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ABSTRACT
Fast-twitch and slow-twitch muscles are the two principal skeletal muscle types in
teleost with obvious differences in metabolic and contractile phenotypes.
The molecular mechanisms that control and maintain the different muscle types
remain unclear yet. Pseudocaranx dentex is a highly mobile active pelagic fish
with distinctly differentiated fast-twitch and slow-twitch muscles. Meanwhile,
P. dentex has become a potential target species for deep-sea aquaculture because of its
considerable economic value. To elucidate the molecular characteristics in the two
muscle types of P. dentex, we generated 122 million and 130 million clean reads from
fast-twitch and slow-witch muscles using RNA-Seq, respectively. Comparative
transcriptome analysis revealed that 2,862 genes were differentially expressed.
According to GO and KEGG analysis, the differentially expressed genes (DEGs) were
mainly enriched in energy metabolism and skeletal muscle structure related
pathways. Difference in the expression levels of specific genes for glycolytic and
lipolysis provided molecular evidence for the differences in energy metabolic
pathway between fast-twitch and slow-twitch muscles of P. dentex. Numerous genes
encoding key enzymes of mitochondrial oxidative phosphorylation pathway were
significantly upregulated at the mRNA expression level suggested slow-twitch muscle
had a higher oxidative phosphorylation to ensure more energy supply. Meanwhile,
expression patterns of the main skeletal muscle developmental genes were
characterized, and the expression signatures of Sox8, Myod1, Calpain-3, Myogenin,
and five insulin-like growth factors indicated that more myogenic cells of fast-twitch
muscle in the differentiating state. The analysis of important skeletal muscle
structural genes showed that muscle type-specific expression ofmyosin, troponin and
tropomyosin may lead to the phenotypic structure differentiation. RT-qPCR analysis
of twelve DEGs showed a good correlation with the transcriptome data and
confirmed the reliability of the results presented in the study. The large-scale
transcriptomic data generated in this study provided an overall insight into the
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thorough gene expression profiles of skeletal muscle in a highly mobile active pelagic
fish, which could be valuable for further studies on molecular mechanisms
responsible for the diversity and function of skeletal muscle.

Subjects Aquaculture, Fisheries and Fish Science, Marine Biology, Molecular Biology, Zoology
Keywords Pseudocaranx dentex, Fast-twitch muscle, Slow-twitch muscle, Transcriptome
expression profiles, Differentially expressed genes

INTRODUCTION
Skeletal muscle constitutes the largest organ system and is essential for locomotion and
body metabolic homeostasis in vertebrate. It is widely accepted that skeletal muscle is
composed mainly of two fiber types: slow-twitch and fast-twitch muscle fibers, with
different morphological, biochemical, and physiological properties (Frontera & Ochala,
2015). Unlike mammals, the slow-twitch and fast-twitch muscle fibers of fish are spatially
segregated into anatomically distinct areas (Berchtold, Brinkmeier & Muntener, 2000).
Generally, slow-twitch muscle is restricted to a thin, superficial, lateral wedge in the
vicinity of lateral line, while fast-twitch muscle makes up the reminder majority of the
muscle bulk (Syme, 2005). This unique distribution pattern makes fish an ideal animal
model for investigating the underlying molecular mechanisms that control the diversity
and function of skeletal muscle fibers.

Over the past decades, extensive researches have been conducted on teleost skeletal
muscle, the classification of muscle fiber types (Kronnie et al., 1983; Silva et al., 2008), the
biochemical component distinctions between different muscle types (Gibb & Dickson,
2002), the impact of stress and nutrition on the growth of fast-twitch muscle (Aedo et al.,
2015; Magnoni et al., 2015), and the function of single gene in muscle differentiation
and development (Chauvigne et al., 2005; Macqueen & Johnston, 2006) were formulated
clearly. Recently, limited studies on comparing the gene expression patterns between
fast-twitch and slow-twitch muscles of Takifugu rubripes (Gao et al., 2017), Piaractus
mesopotamicus (Mareco et al., 2015), and Schizothorax prenanti (Li et al., 2019), have
revealed that the complex transcriptional regulatory mechanisms in both metabolic
pathways and structural components. However, given the significant correlation between
swimming performance, muscle proportion, and energy metabolism (Gibb & Dickson,
2002; Drazen, Dugan & Friedman, 2013; Teulier et al., 2019), studies on these species
with relatively weak swimming ability were not enough to characterize the molecular
components and regulatory mechanisms that control the muscle types of all teleost,
especially for highly athletic species. It is necessary to carry out an accurate and systematic
transcriptome research to understand the genetic information responsible for the
difference of muscle types on more active fish.

