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Background: Colorectal cancer (CRC) is one of the most prevalent malignances
worldwide. However, CRC with situs inversus totalis (SCRC) is extremely rare, and
molecular characterization of this disease has never been investigated.

Methods: Tumor tissue samples from 8 patients with SCRC and 33 CRC patients without
situs inversus totalis (NSCRC) were subjected to multigene next-generation sequencing.

Results: The most frequently mutated genes in SCRC were APC, TP53, CHEK2,MDC1,
GNAQ, KRAS, and SMAD4. A high frequency of SCRC tumors had mutations in DNA
damage repair genes. Single amino acid substitutions in the DNA damage repair genes
caused by continuous double base substitution was identified in the majority of this
population. Furthermore, mutational profiles showed notable differences between the
SCRC and NSCRC groups. In particular, CHEK2,MDC1, GNAQ, SMAD4, BRCA1, HLA-
B, LATS2, and NLRC5 mutations were more frequently observed in SCRC patients. The
mutation loci distributions of KRAS in the SCRC cohort differed from that of the NSCRC
cohort. Additionally, differences in the targeted genomic profiles and base substitution
patterns were observed between the two groups.

Conclusions: These findings comprehensively revealed a molecular characterization of
SCRC, which will contribute to the development of personalized therapy and improved
clinical management of SCRC patients.
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INTRODUCTION

Colorectal cancer (CRC) is the third most prevalent type of
cancer and the second leading cause of cancer-associated
mortality worldwide (1). In recent years, the incidence and
mortality rates for CRC have been steadily increasing (2). CRC
patients can achieve promising clinical outcomes with early
diagnosis. However, most CRC patients are generally
diagnosed at an advanced stage, and over 50% of CRC patients
develop liver, lung and lymph node metastases with a high
mortality rate (3).

A series of genomic mutations leads to the development and
progression of CRC. In recent years, next-generation sequencing
(NGS) has revealed a diversity of driver gene mutations and
affected signaling pathways in CRC. Numerous studies have
demonstrated that the most commonly mutated driver genes
in CRC are APC, TP53, KRAS, SMAD4, and PIK3CA (4, 5).
Addi t iona l l y , the Cancer Genome At la s ne twork
comprehensively investigated the mutational landscape and
identified some novel genomic alterations in CRC (6). The
WNT, TGF-b PI3K, RAS/MAPK, and p53 signaling pathways
were found to be the most frequently altered pathways in CRC
(6). Recurrent copy number variations included the
amplification of ERBB2 and IGF2, and frequent chromosomal
rearrangements included the fusion of NAV2 and TCF7L1 (6).
Multi-omic results classified the CRC patients into hypermutated
(16%) and non-hypermutated (84%) groups, and the
hypermutated subgroup was characterized by high
microsatellite instability, hypermethylation, MLH1 silencing,
and genomic mutations in mismatch repair genes and POLE
(6). Moreover, some large cohort studies found statistically
significant differences in mutation status between right-sided
and left-sided CRC for several genes, including KRAS, BRAF, and
FBXW7, as well as for several pathways, including RAS/MAPK,
TGF-b, and p53 signaling pathways (5, 7).

Situs inversus is an extremely rare congenital condition, with
an overall incidence rate of 0.01% (8). The majority of situs
inversus cases are situs inversus totalis, which are characterized
by a left-to-right reversal of all the thoracic and abdominal
organs. A growing number of people with situs inversus totalis
have been identified because of advances in medical imaging
technology. A large amount of literature has been published that
covers treatments and appropriate operative approaches for CRC
patients with situs inversus totalis (SCRC) (9–11). However, the
molecular characterization of SCRC has been largely unexplored.
In addition, genomic differences between SCRC patients and
CRC patients without situs inversus totalis (NSCRC) are
currently unknown.

