIV groups M, N and O. [18]

Rabies virus (RABV) N L374S Substitutions in the nucleoprotein and polymerase observed in two

independent zoonoses.
[5]L K200R

Influenza A virus (IAV) HA G228S A Gly ! Ser change observed in different HX subtypes that circulate

in humans, compared to avian and equine sequences.

[66]

PB2 E627K A Glu ! Lys change at position 627 of PB2 increases virulence in

mammalian hosts, in both H5N1 and H3N2 subtypes.

[67]

West Nile Virus (WNV) NS3 T249P A single change (Thr!Pro) in the viral helicase increased virulence for

American crows, and was observed in different bird outbreaks in

Egypt, Romania, Russia, Israel and the United States.

[68]

Circulating vaccine-derived

polioviruses (cVDPV)

VP1 F280Y Multiple parallel changes observed in vaccine derived polioviruses in

29 different epidemics in relation to a known, ancestral oral polio

vaccine (OPV) strain sequence.

[69]aVP2 F141Y

VP3 T80K

a An additional non-coding substitution was also reported by the authors and is not included in this table.
resistance to specific drugs [15]. HIV also displays rapid

and repeatable evolution to host immune responses, as

demonstrated by the parallel evolution in different

patients of escape mutations to HLA-restricted T-cell

responses [7].

Viruses that register frequent cross-species transmission

events might also exhibit parallel evolution as a result of

adaptation to new host environments [16]. Barriers to

virus replication in a new host may include (i) lack

suitable receptors for virus cell entry, (ii) innate and

adaptive immune responses, (iii) reduced replication

efficacy in specific cell types, and (iv) mechanisms of

virion release from infected cells [17��]. For example,

HIV-1 groups M, N and O are derived from separate

cross-species transmissions to humans of simian immu-

nodeficiency viruses (SIVs) in chimpanzees and gorillas.

Following spillover, these groups independently acquired

a Met ! Arg amino acid change in the retroviral Gag

protein [18]. Under experimental conditions, this muta-

tion increases SIV replication in human lymphoid tissue

[19]. Rabies virus (RABV) offers another example: the

RABV lineage that infects dogs has changed host species

on multiple occasions, causing outbreaks in other Carniv-
ora species. Amongst these events, parallel amino acid

changes were observed in two separate RABV zoonoses

from dogs to ferret-badgers (a Leu ! Ser mutation in the

RABV nucleoprotein and a Lys ! Arg change in the

polymerase) [5].

Parallel evolution and adaptation may also target larger

genome regions, and sites involved in post-translational
www.sciencedirect.com 
modification. For example, the hemagglutinin of H7

subtype avian influenza virus (AIV) can acquire a N-

glycosylation site when the virus jumps from wild to

domestic birds [20], and highly pathogenic strains of

AIV have emerged independently many times, through

the evolution of different polybasic cleavage sites in

hemagglutinin [21]. For HIV-1, it is now understood that,

after zoonosis, groups M and O independently evolved

the ability to antagonise human tetherin (an anti-viral

restriction factor), but did so using entirely different

retroviral accessory genes [22,23].

Parallel molecular evolution: selection and
adaptation
Parallel molecular evolution has been described for many

viruses both under laboratory conditions and in natural

systems. Table 1 provides an illustrative selection of RNA

virus examples. Whilst theoretical studies have focused

on the ability of natural selection to increase the proba-

bility of parallel evolution [24], experimental studies have

indicated the potential impact of other factors, including

epistatic interactions amongst sites and heterogeneity of

mutation rates across the genome [25��,26].

It is commonly hypothesised that natural selection is the

key process involved in parallel molecular evolution.

Negative selection eliminates many mutations from viral

populations because strong functional constraints render

most genetic changes disadvantageous. In contrast, posi-

tive selection favours the accumulation of mutations that

are beneficial to virus replication and transmission. Deter-

mining whether a given site or genomic region has
Current Opinion in Virology 2019, 34:90–96
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evolved under natural selection can be achieved by

comparing the relative rates of synonymous (dS) and

non-synonymous (dN) changes, quantified as a dN/dS ratio
[27]. Because positive selection can act on specific sites at

particular points in time, it is important to explore varia-

tion in dN/dS amongst sites and amongst virus lineages.

