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Poznań, Poland

Received September 05, 2018; Revised December 28, 2018; Editorial Decision January 03, 2019; Accepted January 10, 2019

ABSTRACT

tRNA are post-transcriptionally modified by chemi-
cal modifications that affect all aspects of tRNA bi-
ology. An increasing number of mutations underly-
ing human genetic diseases map to genes encoding
for tRNA modification enzymes. However, our knowl-
edge on human tRNA-modification genes remains
fragmentary and the most comprehensive RNA mod-
ification database currently contains information on
approximately 20% of human cytosolic tRNAs, pri-
marily based on biochemical studies. Recent high-
throughput methods such as DM-tRNA-seq now al-
low annotation of a majority of tRNAs for six specific
base modifications. Furthermore, we identified large
gaps in knowledge when we predicted all cytosolic
and mitochondrial human tRNA modification genes.
Only 48% of the candidate cytosolic tRNA modifica-
tion enzymes have been experimentally validated in
mammals (either directly or in a heterologous sys-
tem). Approximately 23% of the modification genes
(cytosolic and mitochondrial combined) remain un-
known. We discuss these ‘unidentified enzymes’

cases in detail and propose candidates whenever
possible. Finally, tissue-specific expression analy-
sis shows that modification genes are highly ex-
pressed in proliferative tissues like testis and trans-
formed cells, but scarcely in differentiated tissues,
with the exception of the cerebellum. Our work pro-
vides a comprehensive up to date compilation of hu-
man tRNA modifications and their enzymes that can
be used as a resource for further studies.

INTRODUCTION

The acquisition of post-transcriptional chemical modifica-
tions is an essential part of the maturation process required
to generate functional tRNA molecules (1). Modifications
have different roles in controlling stability, folding and de-
coding properties of tRNAs and can be determinants or
anti-determinants for other components of the translation
apparatus like e.g. aminoacyl-tRNA synthetases (2,3). In
addition, tRNA modifications can be recognition elements
of ribonucleases (4), leading to the generation of tRNA
fragments that affect multiple cellular processes (5).

However, very few modifications such as m1G37, �55 or
t6A37 are present at a specific position of a particular tRNA
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in (almost) all known organisms. Most of them are specific
to particular taxons, from species to kingdoms. For exam-
ple, lysidine (k2C34) is a hallmark of bacteria (6), while ar-
chaeosine (G+15) is only found in archaea (7). Depending
on the organism, the total number of genes encoding tRNA
modification enzymes varies between as little as eleven in
some obligate symbionts (8) to around an estimated hun-
dred in humans of which 50 are currently represented in
MODOMICS (9).

The near complete sets of tRNA modification genes are
currently available for only one organism per domain of life:
Saccharomyces cerevisiae for eukarya, where only one gene
required for the formation of ncm5U out of cm5U is missing
(10), Escherichia coli for bacteria where only the genes for
ho5U34 and Acp3U47-formation remain unidentified and
Haloferax volcanii for archaea where a handful of genes are
missing (1). Beyond these three organisms, the annotation
of tRNA modification genes remains scarce, because of sev-
eral issues: First, RNA modification enzymes are often part
of large multifunctional protein families such as the Ross-
mann Fold Methyltransferase (RFM) superfamily, which
can act on other substrates than RNA (11). For example,
some RNA methyltransferases are closely related to protein
methyltransferases or DNA methyltransferases (11). Sec-
ond, closely related members of orthologous families often
introduce a similar chemical modification, but in different
RNAs and at different positions. For example, members of
the TrmFO family methylate tRNA or rRNA depending
on the organism (12). Third, related enzymes can generate
chemically distinct modifications. For example closely re-
lated Radical-SAM enzymes introduce methyl groups at dif-
ferent positions of nucleosides like in m2A or m8A (13). Fi-
nally, the same chemical modification, in particular methyl
groups, can be introduced by proteins that are dissimilar
(14) or even evolutionarily unrelated having arisen through
non-orthologous gene displacements (15). For example, the
formation of the universal m1G37 is catalyzed by TrmD
and Trm5, two enzymes of completely different evolution-
ary origins in bacteria and in eukarya/archaea (16). The
combination of these factors has made it difficult to iden-
tify enzymes responsible for many tRNA modifications and
hence to determine the function of those tRNA modifica-
tions in many species including humans.