To better understand SCRC disease biology and to elucidate
the molecular features of SCRC, we systematically explored the
molecular signatures in SCRC by NGS, and further compared
these signatures between SCRC and NSCRC patients. These
findings provide valuable genomic information for SCRC,
which will contribute to promoting treatment strategies and
clinical management of SCRC patients.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Patients and Sample Collection
A total of 41 patients with CRC from the Affiliated Sir Run Run
Shaw Hospital of Zhejiang University School of Medicine and
the First Affiliated Hospital of Zhejiang University School of
Medicine between January 2014 and January 2020 were enrolled.
Eight SCRC and 33 NSCRC patients were included. Clinical
stages of patients ranged from I to IV, which was verified based
on the American Joint Committee on Cancer staging scheme
(8th edition). This study was approved by the ethical committee
of the Affiliated Sir Run Run Shaw Hospital of Zhejiang
University School of Medicine. Informed consent was obtained
from all participants.

NGS
Tissue DNA was extracted utilizing the QIAamp Genomic DNA
kit (Germany, QIAGEN) based on the manufacturer’s
instructions. Sequencing libraries were generated according to
Illumina standard library construction protocols (Illumina Inc.).
The libraries were enriched using an Acornmed panel targeting
808 cancer-related genes. The captured libraries were then
sequenced on the NovaSeq6000 System (Illumina Inc.).
Sequencing reads were aligned to the reference human genome
(hg19) using the BWA aligner (version 0.7.12). Base recalibration
was conducted using GATK software (version 3.8). Single
nucleotide variants (SNVs) and small insertions or deletions
were identified using MuTect2 software (version 1.1.7).
CONTRA software (version 2.0.8) was used to analyze copy
number variant calling. An average coverage depth for tumor
tissue was > 5000×. Mutations were identified based on these
standards: mutant allele frequency (MAF) ≥ 1.0%, and at least 5
high-quality supporting reads (base quality ≥ 30, mapping
quality ≥ 30).

Identification of Potentially Actionable
Mutations With OncoKB
Potentially actionable mutations were identified using MSK’s
Precision Oncology Knowledge Base (OncoKB) (https://www.
oncokb.org/). This clinical support tool distills information from
FDA approved regimens, National Comprehensive Cancer
Network (NCCN) guidelines, and the published scientific
literature. Clinically relevant alterations were classified into one
of four levels according to the strength of evidence. Mutations are
annotated by the level of evidence supporting the use of certain
drugs. The levels of evidence are as follows:

Level 1: FDA-recognized biomarker predictive of response to an
FDA-approved drug in this indication.

Level 2: Standard care biomarker recommended by the NCCN or
other professional guidelines predictive of response to an
FDA-approved drug in this indication.

Level 3A: Compelling clinical evidence supports the biomarker
as being predictive of response to a drug in this indication.
April 2022 | Volume 12 | Article 813253
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Level 3B: Standard care or investigational biomarker predictive
of response to an FDA-approved or investigational drug in
another indication.

Level 4: Compelling biological evidence supports the biomarker
as being predictive of response to a drug.
Statistical Analysis
SPSS 21.0 statistical software (IBM Corp.) was used to conduct
our statistical analyses. A Fisher’s exact test was used to
determine the associations between gene mutation status and
clinical characteristics. Differences in continuous variables were
measured using a Student’s t-test. A two-sided P< 0.05 was
considered statistically significant.
RESULTS

Patient Features
In the present study, a total of eight SCRC patients and 33
NSCRC patients were included. Among the SCRC patients, the
median age at diagnosis was 60 years old (range, 51-75 years old).
Seventy-five percent of the patients were female, and none of
them were smokers. In the NSCRC cohort, the median age at
diagnosis was also 60 years old (range, 28-79 years old). A total of
36.4% of the patients were female, and 24.2% of them were
smokers. We further compared the clinical characteristics
between the SCRC and NSCRC cohorts. There was no
difference in the age between the two groups. However,
compared with NSCRC patients, SCRC patients were more
likely to be female (P = 0.048). The clinical and pathological
characteristics of the patients are listed in Table 1.