Pseudocaranx dentex (Bloch & Schneider, 1801), also known as white trevally, which
belongs to the family Carangidae, occurs on continental and island shelves across the
anti-tropical regions of the Atlantic, the Indo-Pacific, and the Mediterranean (Smith-
Vaniz, 1999). It is a very active and fast swimmer with the habit of pelagic, long-distance
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migration and has a higher proportion of slow-twitch muscle compared to most other
teleost (Rowling & Raines, 2000; Aji, 2011). It has become a target species for finfish
aquaculture in Japan and China because of its excellent meat quality and rapidly increasing
market demands (Honryo et al., 2021). The main limitation of developing the artificial
breeding and aquaculture industry for P. dentex is the lack of genetic and physiological
information. Therefore, characterization the main skeletal muscle types of P. dentex is
essential for promoting the development of deep-sea aquaculture industry and the
exploitation of long-distance migratory fish resources. Researches on P. dentex have
mainly focused on the reproductive habitat (Guirao et al., 2005; Afonso et al., 2008),
broodstock nutrition (Watanabe & Vassallo-Agius, 2003), seeding production (Nogueira
et al., 2018; Honryo et al., 2019), and disease control (Al Bulushi et al., 2010; Imajoh et al.,
2013). So far, little was known concerning the expression profiles and transcript properties
of fast-twitch and slow-twitch muscles in P. dentex.

In this study, we used RNA sequencing technology to capture and compare the
transcriptional profiles of fast-twitch and slow-twitch muscles in P. dentex. According to
the reference genome, the obtained transcriptome data were assembled and the gene
expression profiles were investigated. Function annotation and enrichment analysis on the
differentially expressed genes (DEGs) were also conducted. This work aims to provide a
basis for future studies on molecular mechanisms that responsible for the diversity and
function of skeletal muscle in P. dentex.

MATERIALS AND METHODS
Ethics statement
All the experimental animal treatment in this study was approved by the Animal Care and
Use Committee of Yellow Sea Fisheries Research Institute (Permit No. YSFRI-2021013).
All procedures were in strict accordance with the guide for the care and use of laboratory
animals and the animal welfare in China.

Sample collection and RNA extraction
A total of three healthy P. dentex (body weight: 1567.63 ± 147.05 g; body length: 36.83 ±
0.67 cm) specimens with the same genetic background were randomly collected from the
Dalian Tianzheng Industry Co., Ltd. (Dalian, Liaoning province, China) in November
2020. The experimental fish were taken from the same breeding condition (temperature:
15–22 �C; salinity: 23–30; pH: 7.2–8.0; dissolved oxygen: 7–9 mg/L; feed three times a day
with fresh fish and artificial diets), which will eliminate the influence of environmental
factors. Before the start of sampling, the living P. dentex were anesthetized with MS-222
(Tricaine Methanesulfonate) at 30 mg/mL and then euthanased by severing the spinal cord.
Fast-twitch muscle was dissected from the dorsal epaxial region, while slow-twitch muscle
was dissected from the zone beneath the lateral line region, as shown in Fig. 1.
Any ambiguous fiber was removed to obtain pure muscle tissues. Samples were
immediately placed into liquid nitrogen and stored at −80 �C until RNA extraction.

Total RNA was extracted from each tissue using RNAiso Plus (Takara, Beijing, China)
following the manufacturer’s protocol. The quantity and quality of extracted total RNA
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were measured using Qubit� 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA) and
1% agarose gel electrophoresis.

cDNA library construction and transcriptome sequencing
Sequencing libraries were generated using NEBNext�UltraTM RNA Library Prep Kit for
Illumina� (NEB, Ipswich, MA, USA) and 3 mg total RNA per sample was used as input
material following the manufacturer’s recommendation. To attribute sequences, the
index codes were added. Three fast-twitch muscle cDNA libraries and three slow-twitch
muscle cDNA libraries were constructed. The prepared cDNA libraries were sequenced on
the Illumina NovaSeq 6000 platform and 150 bp paired-end reads were generated at
Novo Gene Biological InfoTech Ltd. (Beijing, China). The raw data were deposited into
NCBI Sequence Read Archive (SRA) with accession numbers SRR14672383,
SRR14672384, SRR14672385, SRR14672386, SRR14672387 and SRR14672388.

RNA-Seq analysis
Raw data were firstly processed through fastP program (version 0.19.7; Chen et al., 2018),
which invoked by Perl scripts to remove low-quality reads. Reads containing adapter and
ploy-N were also filtered. After initial processing, Q20, Q30, and GC content were
calculated. Then, the clean reads were aligned to the P. dentex reference genome (NCBI:
PRJNA731999) using TopHat v2.0.12 (-max-intron-length 500000 -m 2 –library-type
fr-unstranded) (Trapnell, Pachter & Salzberg, 2009) with Bowtie as internal aligner.
The reads numbers mapped to each gene were counted with HTSeq v0.6.1 (union mode)
(Anders, Pyl & Huber, 2015). FPKM, which considers the effect of gene length and
sequencing depth for the reads count at the same time, was calculated for estimating gene
expression levels based on the formula: FPKM = 109 × C/(N × L), where, C is the number
of reads mapped onto each gene, N is the total number of mapped reads onto all genes,