Recently, an increasing number of mutations causing ge-
netic diseases have been mapped to human genes encod-
ing tRNA modification enzymes (see (17–22) and Table 1),
making a comprehensive list of these genes highly desir-
able. However, to our knowledge, no complete compilation
of modifications found in both cytosolic and mitochondrial
human tRNAs with their corresponding predicted or vali-
dated modification enzymes is available. For mitochondria,
the best approximation is a recent list of modifications of
bovine tRNAs and the predicted enzymes (23), which has
been extrapolated for human tRNAs (23,24). A prediction
of human tRNA methyltransferases, based on the known
yeast enzymes was performed more than five years ago (25)
and was recently extended to homologs of the other yeast
RNA modification genes (26). Surveys of specific enzyme
families such as the human m5C methyltransferases (27) or
pseudouridine synthases (28) that target tRNA molecules
have listed the known and missing genes for these specific

modifications. The goal of our analysis was to compile a
comprehensive list of known and predicted tRNA modifica-
tions in Homo sapiens with genes implicated in their biosyn-
thesis. This analysis allowed for the identification of the re-
maining gaps of knowledge in the field of human tRNA
modifications and will help to guide future experiments.
Furthermore, we have used publicly available datasets in or-
der to determine the expression profiles and proteomic ev-
idence of known and predicted modification enzymes. Our
work will facilitate access to the current knowledge on hu-
man tRNA modification enzymes for a wider community
of biologists.

MATERIALS AND METHODS

The set of human isoacceptor tRNAs (i.e. tRNAs that
are acylated with the same amino acid regardless of the
anticodon sequence) was extracted from the Genomic
tRNA Database (GtRNAdb): http://gtrnadb.ucsc.edu/ (29)
and is summarized here: http://gtrnadb.ucsc.edu/genomes/
eukaryota/Hsapi19/

All modifications present in the sequences of cytoso-
lic and mitochondrial tRNA of human (H. sapiens), cow
(Bos taurus), rat (Rattus norvegicus), and mouse (Mus mus-
culus) were extracted from the MODOMICS database of
RNA modification pathways (http://modomics.genesilico.
pl/) (9). This provided a first list that was then updated
with one modification from the literature (m5C34 in Leu-
CAA-tRNA) and several human modifications detected
with novel tRNAseq methods (30) (m3C20 in Met-CAU-
tRNA and m3C47 in Leu-CAG-tRNA and most Ser-
tRNAs, m1A16 in mito-Arg-TCG-tRNA and m3C32 in
mito-Thr-UGU-tRNA and mito-Ser-UGA) that were miss-
ing from MODOMICS. The MODOMICS database was
updated accordingly.

High-throughput tRNA-seq modification data was
derived from published study data sets (30–32). The
protein and literature mining tools of NCBI (33) as
well as the Uniprot resource and Id/Mapping tools
(34) were used to gather data. Gene names were gath-
ered from the HUGO Gene Nomenclature Commit-
tee (https://www.genenames.org) (35). Protein inter-
action data was derived from BioGrid (36) and the
predicted mitochondrial localization from MitoCarta
(https://www.broadinstitute.org/files/shared/metabolism/
mitocarta/human.mitocarta2.0.html) (37).