Mutational Landscape in SCRC
Samples from SCRC patients were profiled by targeted
sequencing with an 808 cancer-related gene panel. An average
coverage depth > 5000× was obtained for tumor tissue samples.
The quality criteria used for mutation identification were a
detection threshold of 1.0% and at least 5 high-quality
supporting reads. All sequenced samples had at least one
genetic alteration. A total of 110 somatic variants from 75
Frontiers in Oncology | www.frontiersin.org 3
genes were identified. The most commonly mutated genes
were APC (50%), TP53 (50%), CHEK2 (50%), MDC1 (50%),
GNAQ (38%), KRAS (38%), and SMAD4 (38%) (Figure 1). Copy
number variations in ERBB2, MRE11A, FANCM, BRD4, and
TOP1 were found (Table S1). Gene rearrangements were
identified in one SCRC patient including NTRK1-TPM3.
Among the KRAS mutations, only G13D substitutions
were observed.

We further investigated the affected signaling pathways in
SCRC based on the mutation data. The DNA damage repair
(DDR), WNT, RAS/MAPK, TGF-b, and p53 signaling pathways
were the most commonly altered pathways. Additionally, the Ca2+,
epigenetic, IFN-g, NOTCH, and PI3K signaling pathways were
affected in some patients (Table S2, S3). Notably, the DDR
pathway was strikingly altered in SCRC (87.5%) patients, and
the majority of these patients (71.4%) had a single amino acid
substitution in the DDR genes caused by continuous double base
substitution (Table 2). To further understand the background of
carcinogenesis, the pattern of nucleotide substitution was
explored. All SNVs could be classified into transition (Ti) and
transversion (Tv) substitutions according to the specific
substitutions of pyrimidines and purines. The profile of base
substitutions in SCRC showed the frequency of Ti was
significantly higher than that of Tv (P = 0.006) (Figure 2A).
Additionally, a high frequency of C > T Ti at the CpG dinucleotide
was identified in 58.7% of SNVs (Figures 2B, C).

Comparison of Genomic Profiles Between
SCRC and NSCRC Patients
To further elucidate the molecular basis of SCRC tumorigenesis,
a comprehensive comparison of genomic profiles between SCRC
and NSCRC was conducted. Compared with NSCRC patients,
significantly more genomic alterations were observed in CHEK2,
MDC1, GNAQ, SMAD4, BRCA1, HLA-B, LATS2, and NLRC5
among SCRC patients. A potential statistical difference was
identified in PHOX2B between the two group (P = 0.092)
(Figures 3A, B). The incidence of KRAS mutations between
the two groups was not significantly different (Figures 3A, B).
The mutation loci distribution of KRAS was further evaluated. In
the SCRC group, KRAS mutations were only distributed on
codon 13 (Figure 4A). However, in the NSCRC group, KRAS
TABLE 1 | Clinical characteristics of SCRC and NSCRC patients.

Characteristics Total (n = 41) SCRC (n = 8) NSCRC (n = 33) P value

Age, year, median (range) 60 (28-79) 60 (51-75) 60 (28-79) 0.651
Gender, n (%)
Male 23 (56.1%) 2 (25.0%) 21 (63.6%) 0.048
Female 18 (43.9%) 6 (75.0%) 12 (36.4%)

Smoking history, n (%)
Yes 8 (19.5%) 0 (0) 8 (24.2%) 0.121
No 33 (80.5%) 8 (100.0%) 25 (75.8%)

Clinical Stage, n (%)
I 1 (2.4%) 0 1 (3.0%) 0.226
II 1 (2.4%) 0 1 (3.0%)
III 19 (46.3%) 7 (87.5%) 12 (36.4%)
IV 18 (44.0%) 0 18 (54.6%)
Unknown 2 (4.9%) 1 (12.5%) 1 (3.0%)
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mutations were distributed on different codons (Figure 4B).
Further analysis indicated that the frequencies of mutation loci
distributions of KRAS between the SCRC and NSCRC groups
showed a statistically significant difference (P = 0.036)
(Figure 4C). Moreover, the profile of base substitutions
between the two groups was found to be different. A total of
34.7% of SNVs identified were C > T Ti in NSCRC (Figure 5A),
which was lower than that in SCRC (34.7% vs 58.7%). No
difference between the frequencies of Ti and Tv in NSCRC was
observed (Figure 5B). The proportion of Ti in SCRC tended to
be higher than that in NSCRC, although no statistically
significant difference was observed (Figure 5C).