Several methods are available to undertake such calcula-

tions [28–30]. If dN/dS> 1 for a specific codon, then

multiple amino acid changes have likely occurred at that

codon, and the codon is a candidate for the detection of

parallel evolution (see below). However, dN/dS methods

have limitations and may fail to detect instances of sites

under selection [29]. In particular, some studies report

that dN/dS tests have failed to identify sites that appear to

have undergone parallel adaptation [5,31].

Detecting parallel molecular evolution
The robust identification of parallel evolution and adap-

tation can be broken down into four steps: (i) detection of

parallel changes (usually amino acid changes), (ii) associ-

ation of those changes with a phenotype or environmental

change of interest, (iii) characterisation of the evolution-

ary forces behind the repeated occurrence of such

changes, and (iv) evaluation of the functional effects of

mutations in the context of host–pathogen biology. A

powerful method for detecting repeated, independent
Figure 1
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evolution is comparative phylogenetics, which infers

the evolutionary history of a given trait (including recon-

struction of ancestral states) using parsimony or other

phylogenetic models [32]. This approach is typically

robust, so long as recombination or horizontal gene trans-

fer (which can mimic parallel evolution) is absent.

Steps (ii) and (iii) are less straightforward. It is tempting to

detect associations between a mutation and a phenotype

by calculating the mutation frequencies in viruses that do

or do not exhibit the relevant phenotype. This generates a

contingency table of observed counts (Figure 1) that is

evaluated using a Chi-squared or Fisher’s exact test.

However, it has long been known in the evolutionary

literature that this approach can lead to false positive

conclusions, because the counts are not independent

observations, but instead are correlated due to shared

ancestry [33,34]. The problem can be resolved by consid-

ering the phylogenetic history of the trait in question

(Figure 1). Specifically, recurrent acquisition of a muta-

tion in the context of independent changes in phenotype

(Figure 1b) indicates that the mutation is evolutionarily

linked to the phenotype. However, if mutation and

phenotypic change occur only once in the phylogeny

(Figure 1a) then their association could be due to chance.

Bhattacharya et al. [7] referred to the latter situation as the
Summary Table
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A framework for evaluating parallel evolution in virus sequences. (a) An alignment is estimated for a set of viral sequences. Polymorphic sites

associated with a given phenotype or environment are identified. (b) A phylogeny is estimated, and the lineages in which the phenotype of interest

is observed are identified (orange). (c) Ancestral states (here, S or V) are reconstructed for each of the polymorphic sites identified in step A. (d)

Branches upon which a genetic change (red cross) is associated with the trait of interest are tested for positive selection. (e) Sites that exhibit

evidence of molecular adaptation are mapped into a structure of the protein in question to determine possible functional effects.
‘founder effect’ and used a phylogenetically corrected

statistical test to demonstrate that previously reported

HLA-associated escape mutations in HIV [35] were not

statistically robust. Another phenomenon that may cause

mutations to appear artefactually linked to a specific

phenotype or environment is genetic hitchhiking,

whereby an observed mutation does not affect the asso-

ciated phenotype, but is genetically linked to a mutation

that does. Further, the phylogenetic association between

a mutation and a phenotype may be weak if the pheno-

type is polygenic in nature, or depends on an interaction

between the viral genotype and the environment.

It is useful to place virus experimental evolution studies

in the same phylogenetic context (Figure 1c). Experi-

mental evolution was, for example, used to identify

adaptive mutations that increase viral fitness in vesicular

stomatitis virus [26]. Such studies often initiate indepen-

dent virus populations from the same source inoculum.

The replicate populations are passaged in different envir-

onments and later scanned for shared evolutionary

changes. This experimental design is, thus, equivalent
www.sciencedirect.com 
to a star-shaped phylogeny with a known ancestor

(Figure 1c). Since the replicate populations are not cor-

related by shared ancestry, differences amongst them are

independent and can be tested using standard statistics.

Parallel evolution beyond the sequence level
As explained above, phylogenetic analyses of viral

sequences may be able to detect parallel evolution, but

are insufficient to establish whether a given trait has arisen

repeatedly through adaptation. Experimental evidence,

from molecular biology or animal challenge studies, is ulti-

mately required to determine the functional consequences

of parallel mutations. However, it may be possible to further

refine candidate sites for experimental confirmation by

undertaking in silico analyses that combine structural and

evolutionary information. This is especially true if virus

proteins evolve the same structural change (e.g. a change

in charge) via a variety of mutational paths. Mapping of virus

mutations onto resolved protein structures can provide

information about the functional effects of genetic changes,

including thermodynamic stability, or interactions with

other proteins or biologically important molecules [36�].
Current Opinion in Virology 2019, 34:90–96
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For example, a recent study of human influenza B virus

genomes observed parallel amino acid changes occurring

three times in the HA gene of the Yamagata lineage [38].