Figure 1 Tissue sampling of P. dentex used in this study. The locations of slow-twitch muscle and
fast-twitch muscle are marked on the cross section of dashed arrows slice. FM, fast-twitch muscle; SM,
slow-twitch muscle. Bar = 2 cm. Full-size DOI: 10.7717/peerj.12720/fig-1
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and L is the base length of gene. When FPKM value > 1.0, the gene was considered to be
expressed. Pearson correlation matrix and principle component analysis (PCA) were
performed to assess the reproducibility and variability of biological samples. Upon the
expression levels of all genes, the Pearson’s correlation coefficient (r) was calculated with
the R function ‘correl’ and PCA on all samples were performed using TBtools.
Generally, when |r| ≥ 0.8, it was regarded as a high correlation between the two variables;
when 0.5 ≤ |r| < 0.8, it was regarded as moderate correlation; when 0.3 ≤ |r| < 0.5, it was
regarded as low correlation; when |r| < 0.3, it was regarded as irrelevant between the
two variables.

We used DESeq to find genes that differentially expressed between fast-twitch muscle
and slow-twitch muscle. The significance of the differential gene expression was
determined by the control of false discovery rate (FDR) calculated based on Benjamini and
Hochberg method (Benjamini & Hochberg, 1995). Genes with both fold change ≥2 and
FDR adjusted p < 0.05 were assigned as differentially expressed (Anders & Huber,
2012). The volcano plot and hierarchical clustering heatmap to present the global
distribution of differentially expressed genes (DEGs) were graphed using pheatmap R
package and ggplot2 R package, respectively. To determine the functions of DEGs, Gene
Ontology (GO) enrichment analysis by GOseq R package based on Wallenius non-central
hypergeometric distribution (Young et al., 2010), and KEGG (http://www.genome.jp/kegg/)
(Kanehisa et al., 2008) pathways annotation by KOBAS software (Mao et al., 2005) were
conducted. The chord plot was generated with the GOplot R package (https://cran.r-project.
org/web/packages/GOplot) (Walter, Sánchez-Cabo & Ricote, 2015).

Validation of gene expression profiles by RT-qPCR analysis
RT-qPCR analysis was used to validate the gene expression changes observed by RNA-seq.
A total of 12 DEGs was selected for validation and GAPDH was used as the internal
reference gene, as shown in Table 1. The same subset of RNA samples from fast-twitch
muscle and slow-twitch muscle used in RNA-seq were analyzed. RT-qPCR was carried out
using SYBR Green Pro Taq HS Mix (Accurate Biotechnology, Hunan, China) and
performed in a 7500 Fast Real-Time PCR System (Applied Biosystems, Waltham, MA,
USA). The amplification efficiency of each primer pair was verified using a cDNA dilution
series. Relative expression values were determined using 2−ΔΔCt method (Livak &
Schmittgen, 2001). The Pearson correlation coefficient was used to investigate the
correlation between RNA-seq and RT-qPCR results.

RESULTS
Sequencing and transcriptome annotations
Here, six separate Illumina sequencing libraries produced close to 261.08 million
paired-end reads. After low-quality sequencing reads filtering, a total about 253.11 million
high-quality clean reads were obtained: 122.85 million reads from three fast-twitch muscle
samples and 130.26 million reads from three slow-twitch muscle samples (Fig. 2A).
Q20 varies from 97.60% to 98.10% and Q30 varies from 93.50% to 94.73%. Over 92.62% of
the clean reads from all sequencing libraries could be mapped onto P. dentex reference
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genome, and 83.3–86.9% of the reads were mapped to the gene coding regions, which
indicated that we have obtained the high-quality transcriptome sequencing data of
P. dentex skeletal muscle.

In all six samples, 48.54–64.31% of the 24,636 mapped genes detected to be expressed
(Table S1). The FPKM distribution between fast-twitch and slow-twitch muscles of
P. dentex was not completely the same, indicating that overall gene expression level was
different (Fig. 2B). The values of correlation among samples intra types of muscle in this
study had very high repeatability (r = 0.894–0.947), greater than that of inter types of
muscle (r = 0.694–0.833, Fig. 2C). Result of PCA was consistent with Pearson’s correlation
analysis. The first two principal components explained 97.9% and 1.5% of the total genetic

Table 1 Primers of DEGs used for gene expression changes validation with RT-qPCR method.

NO Gene ID Gene name Log2 (fold change) p-value Primers sequences (5′-3′)

1 evm.TU.Hic_asm_5.399 Glyceraldehyde-3-
phosphate
dehydrogenase
(GAPDH)

0.65252 0.041328 F: TTGGTTACAGCCACCGTGTT
R: GCTATGGATGGGGCTTGTGT

2 evm.TU.Hic_asm_1.284 Myoblast determination
protein 1 (Myod1)

−6.8263 5.39E−16 F: ACGACAACGGCTTCTACCCTC
R: TCTGTGCTGATCCGCTCTACG

3 Novel00281 Myosin7 (Myo7b) 9.7529 1.38E−29 F: CCGGGCTTTCATGGGAGT
R: CCTGCGGGCTTCTGATTTT

4 evm.TU.Hic_asm_1.938 Myosin-binding protein C,
cardiac-type (MybpC3)