When investigating differences in altered signaling pathways,
we found that the frequencies of the DDR, Ca2+, and IFN-g
signaling pathways in SCRC patients were significantly higher
than those in NSCRC patients. A statistical trend was observed
for the TGF-b pathway between the two cohorts (P = 0.060)
(Figure 6). Notably, the mutated genes in the DDR signaling
pathway between the two cohorts were markedly different. In
SCRC, the most commonly altered DDR genes were CHEK2
(50%), MDC1 (50%), BRCA1 (25%), and NLRC5 (25%)
Frontiers in Oncology | www.frontiersin.org 4
(Figure 7A). However, the most frequently mutated DDR gene
in NSCRC was POLE (6%). The other DDR mutations occurred
in only one patient (Figure 7B). Furthermore, the phenomenon
of single amino acid variations in DDR genes caused by
continuous double base substitutions was not detected
in NSCRC.

According to the OncoKB classification system, the profile of
clinically relevant alterations was comprehensively evaluated.
Overall, 24 clinically relevant mutations were detected in 87.5%
of SCRC patients. Alterations in CHEK2, KRAS, and BRCA1
were the most common targets (Figure 8A and Table S4). One
patient harboring a BRAF Y633C mutation was identified.
Additionally, a clinically significant NTRK1-TPM3 fusion was
identified. Although prior large cohort studies have reported the
distributions of NTRK rearrangements in various tumors (12),
they had not been uncovered in SCRC. Additionally, 78.8% of
NSCRC cases harbored at least one clinically relevant alteration.
However, the most frequently identified mutations occurred in
KRAS and PIK3CA for this group (Figure 8B and Table S4).
BRAF alterations were observed in two patients, including V600E
and P655A mutations.
DISCUSSION

Given the rarity of SCRC, the clinical characteristics and
molecular features of SCRC remain largely unknown.
Numerous studies indicated that CRC is more common in
men than in women (13, 14). However, our study indicated
that SCRC patients were more likely to be female, demonstrating
that female gender has a larger impact on the prevalence of
SCRC. With the advent of high-throughput sequencing
technology, efforts have been made to identify the molecular
characterization of CRC. However, most of the studies focused
on CRC patients with normally positioned structures of the
abdominal and thoracic cavities. No reports have described the
molecular features of SCRC. For the first time, we investigated
the molecular signatures of SCRC, which will be of great
significance in understanding the biological characteristics of
cancer cells and in promoting the clinical management of
this population.

In the present study, we identified a large number of genes
with point mutations, insertions, deletions, and copy number
variations in SCRC. The most frequently mutated genes were
APC, TP53, CHEK2, MDC1, GNAQ, KRAS, and SMAD4. It is
known that APC, TP53, KRAS, and SMAD4 were the common
TABLE 2 | Single amino acid substitutions of DDR genes caused by continuous double base substitution.

Patient No. DDR genes Exon Mutations

P1 CHEK2 Exon 11 c.1116_1117TG>CA; p.K416E
P1 NLRC5 Exon 13 c.2570_2571AC>GT; p.H857R
P3 NLRC5 Exon 13 c.2570_2571AC>GT; p.H857R
P5 BRCA1 Exon 13 c.4369_4370TG>CA; p.H1457C
P7 CHEK2 Exon 11 c.1116_1117TG>CA; p.K416E
P8 MDC1 Exon 10 c.3909_3910TG>CA; p.K1304E
April 202
FIGURE 1 | Mutational landscape of colorectal cancer patients with situs
inversus totalis (SCRC). Genomic mutations were identified by targeted NGS
of the tumor tissues from patients with SCRC. Multiple mutations, mutations
numbers greater than two.
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driver genes in CRC (4, 5). In addition to these genes, our
analysis identified novel driver genes in SCRC, including GNAQ,
CHEK2, and MDC1. GNAQ encodes heterotrimeric G protein
alpha subunits, which are crucial for G protein-coupled receptor
signaling. Numerous studies have demonstrated that GNAQ
mutations can lead to constitutive activation of the
Frontiers in Oncology | www.frontiersin.org 5
downstream RAS/MAPK pathway (15, 16), further indicating
the important role of the RAS/MAPK pathway in SCRC. CHEK2
encodes a cell cycle checkpoint kinase involved in the DDR
process (17).MDC1 encodes a scaffold protein that functions as a
platform for the recruitment of different DDR factors, such as
RNF8 and 53BP1, to regulate the DDR process (18).
A B