Human co-expression data was extracted from
the Search-based Exploration of Expression Com-
pendium (SEEK) database (http://seek.princeton.
edu/index.jsp) (38). Phylogenetic trees for specific
protein families were extracted from PhylomeDB
(http://phylomedb.org) (39). For gene expression anal-
yses, RNAseq data was obtained from the GTEx
portal (www.gtexportal.org; GTEx Analysis 2016-01-
15 v7 RNASeQCv1.1.8 gene tpm.gct.gz) on 30/04/2018.
For each gene the transcript with the highest expres-
sion levels was selected for each tissue. Subsequently,
relative expression levels were calculated and plotted as
a heatmap using the heatmap.2 function in R. Tissues
included in the analysis were selected to provide a general
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Table 1. Known and predicted tRNA modification genes that have been linked to human diseases

Modification Gene Disease Cyto. Pheno. Mito. Pheno. Article

xG THG1L Microcephaly, developmental delay, nephrotic defect + + (110,175,176)
m1G TRMT10A Diabetes, intellectual disabilities, microcephaly, developmental defects + (111,143,177–180)
ac4C NAT10 Cancer + (112,181,182)
ac4C THUMPD1 Cancer + (113)
Gm TARBP1 Cancer + (114,115)
D DUS2 Cancer + + (116)
Y PUS1 Mitochondrial myopathy and sideroblastic anemia (MLASA) + + (117,183,184)
m3C METTL6 Cancer + (118,119)
I ADAT3 Intellectual disabilities, microcephaly + (120,185–187)
m5C NSUN2 Intellectual disabilities, developmental delay, reduced fertility, cancer + (121,170–172,189,229–232)
Cm,Um,Gm, f5Cm, hm5Cm,
mcm5Um

FTSJ1 Intellectual disabilities + (122,123,188)

Cm, Gm,f5Cm, hm5Cm WDR6 Cancer + (124)
Q QTRT1 Cancer + (125)
cm5U, ncm5U, mcm5U,
mcm5s2U

ELP1 Familial dysautonomia, cancer + (126,127,190)

cm5U, ncm5U, mcm5U,
mcm5s2U

ELP3 Familial dysautonomia, Charcot–Marie–Tooth disease (CMT), cancer,
amyotrophic lateral sclerosis (ALS)

+ (127,130,191,192)

cm5U, ncm5U, mcm5U,
mcm5s2U

ELP4 Autism spectrum disorder, intellectual disabilities + (128)

cm5U, ncm5U, mcm5U,
mcm5s2U

ELP5 Cancer, diabetes + (129,193,194)

s2U, mcm5s2U CTU1 Cancer + (127,130,131)
s2U, mcm5s2U CTU2 Microcephaly, nephrotic defect, cancer + (127,130,132,133)
s2U, mcm5s2U MOCS3* Molybdenum cofactor deficiency
s2U, mcm5s2U MPST* Mercaptolactate-cysteine disulfiduria (MCDU), intellectual disabilities
s2U, mcm5s2U NFS1* Friedreich ataxia
s2U, mcm5s2U SERGEF* Hereditary deafness, artheriosclerosis
s2U, mcm5s2U CIAO1* Hereditary paraganglioma-pheochromocytoma syndromes, retinitis pigmentosa
s2U, mcm5s2U NUBP1* Cancer
s2U, mcm5s2U ISCU* Myopathy with lactic acidosis, Friedreich ataxia
I ADAT1 Coronary artery disease + (134)
m1G, m1I TRMT5 Failure to thrive, hypertrophic cardiomyopathy, exercise intolerance + + (135,136)
o2Yw, yW TRMT12 Cancer (137,138)
o2Yw, yW LCMT2 Cancer + (139)
t6A YRDC Cancer + (140)
t6A OSGEP Galloway-Mowat syndrome, microcephaly, nephrotic defects + (18,141,195–197)
t6A TP53RK Galloway-Mowat syndrome, microcephaly, nephrotic defects, cancer + (141,142,195,196)
t6A TPRKB Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196)
t6A LAGE3 Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196)
ms2t6A CDKAL1 Diabetes, microcephaly, cancer + (144,198,199)
m5C TRDMT1 Metabolism, cancer + (145,146)
Y PUS3 Intellectual disabilities + (147,148)
Um TRMT44 Partial Epilepsy with Pericentral Spikes (PEPS) + (149)
m7G METTL1 Multiple sclerosis, cancer + (150,200,201)
m7G WDR4 Microcephaly, cancer, nephrotic defects, developmental defects + (151,202–204)
m5U TRMT2A Cancer + (152)
Y PUS10 Autoimmune diseases, intellectual disabilities + (153,205,206)
m1A TRMT6 Cancer + (139,154,155)
m1A TRMT61A Cancer + (139,154,155)
m5C NSUN6* Cancer + (156)
m1G,m1A TRMT10C Lactic acidosis, hypotonia, feeding difficulties, deafness + (157,158)
m1G,m1A HSD17B10 Neurodegeneration, cardiomyopathy + (158,207,208)
m2,2G TRMT1 Intellectual disabilities, microcephaly + + (159,209,210)
f5C NSUN3 Cancer + (160,161)
tm5U GTPBP3 Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS),