Computational structural analyses showed that these were

located in a major antigenic epitope [37]. These approaches

include structural alignment methods [38] that can compare

divergent virus proteins that exhibit little homology at the

sequence level, but which share homology at the structural

level. Other combined phylogenetic approaches can esti-

mate the effect of specific mutations on protein stability, as

demonstrated in a functional analysis of influenza A virus

hemagglutinin gene variation [39]. We envisage that struc-

tural analyses could form part of a phylogenetically informed

workflow for investigating the significance of parallel evolu-

tionary changes (Figure 2), and for selecting appropriate

candidates for experimental validation. The results obtained

would also provide insights into the evolvability, mutability

and robustness of virus proteins [40].

Other functional constraints, beyond those imposed by

protein structure, could also play a role in parallel molecular

evolution during emergence or zoonosis. Non-coding viral

genetic elements, such as untranslated regions (UTRs)

[41], internal ribosome entry sites (IRES) [42,43], or non-

coding RNAs [44,45], can be functionally important for

virus replication and infection. Flaviviruses provide many

examples of the importance of RNA structures for viral

replication [46] and host adaptation [41], some of which are

proposed to have arisen through parallel evolution [47];

different functional roles have been inferred for RNA

structures in other viruses [48,49]. Evaluating the effects

of natural selection on RNA genome regions encoding for

secondary structures represents an additional challenge

because (i) ourunderstanding ofhowsuch structures evolve

is poor, and (ii) it is difficult to define neutrally evolving

sites in such regions [50], which limits the use of dN/dS
estimation methods, and our limited knowledge of the

degree to which non-coding elements are structurally con-

strained. Various approaches have been developed to test

for selection on non-coding regions [51] and to predict the

secondary structure of RNA molecules [52,53], but to date

their use has been limited in evolutionary analyses of

viruses. Further development of these methods could

improve our understanding of the role that RNA structures

play in virus evolution [54].

Conclusions and future perspectives
Detecting parallel evolution in viruses, and inferring the

mechanisms that underlie such changes, can benefit both

basic and applied problems. If, in a rapidly evolving virus

population, parallel mutations repeatedly arise in the con-

text of the same change in phenotype or environment (i.e.

Figure 1b), then at least some aspects of virus evolution are

predictable. Such repeating patterns, at the sequence or

structural level, may help to forecast virus emergence and

cross-species transmission events in the future. Further,

placing these changes within a structural context could be
Current Opinion in Virology 2019, 34:90–96 
used to triage newly discovered viruses, enabling surveil-

lance and research to focus on those with the greatest

predicted propensity for cross-species transmission or

emergence. We note, however, that instances of parallel

evolution identified by computational means must be

interpreted with caution; confirmation of the fitness costs

of evolutionary change ultimately depends on experimen-

tal validation, as shown for some recent outbreak scenarios

[55,56]. A number of experimental techniques are now

available to link virus genotypes to phenotypes, including

pseudotyping [57�], minigenome systems [58], viral reverse

genetics [59], and site-directed mutagenesis [60]. These

and related approaches are vital to determining the func-

tional role of viral mutations and their effects on virus and

host fitness.

Current challenges for inferring parallel molecular evo-

lution are twofold. First, to better understand and predict

parallel adaptation, and apply it to the specific scenario of

virus emergence, we need a model that describes how the

phenomenon depends on factors such as mutation rates,

population sizes, selection coefficients and genome evol-

vability. Second, improvements in statistical methods and

software are needed to make it easier to test parallel

evolution hypotheses in the correct way. Advances have

been made in testing specific phenomena associated with

parallel evolution, such as coevolution [61] and episodic

selection [28,30]; however, an integrated inference frame-

work that maximises the accuracy of site identification,

and is robust to confounding processes such as recombi-

nation and genetic hitchhiking is still required. New high

throughput experimental approaches, such as deep muta-

tional scanning, have been applied to virus pathogens and

will provide more comprehensive information on the

mutability of virus proteins [62�,63]. Results from similar

empirical approaches, combined with the rapid growth of

genome sequences for viruses from multiple hosts and

ecosystems, will provide a broader evidence base for virus

parallel evolution during virus emergence.
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