FIGURE 3 | Comparison of the genomic landscape between SCRC and NSCRC cohorts. (A) Frequencies of genomic mutations in SCRC and NSCRC cohorts.
(B) Corresponding P values comparing the prevalence of a gene’s mutations between different cohorts. Cases with a statistically significant difference (P < 0.05) are
highlighted in yellow.
A B

C

FIGURE 2 | Transition (Ti) and transversion (Tv) profiles for SCRC. (A) Comparison between Ti and Tv ratios in SCRC. (B) The bar plot shows each type of Ti or Tv.
(C) The box plot exhibits the ratio of each type of Ti or Tv for each patient.
April 2022 | Volume 12 | Article 813253

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Molecular Profiling of SCRC
Furthermore, we found that 87.5% of SCRC patients carried
genomic mutations in DDR genes. The DDR system is mainly
involved in the mismatch repair of both DNA single-strand
breaks (SSB) and double-strand breaks (DSB) (19). It is necessary
for genomic integrity, and alterations in DDR genes frequently
result in DDR deficiency. Recently, Mok et al. revealed a higher
risk of colorectal cancer in BRCA1 mutation carriers through
systematic review and meta-analysis (20). In clinical practice,
many clinical trials have demonstrated BRCA1 mutation was
used to predict the treatment benefit from Poly (ADP-ribose)
polymerase inhibitors (PARPi) (21, 22). CHEK2 is one of the
DDR genes which are frequently analyzed because of their
important role on maintaining genomic stability. CHEK2
mutation is widely reported in sporadic colorectal cancer and
hereditary colorectal cancer (23–25). However, the prevalence of
CHEK2mutation is relatively low in colorectal cancer (25–28). In
this study, the frequency of CHEK2 mutation in SCRC is 50%,
whereas no CHEK2mutation is found in NSCRC. These findings
suggest that DDR deficiency plays an important role in the
development of SCRC. Notably, single amino acid substitutions
Frontiers in Oncology | www.frontiersin.org 6
in the DDR genes caused by continuous double base
substitutions in SCRC were a novel observation. Although the
mechanism of this observation is unknown, the role and clinical
significance in SCRC should be further explored.

Previous studies have reported that genomic mutations in
CRC are dominated by C to T Ti at CpG sites, indicating that the
deamination of 5-methylcytosine is a key initiating event in
cancer-driving mutations (29). In our study, we found this
phenomenon in SCRC and NSCRC simultaneously, whereas
the ratio of C to T Ti in SCRC was higher than that in
NSCRC. Additionally, the frequency of Ti in SCRC was
significantly higher than that for Tv, but no difference was
found between the frequencies of Ti and Tv in NSCRC.
Furthermore, we comprehensively investigated the mutational
landscape between SCRC and NSCRC and found that several
genes had remarkably different mutation frequencies, including
CHEK2, MDC1, GNAQ, SMAD4, BRCA1, HLA-B, LATS2, and
NLRC5. In this study, targetable mutations, defined as molecular
targets for drugs that can guide treatment decisions (30, 31), were
analyzed. We found 87.5% of SCRC patients carried at least one
A B C

FIGURE 5 | Comparison of the profiles of transition (Ti) and transversion (Tv) between SCRC and NSCRC patients. (A) The bar plot shows each type of Ti or Tv in
NSCRC. (B) Comparison between Ti and Tv ratios in NSCRC. (C) Comparison of Ti ratios between the SCRC and NSCRC groups.
A