non-syndromic hearing loss
+ (162,163,211–213)

tm5U MTO1 Lactic acidosis, cardiomyopathy, encephalopathy, non-syndromic hearing loss,
cancer, myoclonus epilepsy associated with ragged-red fibers (MERRF)

+ (162–164,214–217)

tm5s2U TRMU Leigh syndrome, hepatopathy associated with hyperlactatemia, non-syndromic
hearing loss

+ (165,218–222)

t6A OSGEPL1 Cancer, MERRF + (166,167)
i6A TRIT1 Microcephaly, developmental delay, epilepsy, cancer + + (168,223–225)
ms2i6A CDK5RAP1 Cancer, type II diabetes, vitiligo + (169,226–228)
m1A TRMT61B Cancer, Alzheimer’s disease + (173,174)

*Disease likely caused by defects other than loss of tRNA modification.

physiological overview. Hierarchical clustering of genes
was performed according to similarity of expression
profile using Ward’s method (40). For tissue-specific
proteomics evidence, we used the human proteome map
(http://www.humanproteomemap.org/) using the default
settings (41). Proteins that were not detected in any tissue
were manually removed.

RESULTS AND DISCUSSION

Compiling all mammalian cytosolic tRNA modifications

As a first step to predict the complete set of modification
enzymes, we sought to list the nature and positions of all
chemical modifications that have been identified in human
cytosolic tRNAs. This task is not trivial as the set of hu-

http://www.humanproteomemap.org/
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man tRNAs used in decoding is very complex (see (42) for
a recent review). Indeed, not all tRNA sequences encoded
in the human genome are expressed in common cell-lines
(43,44). Based on the loss of canonical secondary structure,
mutations at highly conserved positions, or positioning in
transcriptional silent chromosomal regions, some candidate
tRNA genes are likely tRNA-derived Short Interspersed
Nuclear Elements or pseudogenes, and others may have
non-canonical functions outside of translation (5,45,46).
Therefore, additional filtering criteria are needed to select a
list of tRNAs that most likely decode mRNAs in the human
cytosol. An updated set of ‘high confidence’ human tRNAs
has been generated by tRNAscan-SE 2.0 (Chan, Lin and
Lowe, unpublished data) and is available in the GtRNAdb
(29). This list of over 400 tRNA genes contains 47 distinct
isoacceptors families (including tRNASec, the tRNA for se-
lenocysteine insertion).

A first set of biochemically-determined tRNA isoaccep-
tor sequences that include chemical modifications in at
least one mammal was extracted from the MODOMICS
database at the time of the initial analysis (30 May 2017).
Furthermore, partial information is available for modifica-
tions at specific positions such as wobble uridine (U34). It is
known that 5-carbamoylmethyluridine (ncm5U) is found in
Val-UAC-tRNA, 5-methoxycarbonylmethyl-2-thiouridine
(mcm5s2U) in Arg-UCU-tRNA and 5-methoxycarbonyl-
hydroxymethyluridine (mchm5U) in Gly-UCC-tRNA (47).
Since the modifications of U34 in human Arg-UCU-tRNA
and Gly-UCC-tRNA differ from those in the corresponding
yeast tRNA, it is difficult to predict the nature of most of the
U34 modifications in humans (48). Finally, a large fraction
of the RNA sequence data stems from the 60s, 70s and 80s,
so is based on paper and thin-layer chromatography (TLC)
(49), photometric characterization of nucleosides following
chromatography (50), and mass-spectrometry using low-
resolution, low-sensitivity instruments (49). These methods
failed to identify or distinguish some of the modifications,
which are therefore listed as N and xN in Supplementary
Table S1A but can now be detected with high-resolution
mass spectrometry (51–54).