9.6835 1.76E−19 F: GATTGAAGGCGTGCCGTAT
R: CACTCGTAGGAGCGACTGG

5 evm.TU.Hic_asm_10.313 Myosin light chain 1,
skeletal muscle isoform
(MyLC1)

−6.9523 1.72E−17 F: GGCGGTATCAACTACGAGGG
R: GTATACAATGGGTGCACTGCC

6 evm.TU.Hic_asm_19.316 Myosin regulatory light
chain 2, skeletal muscle
isoform (MyL2)

−7.3122 2.35E−14 F: TCACTGTGTGAGAGCAACCAA
R: GGAGCGGAGAGAAAGAGATCG

7 evm.TU.Hic_asm_11.714 Myosin regulatory light
chain 2B (MyL2b)

9.6208 8.88E−112 F: TGAAAGAAGCTCCAGGTCCA
R: TTGTCCTCTCCGTGGGTGATAA

8 evm.TU.Hic_asm_3.435 Myosin regulatory light
chain 2, atrial isoform
(MyL7)

17.02 1.93E−07 F: AAGACTTGAGGGAGACGTATGG
R: TGATGTAGCAGAGCGACTTGTAG

9 evm.TU.Hic_asm_9.194 Troponin T, fast skeletal
muscle isoforms
(TNNT2)

−7.0357 6.27E−27 F: AGTAAATTCAGCAAGAAGGGAGC
R: TGCATGTATCAGGACGTGGG

10 evm.TU.Hic_asm_22.520 Troponin T, cardiac
muscle isoforms
(TNNT3)

9.2931 7.41E−71 F: GCAGAAGTTCGCCAAAGGAAG
R: TTTATGTGTACGCCCAGCTCT

11 evm.TU.Hic_asm_2.756 ADP/ATP translocase 1
(SLC25A4)

−6.141 7.34E−17 F: GTCGTGACCTGGATGATTGC
R: TTCCTTAGGGACTGGGAGATTAG

12 evm.TU.Hic_asm_12.1071 Calsequestrin-1 (CASQ1) −7.2504 1.59E−44 F: GAAGTACGATGTCATGGTGGTG
R: CAATGAGACCGACTCCGATA

13 evm.TU.Hic_asm_7.23 Troponin C, slow skeletal
and cardiac muscles
(TNNC1)

7.3002 1.46E−76 F: CTCTCTGCAACAGCTCTCATCA
R: CGAGGACGGGTGTGTTGTTG
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variances, respectively (Fig. 2D). The PC1 clearly separated the biological samples of
fast-twitch muscle from the ones of slow-twitch muscle and grouped the same type of
samples together. Both two analyses confirmed the reliability of the experimental process
and rationality of sample selection.

Identification of differentially expressed genes (DEGs)
A total of 2,862 genes were identified as differentially expressed genes (DEGs) between
fast-twitch and slow-twitch muscles, of which 1,419 were significantly higher expressed in
slow-twitch muscle and 1,443 in fast-twitch muscle (Fig. 3A). Genes with the same or
similar expression patterns were clustered together, implied that these DEGs may perform
similar biological functions or participate in the same biological process (Fig. 3B).

GO enrichment analysis of DEGs
GO enrichment analysis was used to determine the main biological functions of the DEGs.
After corrected by FDR, the GO term with q-value ≤ 0.05 was defined as significantly

Figure 2 Summary statistics of the P. dentex fast-twitch and slow-twitch muscles transcriptome.
(A) Statistics summary for Illumina short reads information of transcriptome. (B) FPKM distribution
of genes. (C) Pearson’s correlation coefficients between samples. “r” Represents the Pearson’s correlation
coefficient. (D) The PCA plot of samples used in current study. Pd_FM, fast-twitch muscle; Pd_SM,
slow-twitch muscle. Full-size DOI: 10.7717/peerj.12720/fig-2
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enriched. A total 2,558 DEGs were enriched in 3,111 GO terms, and of these 121 GO terms
were significantly enriched (q ≤ 0.05). The DEGs that up-regulated in slow-twitch muscle
were significantly enriched in the mitochondrion (GO:0044429; GO:0005739; Fig. 4A),
mitochondrial membrane (GO:0005743; GO:0031966; Fig. 4A), and mitochondrial energy
metabolism (GO:0005746; GO:0003824; GO:0016491; GO:0003995; GO:0015002; Fig. 4A)
(q ≤ 0.05). Although there were no significant enrichment terms of up-regulated DEGs
in fast-twitch muscle, the GO analysis still provided us with some information about gene
function classification and cellular localization. For example, GO results showed that the
DEGs up-regulated in fast-twitch muscle were enriched in skeletal muscle component
(GO:0015629; GO:0005861; GO:0005865; GO:0030016; GO:0030017; GO:0036379; GO:
0043292; Fig. 4B) and proteolysis catabolic (GO:0051603; GO:0030163; Fig. 4B) (q > 0.05).