B

C

FIGURE 4 | The mutation loci distributions of KRAS in SCRC and NSCRC groups. (A) Distributions of KRAS mutations identified in SCRC. (B) Distribution of KRAS
mutations identified in NSCRC. (C) Comparison of the distributions of KRAS mutations between SCRC and NSCRC patients.
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clinically actionable mutation, and the difference was observed in
the targetable mutation profile between SCRC and NSCRC
patients. Thus, although there was a similarity between the
mutational profiles of SCRC and NSCRC, SCRC still displayed
a diverse mutational pattern. According to the mutation loci
distributions of KRAS, it was found that patients with SCRC
carried KRAS codon 13 mutations, whereas the majority (61.5%)
of NSCRC patients harbored KRAS codon 12 mutations. In CRC,
numerous studies revealed that KRAS codon 13 mutations
displayed less tumorigenic activity than codon 12 mutations
Frontiers in Oncology | www.frontiersin.org 7
(32, 33). Moreover, experimental data demonstrated that KRAS
codon 12 mutated tumors were more aggressive than codon 13-
mutated tumors (34). A recent study by Tahir et al. exhibited that
alterations at codon 12 and codon 13 in KRAS could lead to
varying metastatic efficiencies and oncogenic transformation in
colorectal cancer cell lines (35). In SCRC, only KRAS codon 13
mutations were found, which might lead to low tumorigenic
activity in SCRC compared with NSCRC. Additionally, many
studies have reported that KRAS codon 12 mutations are
associated with a poor prognosis in patients with CRC
A B

FIGURE 7 | Comparison of the DDR profiles between SCRC and NSCRC patients. (A) The DDR profile in the SCRC group. (B) The DDR profile in the NSCRC group.
FIGURE 6 | Comparison between SCRC and NSCRC patients of the detection rate of genomic mutations in signaling pathways.
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(36, 37). The prognosis between the two groups may be different
because of the differences in mutation loci distributions of KRAS.
Therefore, it is critical to systematically investigate and
understand the mutational spectrum of SCRC. Future
treatments and clinical strategies for SCRC should be based on
the specific molecular features.

In recent years, NGS has improved the understanding of the
signal transduction cascades during the development and
progression of CRC. It is known that the RAS/MAPK, PI3K,
Wnt, and p53 signaling pathways are most affected in CRC (6).
Besides these signaling pathways, we further revealed that Ca2+

and IFN-g pathways were frequently affected in SCRC. Although
numerous studies have demonstrated that the Ca2+ pathway
plays an important role in the development and progression of
many cancer types (38, 39), few reports revealed the role in CRC.
This could be because of the low incidence of Ca2+ pathway
alterations in CRC. In this study, the detection rate of Ca2+

pathway related gene alterations was significantly higher in
SCRC compared with that in NSCRC, indicating a crucial role
of this pathway in the development of SCRC. Recently,
interferons, especially IFN-g, have been found to act as key
regulators in tumor immunotherapy (40). Interferons are mainly
generated in response to immune stimuli or inflammation, and
are crucial in tumor immunosurveillance (41). In SCRC, the
common alterations in the IFN-g pathway highlight the
importance of understanding the interferon response, which
may contribute to improving the design of immunotherapy
trials in this population. Additionally, the DDR pathway is
commonly affected in SCRC and NSCRC simultaneously,
however, the detection rate of DDR alterations in SCRC is
Frontiers in Oncology | www.frontiersin.org 8
significantly higher than that in NSCRC (87.5% vs 37.5%).
Furthermore, DDR gene alterations were remarkably different
between the two groups. Recently, DDR deficiencies have become
a novel predictive factor of response to immunotherapies, and
mutations in DDR genes increases immunogenicity by enhancing
the tumor neoantigen load (42). A number of studies have revealed
that patients with DDR alterations benefit from PD-1/PD-L1
blockade in advanced urothelial and non-small cell lung cancer
(43, 44). Therefore, the high mutation frequencies of genes related
to the IFN-g and DDR signaling pathways imply that
immunotherapies may be an important treatment strategy in SCRC.

To the best of our knowledge, this is the first and largest study
to characterize the mutational profile in SCRC, and in addition,
to compare these profiles between SCRC and NSCRC patients.
We revealed a diverse genomic landscape between the two
groups as well as novel mutations for targets for future therapy
in SCRC. Additionally, we discovered a feature of single amino
acid substitutions in DDR genes caused by continuous double
base substitutions, which was the first to be reported for CRC and
other cancers. These results suggest that SCRC patients present
with some unique molecular characteristics. These observations
will contribute to promoting the development of personalized
therapy and the clinical management in this population.
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