To add to the complexity of the task, the human genome
(in contrast to yeast) encodes isoacceptor families that in-
clude many unique isodecoders, which are tRNAs with
the same anticodon but contains variations in the tRNA
body (42). Different isodecoders can be expressed un-
der specific conditions as shown for the neuron-specific
tRNA-Arg-UCU (55) or in the case of cancer (56). New
high-throughput sequencing methods have been developed
and optimized to facilitate detection of full length tRNAs
such as DM-tRNA-seq (31) or tRNA-HydroSeq (57) or
AlkAniline-Seq (58) and of tRNA-derived small RNAs
(ARM-seq (32)). While these high-throughput RNA modi-
fication mapping methods reviewed in (59) and (30) are not
yet as precise or quantitative as mass spectrometry, they
do offer a practical, inexpensive method to survey a sub-
set of modifications across all expressed tRNAs for many
cell types. Using these methods also offers a first glimpse of
the diversity of modification states across different isode-
coders. Some isodecoder families in human such as Ala-
AGC can be highly complex, contrasting the relatively sim-
ple view previously seen in budding yeast. In human, there

are 22 high confidence Ala-AGC tRNA genes detected in
the genome, which encode 16 unique (by sequence) Ala-
AGC tRNA transcripts; in yeast, there are 11 Ala-AGC
genes, which all encode identical Ala-AGC tRNA tran-
scripts. This variation in human tRNA sequences also leads
to an apparent complexity in tRNA modifications that is
only now being appreciated. For example, RNA modifica-
tion data collected with traditional methods exists for just
2 out of 16 Ala-AGC isodecoders (Ala-AGC-8 and Ala-
AGC-11). ARM-seq and DM-tRNA-seq, however, both
detect transcripts and modifications for many more isode-
coders (Supplementary Table S5). These high-throughput
methods allowed to detect four human modifications that
were missing in MODOMICS at the time of our first anal-
ysis (see methods section). The final count of tRNA isoac-
ceptors with modification information is 27 in humans and
38 in mammals (Figure 1 and Supplementary Tables S1A
and S5).

Linking the modifications of human cytosolic tRNAs to their
corresponding modification enzymes

We generated a current list of chemical modifications found
in human cytosolic tRNAs (Figure 2A, Supplementary Ta-
ble S2) by combining the modification information from
the tRNA sequences compiled in Supplementary Table S1A
Subsequently, we used this list as a starting point to generate
the set of predicted human tRNA modification genes.

Once the list of human cytosolic tRNA modifications had
been generated (Figure 2A, Supplementary Table S2), we
linked the modifications to their corresponding modifica-
tion enzymes whenever possible. This was done by using the
advanced query tools of Uniprot for a first pass and then
surveying the literature. By default, the reference linking the
gene to the function is found by accessing the Uniprot entry
for a given gene. Only when the reference had not yet been
captured in Uniprot (∼10 cases), did we add a PMID entry
in Supplementary Table S2.

Not all predictions reach the same level of credibility. For
example, in some cases, experimental validation is available
for the human ortholog, while in other cases only the func-
tion of the yeast ortholog is validated. Therefore, we used
the following code to classify the evidence of our functional
annotation: [5] in vivo data in mammals; [4] in vivo data
of the human or a related mammalian enzyme in a het-
erologous host; [3] in vitro data using the human enzyme;
[2] similarity to an experimentally validated gene in a non-
mammalian species; [1] candidates that have not been ver-
ified in any organism; [0] no clear candidate. These predic-
tions are available in Supplementary Table S2, and we sum-
marized all enzymes with evidence codes 2–5 in Figure 2A,
using the protein names recommended by the HUGO Gene
Nomenclature committee (35). According to this assess-
ment, we predicted at least 76 proteins to be required for the
modification of cytosolic tRNAs. Clearly, this is an under-
estimation, as more than 24 enzymes are still unknown (evi-
dence code 0 or 1). Furthermore, for approximately 26 pro-
teins there is no direct in vivo or in vitro experimental data
using a mammalian homolog (evidence code 2). Thus, our
analysis emphasizes that extensive experimental validations
and research will be required to verify specific gene predic-
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Figure 1. tRNA isoacceptors that have been biochemically characterized at the RNA level by traditional methods. Three additional tRNA isoacceptors
(Rn-Val-NAC, Hs-Leu-NAA, Hs-Val-NAC) listed in Supplementary Table S1A weren’t placed in this figure due to their unknown nucleotide.