KEGG enrichment analysis of DEGs
KEGG pathway analysis was also carried out to categorize the DEGs in metabolic or
signal transduction pathways. A total of 147 pathways were identified, and of these only
12 KEGG pathways were significantly enriched (q ≤ 0.05). Oxidative phosphorylation
(dre00190), cardiac muscle contraction (dre04260), glycerolipid metabolism (dre00561),
PPAR signaling pathway (dre03320), and fatty acid degradation (dre00071) were the main

Figure 3 The expression profiles of DEGs in fast-twitch and slow-twitch muscles. (A) The volcanic
diagrams visualizing the distribution of DEGs. Under the criteria of fold change ≥2 and p < 0.05,
up-regulation genes in slow-twitch muscle are represented by red dots, while up-regulation genes in
fast-twitch muscle are represented by green dots. (B) Heatmaps of the DEGs between fast-twitch and
slow-twitch muscles, which clustering into four groups based on their expression profiles. The columns
represent two types of muscle. The rows represent DEGs. The color bars at right represent different gene
groups. The expression levels of genes are represented by the value of normalization transformed log10
(FPKM + 1). Pd_FM, fast-twitch muscle; Pd_SM, slow-twitch muscle.

Full-size DOI: 10.7717/peerj.12720/fig-3
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pathways in slow-twitch muscle (Fig. 5A). Ubiquitin mediated proteolysis (dre04120),
insulin signaling pathway (dre04910), starch and sucrose metabolism (dre00500), and
glycolysis/gluconeogenesis (dre00010) were the key pathways in fast-twitch muscle
(Fig. 5B). The annotation results of DEGs provided molecular evidence for the difference
of energy metabolism between slow-twitch and fast-twitch muscles.

To obtain the specific molecular characteristic information contribute to the
differences in energy metabolism, we analyzed the DEGs that control the activity and
expression of key enzymes, transporters, and transcription factors in biosynthesis, uptake,
and metabolism of lipid and glycogen. Several key genes that participate in lipogenesis
(acetyl-CoA carboxylase (Acc) and acyl-CoA-binding protein (ACBP)), lipid uptake (fatty
acid-binding protein (Fabp3) and lipoprotein lipase (LPL)), and oxidation (peroxisome
proliferator-activated receptor a (PPARa), acyl-CoA dehydrogenase (Acadm), long-chain
specific acyl-CoA dehydrogenase (Acad1), long-chain fatty acid-CoA ligase (ACS),
cGMP-inhibited 3′,5′-cyclic phosphodiesterase (PDE3A), and cAMP-dependent protein
kinase (PKA)) were all transcriptionally up-regulated in slow-twitch muscle (Fig. 5C).
On the contrary, the key enzymes that control glycolysis/gluconeogenesis, including
serine/threonine-protein kinase (AKT), fructose-1,6-bisphosphatase (Fbp1b),
phosphoglycerate kinase (PGK), glucose-6-phosphate isomerase (GPIA), and glycogen
synthase (GYS) were all up-regulated in fast-twitch muscle at transcriptional level
(Fig. 5C).

Figure 4 GO enrichment analysis of DEGs between slow-twitch and fast-twitch muscles. (A) The top 25 GO terms ranked by q-value of
up-regulated genes in slow-twitch muscle. (B) The top 25 GO terms ranked by q-value of up-regulated genes in fast-twitch muscle. Rich factor of
x-axis indicates the number of enriched genes associated with the given GO term divided by the total number of input genes. The specific terms
plotting along the y-axis. The size of the colored dots indicates the number of significantly DEGs associated with each corresponding term. The color
of each dot indicates the corrected q-value for the corresponding term. Full-size DOI: 10.7717/peerj.12720/fig-4
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Figure 5 KEGG enrichment analysis of DEGs between slow-twitch and fast-twitch muscles. (A & B) The top 20 GO terms ranked by q-value of
up-regulated genes in slow-twitch and fast-twitch muscle, respectively. Rich factor of x-axis indicates the number of enriched genes associated with
the given KEGG term divided by the total number of input genes. The specific terms plotting along the y-axis. The size of the colored dots indicates
the number of significantly DEGs associated with each corresponding term. The color of each dot indicates the corrected q-value for the
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Comparative analysis of mitochondrial oxidative phosphorylation
related genes
Among all the metabolic pathways, mitochondrial oxidative phosphorylation is the main
energy supply process for muscle contraction and is closely linked to the normal function
of skeletal muscle (Chabi et al., 2008; Crane et al., 2010; Park et al., 2014). Oxidative
phosphorylation process produces and accumulates ATP through electron flow and
proton gradient between five protease complexes (complex I-V) located in the inner
mitochondrial membrane (Chaban, Boekema & Dudkina, 2014). In P. dentex skeletal
muscle, a total of 145 genes were annotated into this pathway and among these, 63 DEGs
including members of NADH dehydrogenase, succinate dehydrogenase, cytochrome
bc1 complex, cytochrome c oxidase, and ATP synthase, have been verified to be
significantly differentially expressed between these two muscle types (p < 0.05, Fig. 6).
ATP6V0A2 and Lhpp, members of the complex V, were the only two genes that
up-regulated in fast-twitch muscle, while the other 61 genes showed a higher expression
level in slow-twitch muscle (p < 0.05, Fig. 6).

Comparative analysis of skeletal muscle developmental and structural
related genes
To explore the molecular mechanisms of skeletal muscle development and growth in
P. dentex, a simplified diagram of skeletal myogenesis was drawn based on the existing
studies of other vertebrates (Johnston, Bower and Macqueen, 2011; Valente et al., 2013;
Frontera & Ochala, 2015) (Fig. 7A). The relative expression levels of key genes associated
with myoblast specification, activation, proliferation, differentiation, migration, fusion,
and maturity were analyzed (Fig. 7B). According to our RNA-seq data, the genes
encoding transcription factor Sox-8 (Sox8), myoblast determination protein 1 (Myod1),
Calpain-3, insulin-like growth factor II (Igf2), and IGF-binding protein 4 (Igfbp4) were
significantly up-regulated in fast-twitch muscle, whereas Myogenin, Igfbp1, Igfbp6 and
Igfbp7 were significantly up-regulated in slow-twitch muscle (Fig. 7B). Similarly, genes
encoding skeletal muscle structural proteins and related regulatory proteins, such as
myosin, myosin heavy chain, myosin light chain, myosin regulatory light polypeptides,
myosin-binding proteins, troponin and tropomyosin also showed differentiated
expression patterns between slow-twitch muscle and fast-twitch muscle (Fig. 7C).

RT-qPCR validation
To assess the reliability of transcriptome data, twelve DEGs associated with skeletal muscle
contraction, including Myod1, Myo7b, MybpC3, MyLC1, MyL2, MyL2b, MyL7, TNNT2,
TNNT3, SLC25A4, CASQ1 and TNNC1, were selected for RT-qPCR analysis. Among these,
six DEGs were significant up-regulated in slow-twitch muscle, while the others were

Figure 5 (continued)
corresponding term. (C) Chord plot showing the DEGs shared by two or more energy metabolism related KEGG pathways. DEGs on the left ordered
by log2 (FoldChange). When the gene is more expressed in slow-twitch muscle, the redness of the rectangular flanks is deeper, on the contrary, the
blue is darker. Different KEGG pathways on the right shown in different colors. Full-size DOI: 10.7717/peerj.12720/fig-5
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Figure 6 DEGs related to mitochondrial oxidative phosphorylation pathway in P. dentex slow-twitch muscle and fast-twitch muscle. (A) DEGs
mapping onto the KEGG pathway, which represents oxidative phosphorylation (adapted from KEGG ID: dre00190). The background color of
rectangle represents species specificity pathway, “green background” represents eukaryotes, whereas “white background” represents bacteria or
archaea. The “reddish purple border” of rectangle represents up-regulated gene in slow-twitch muscle and “bluish green border” represents
up-regulated gene in fast-twitch muscle. (B) The fold change on a log2 scale for the genes marked in (A) “Reddish purple bar” indicates up-regulated
gene in slow-twitch muscle. “Bluish green bar” indicates up-regulated gene in fast-twitch muscle. Full-size DOI: 10.7717/peerj.12720/fig-6
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significant up-regulated in fast-twitch muscle according to the RNA-seq data (Table 1).
GAPDH was used as the reference for quantitative analysis, as its expression levels were
confirmed to be consistent between these two types of muscle. The relative expression
levels of DEGs obtained by RT-qPCR were in great agreement with the results of
transcriptome analysis (Pearson’s r = 0.95, p = 2.4e−06; Fig. 8), which indicated that the
accuracy and reliability of the methods and results presented in the study.

DISCUSSION
Among teleosts, slow-twitch muscle mainly provides power for sustained swimming, while
the fast-twitch muscle is mostly involved in burst swimming or sprinting (Videler, 1993).
These two types of skeletal muscles have obvious differences in metabolic and contractile
phenotypes (Ciciliot et al., 2013). To compare and determine the underlying molecular
mechanisms that control and maintain the different muscle types, we used RNA
sequencing technology to identify skeletal muscle type-specific gene expression profiles of
P. dentex, a highly mobile active pelagic fish with distinctly differentiated slow-twitch
muscle and fast-twitch muscle. As the reference genome was available, we obtained 24,636
genes from a range of transcripts, described the expression patterns and predicted the
functions of DEGs in detail.

Skeletal muscle requires vast amounts of energy, both for activity and growth. Previous
studies have reported that lipids and glycogen are the two main energy donors utilized by