tions and to identify some of the ‘missing’ genes. These cases
will be further discussed below.

Identifying candidates for the ‘missing’ genes

To identify candidates of unidentified tRNA modifications
enzymes, we compiled an initial list of ∼40 human proteins
that are members of families known to be implicated in
RNA modifications. These were mainly methyltransferases,
pseudouridine synthases or THUMP-domain-containing
proteins that have not yet been linked to a specific func-
tion. When we surveyed the recent literature, we found
that ∼2/3 of these candidates had been reported to modify
rRNA or proteins. For the remaining twelve proteins/genes,
we gathered localization data from Mitocarta, and analyzed
co-expression using the SEEK expression database profiles
to identify the candidates that are coexpressed with RNA
processing or translation related genes (Supplementary Ta-
ble S4). This list is far from exhaustive as new methylase
folds implicated in RNA modification are still being discov-
ered (60).

Missing genes coding for cytosolic tRNA modification en-
zymes

In general, when the gene is missing, the function of the
corresponding modification is very difficult to infer, as no
genetic study can be conducted. In some cases, such as
acp3U20, the gene is not known in any organism, and al-
most no functional information is available. The only func-
tional inference that can be done is if the gene encoding the
enzyme responsible for the same modification is known in
another organism. This is the case for a few modifications
such as m1A14 and m5U54 in yeast or m1G6 in bacteria and
archaea. Also, for complex pathways in which some genes

have already been characterized such as Q and mcm5s2U34,
functional information is available. However, we feel it is
a far stretch to transfer functional inferences made from
prokaryotes or unicellular eukaryotes to human. Even if a
related enzyme is known in another species, it is very diffi-
cult to predict how the unknown human enzyme discrim-
inates substrate tRNAs from non-substrates. Thus, in the
absence of information about the gene and enzyme respon-
sible, very little information can be inferred about the func-
tion of the modification itself. Below we list modifications
of human cytosolic tRNAs, for which the genes remain to
be discovered and characterized, and this list also indicates
the areas where functional information is missing.

• m1G6/7: This nucleotide is modified in multiple cytoso-
lic and in at least one mitochondrial tRNA (Supplemen-
tary Table S1A and B). Trm14/TrmN are members of
the COG0116 family of methyltransferases and target
this position in several thermophilic bacteria and archaea
(61). However other members of the same family, such
as RmlL have been shown to methylate guanine residues
in 23S RNA (62). THUMPD2 and THUMPD3 are two
barely characterized members of this family in humans
(Supplementary Table S4), and previous analyses sug-
gested that these enzymes might be required for the for-
mation of both cytosolic and mitochondrial modifica-
tions (23). THUMPD2 was found to form a complex with
the m2,2G26-methylase TRMT1, while THUMPD3 was
shown to interact with the methylase-activator protein
TRM112 (63) in two high-throughput interactome stud-
ies (36), strengthening their role as tRNA methyltrans-
ferase candidates. However, experimental verification will
be required to evaluate whether these two proteins are es-
sential for the formation of m1G, whether they exhibit
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Figure 2. Cloverleaf representation of tRNA, with modified positions indicated for (A) cytoplasmic and (B) mitochondrial tRNAs, respectively, indicating
genes/proteins experimentally validated in human, predicted with high confidence in other species, unknown with predictions, and unknown with no
predictions.
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different substrates specificities towards G6 or G7 and
whether they act in mitochondria or in the cytoplasm.