Figure 7 Simplified diagram of skeletal myogenesis and expression profiles of myogenic related genes in P. dentex slow-twitch and fast-twitch
muscle. (A) The representative myogenic-related genes represented in the transcriptome are mapping into the myogenesis process schematic
diagram. “Reddish purple dot” indicates gene significantly up-regulated in slow-twitch muscle. “Bluish green dot” indicates gene significantly
up-regulated in fast-twitch muscle. “White dot” indicates gene with no significant differences between two types of muscle. (B) Skeletal myogenesis
related genes and (C) Myofibril related genes expression levels. “Reddish purple bar” indicates gene significantly up-regulated in slow-twitch muscle.
“Bluish green bar” indicates gene significantly up-regulated in fast-twitch muscle. Full-size DOI: 10.7717/peerj.12720/fig-7
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muscle tissue to produce ATP (Romijn et al., 1993). Lipid packs more energy per gram
than any other fuel to support endurance swimming and also provides most of the ATP
for muscle recovery (Richards, Heigenhauser & Wood, 2002; Weber et al., 2016), while
glycogen metabolism rapidly produces energy for quickly and forcefully muscle
contraction during high-intensity activities (Bao et al., 2020). The energy obtained from
lipid or glycogen through the process of β-oxidation and glycolysis, respectively. These
processes are both dependent on substrate availability and enzymatic pathways (Eaton,
2002; Sylow et al., 2017). The test of energy donor content have proved that slow-twitch
muscle has a high content of lipid, whereas fast-twitch muscle with a high level of glycogen
(Davison & Goldspink, 1984; Kiessling, Ruohonen & Bjørnevik, 2006). The same is true
for related enzyme activities (Knox, Walton & Cowey, 1980; Westerblad, Bruton & Katz,
2010; Sun et al., 2016). In the present study, ACC, ACBP, Fabp3, LPL, PPARa, Acadm,
Acad1, ACS, PDE3A and PKA, which proved to be directly or indirectly involved in the
regulation of skeletal muscle fatty acid uptake and β-oxidation process, showed the
increased mRNA expression level in slow-twitch muscle compared to fast-twitch muscle.
While the expression levels of specific glycolytic genes, such as AKT, Fbp1b, PGK,
GPIA, and GYS were much higher in the fast-twitch muscle of P. dentex than in the
slow-twitch muscle. Thus, our transcriptome results provide molecular evidence for the
differences in energy metabolism between fast-twitch and slow-twitch muscles of
P. dentex.

Mitochondrial oxidative phosphorylation (OxPhos) is the main energy production
pathway, provides most of the ATP for both locomotion and growth. The process of ATP
generation and accumulation is performed by means of electron flow and proton gradient
between five protein enzyme complex (complex I–V) in the inner mitochondrial
membrane (Chaban, Boekema & Dudkina, 2014). Our comparative transcriptome analysis
showed that the mRNA expression levels of numerous key enzymes involved in electron
transport and oxidative phosphorylation were significantly upregulated in slow-twitch

Figure 8 RT-qPCR verification of RNA-seq gene expression profiles. (A) Relative expression profiles
of twelve genes when slow-twitch muscle compare to fast-twitch muscle. The GAPDH serving as the
reference for quantitative analysis. (B) Correlation analysis of the expression data from RNA-Seq and RT-
qPCR. r, Pearson’s correlation coefficient used to reflect the degree of linear correlation between
RNA-Seq and RT-qPCR. p, p-value of the significance level.

Full-size DOI: 10.7717/peerj.12720/fig-8
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muscle compared to fast-twitch muscle, including several subunits of the Complex I
(NADH dehydrogenase), II (succinate dehydrogenase), III (cytochrome bc1 complex), IV
(cytochrome c oxidase), and V (ATP synthase) (Fig. 6). Through the up-regulated of
NADH dehydrogenase and succinate dehydrogenase complex expression levels, more
electrons carried by NADH and FADH2 might be passed to upregulated cytochrome bc1
complex and cytochrome C oxidase, and finally reached the terminal electron acceptor O2

(Chaban, Boekema & Dudkina, 2014). At the same time, more ATP are synthesized by
upregulated ATP synthase using the proton gradients across the inner mitochondrial
membrane generated by electron transport (Chaban, Boekema & Dudkina, 2014).
Therefore, it was inferred that the higher oxidative phosphorylation to ensure more energy
supply for slow-twitch muscle to maintain normal function and development compared to
fast-twitch muscle in P. dentex, which was supported by previous studies in other fishes
such as T. rubripes, P. mesopotamicus, and Thunnus orientalis (Mareco et al., 2015; Gao
et al., 2017; Ciezarek et al., 2020).

The specific contractile and metabolic phenotypes of fast-twitch muscle and slow-twitch
muscle closely related to the genetic programs that determine the muscle fiber
development and growth. Compared to other vertebrates, a unique feature of teleost is that
the produce of muscle fiber will continue until reach 40–50% of maximum body length,
and growth can take place all lifelong (Greer-Walker, 1970; Higgins & Thorpe, 1990;
Johnston et al., 2011). We analyzed the expression patterns of markers involved in
myoblast specification, activation, proliferation, differentiation, migration, fusion, and
maturity (Fig. 7A). Sox8 has been proposed to be a molecular marker of satellite cells and
acts as a negative regulator of muscle differentiation by maintaining satellite cells at
quiescent state (Schmidt et al., 2003). Myod1 and Myogenin both belong to the myogenic
regulatory factors (MRFs) family. Myod1 is responsible for initiating the myogenic
program, while Myogenin appears later and required for myoblast fusion, myotube
formation, and adult muscle fiber differentiation (Rescan, Gauvry & Paboeuf, 1995;
Cornelison et al., 2000; Bower & Johnston, 2010). The inverse expression pattern ofMyod1
and Myogenin have also been found in other teleosts, such as Oncorhynchus mykiss
(Rescan, Gauvry & Paboeuf, 1995), Sparus aurata (Tan & Du, 2002), and Paralichthys
olivaceus (Zhang et al., 2006). Calpain-3 is a calcium-dependent cysteine protease that
maintains the integrity of sarcomere by regulating the turnover of sarcomeric protein and
induces the proteolysis of Myod1, and promotes the generation of a pool of reserve cells
(Stuelsatz et al., 2010). Therefore, the higher expression level of Sox8,Myod1 and Calpain-
3 may reflect the more extensive development of satellite cells and myogenic cells in
P. dentex fast-twitch muscle, which are required to achieve shorter contraction cycles
during high-speed swimming (Fleming et al., 1990). While the higher expression level of
Myogenin in slow-twitch muscle suggested that more myoblasts are in the cell fusion phase
to form T-tubules and sarcoplasmic reticulum for continuous swimming.

It was known that skeletal muscle growth is directly stimulated by insulin-like growth
factors (IGF) through proliferation, differentiation, hypertrophy, and protein synthesis
(Hoppeler, 2016). The IGF pathway consists of multiple IGF ligands, IGF receptors, and
IGF-binding proteins. In P. dentex, five genes (Igf2, Igfbp1, Igfbp4, Igfbp6, and Igfbp7)
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showed significant expression difference at mRNA level between slow-twitch muscle and
fast-twitch muscle (Fig. 7B). Both in vivo and in vitro studies have shown that Igf2 plays a
critical role in promoting myogenesis, and its expression level increase dramatically during
myogenesis stage (Florini et al., 1991; Ren, Accili & Duan, 2010). The effective
concentration and delivery of Igf2 was regulated through the interaction with IGF-binding
proteins, Igfbp4 was one of them (Sara & Hall, 1990). In addition, it was reported that
Igfbp4 has the effect of enhancing cardiomyocyte differentiation (Zhu et al., 2008). It is
possible that the higher abundance of Igf2 and Igfbp4 in P. dentex fast-twitch muscle is
related to the promotion of myoblast differentiation. Igfbp1, Igfbp6, and Igfbp7 were the
both negative regulators of IGF ligands’ actions, and might have inhibitory roles in fish
muscle growth (Fuentes et al., 2013). To some extent, the differential expression patterns
of these five genes between the two muscle types of P. dentex indicated that there are
more myogenic cells in the differentiating state in fast-twitch muscle, compared to
slow-twitch muscle.

Myofibrillar proteins, such as myosin, tropomyosin, and troponin, is the predominant
component of protein in skeletal muscle, important for maintain the structure of skeletal
muscle fibers, excitation-contraction processes, force generation, and energy release
(Ottenheijm & Granzier, 2010). Myosin, one of the most abundant myofilament proteins,
is the main molecular motor that provides chemical energy for muscle contraction and
considered as the marker of myofiber type (Knight & Molloy, 2000). Troponin is a Ca2+

binding protein complex (including troponin C, I, and T) and presents in the filament of
myofibrils (Marston & Zamora, 2020). Tropomyosin is an a-helix actin-binding protein,
which, together with troponin complex, plays an indispensable role in regulating the
contraction and filament assembly of both myocardial and skeletal muscle (Marston &
Zamora, 2020). In P. dentex skeletal muscle, 35 myofibrillar DEGs were found, of which 14
genes were up-regulated in fast-twitch muscle and 21 were up-regulated in slow-twitch
muscle (Fig. 8C). The differences in the transcription levels of these genes may lead to
differentiation of protein expression as well as physiological properties, and further, induce
the skeletal muscle fibers highly specialized.

CONCLUSIONS
In conclusion, we have produced and analyzed in-depth transcriptome data of both
fast-twitch muscle and slow-twitch muscle in P. dentex, a deep-sea migratory species with
potential for artificial breeding. We identified thousands of differentially expressed genes
between these two muscle types, which play important roles in the mitochondrion
energy metabolism and skeletal muscle structure. Differential expression of key genes
involved in lipid and glycogen metabolism pathways confirmed at molecular level that
lipid and glycogen are the main energy sources for slow-twitch muscle and fast-twitch
muscle, respectively. Numerous key enzymes involved in electron transport and
mitochondrial oxidative phosphorylation were significantly upregulated at mRNA
expression levels inferred that the slow-twitch muscle had a stronger higher oxidative
phosphorylation to ensure more energy supply. Expression signatures of the main skeletal
muscle developmental genes indicated more myogenic cells in the differentiating state in
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fast-twitch muscle. Structural genes may lead to the skeletal muscle fibers specialized
were also characterized. The results in this study captured the fundamental physiological
and metabolic differences at molecular level between fast-twitch and slow-twitch muscles
in P. dentex. Furthermore, this work will contribute to the development of deep-sea
mariculture objects and the mining of long-distance migratory fish genetic resources.
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