• m1A14: Enzymes responsible for this modification were
identified in S. cerevisiae and belong to the pfam01746
family (64). The human genome encodes three members
of this family: TRMT10A is required for the genera-
tion of m1G9 in cytosolic tRNAs (65). TRMT10C as
part of the RNase P complex, forms m1G9 in mitochon-
drial tRNAs (62) and like some family members from
other species, can also methylate adenosine to form m1A9
(66). Hence, TRMT10B (Supplementary Table S4) is a
candidate for the elusive m1A14 methyltransferase, even
if a recent report could not detect any tRNA methy-
lation activity in vitro (67). As expected for a cytoso-
lic enzyme, TRMT10B is not part of the predicted hu-
man mitoproteome (37). However, multiple reports of
interactions with 25 mitochondrial ribosomal proteins
(https://thebiogrid.org/127659) suggest this protein local-
izes to the mitochondria. Further experiments will be
needed to determine whether TRMT10B is the missing
m1A14 methyltransferase or whether TRMT10A methy-
lates both G9 and A14 or whether a yet unknown enzyme
catalyzes this reaction.

• Acp3U20,20a: Only very few enzymes have been charac-
terized that modify RNA by transferring the aminocar-
boxypropyl (acp) group of SAM, which is the methyl
donor in most RNA-methylation reactions. However,
acp-transferring enzymes belong to three unrelated su-
perfamilies, which also contain methyltransferases. The
only human enzyme currently known to introduce the
acp3 modification is TSR3, a member of the COG2042
family (68), which is required for the biosynthesis of the
hypermodified nucleotide m1acp3� in 18S rRNA (69).
The crystal structures of its archaeal homologs revealed
that TSR3 belongs to the SPOUT class of methyltrans-
ferases (69). The second structurally characterized acp-
transferase Tyw2 belongs to the unrelated RFM super-
family (70). A different acp modification has been de-
scribed in the diphthamide-biosynthesis pathway, where
an acp group is transferred from SAM to the carbon atom
of a histidine residue of eukaryotic translation elonga-
tion factor 2 (eEF2) by an enzyme that belongs to the
Radical-SAM superfamily (71). acp3U is found in several
positions in tRNA of different organisms like for example
acp3U47 in E. coli tRNA, but the corresponding enzymes
have not been identified in any of these species. Since all
known acp transferases most likely arose independently
from methyltransferases, the acp3U-forming enzyme may
currently be annotated as a hypothetical methyltrans-
ferase of unknown function (Supplementary Table S4)
but it is difficult to select a plausible candidate in light
of the diversity of known acp transferases.

• �: The list of pseudouridine synthases modifying hu-
man tRNAs is far from complete. Several candidates
have been proposed to be required for the modification
of positions 30–32, 50, 72 or e11,12,13 (23), but sev-
eral can likely be excluded as they were found to be re-
quired for the modification of mitochondrial rRNA and
mito-tRNA at positions 27, 29, 39 and 50 (RPUSD4)
(65,72) or mitochondrial mRNA (like RPUSD3) (73).
RPUSD1 and RPUSD2 (Supplementary Table S4) have

not been tested experimentally and are hence still valid
candidates. Pus7/TruD, the enzyme that introduces �13
is highly conserved in all three kingdoms (74) and is a
member of the COG0585 family. The yeast Pus7 enzyme
further modifies position 35 (75). PUS7 and PUS7L, two
members of the COG0585 family in humans are prod-
ucts of a gene duplication that occurred most certainly in
the common ancestors of metazoa (see http://phylomedb.
org/?q=search tree&seqid=Q9H0K6). Experiments will
be required to determine whether these two enzymes have
identical, overlapping or different substrates specificities.
For example, one of the two enzymes might modify po-
sition 13, while the second enzyme might target position
35. Another possibility is that PUS7 and PUS7L target
both positions 13 and 35, but in different tRNA isoaccep-
tors. PUS7 is implicated in pseudouridylation of �8 in
tRF derived from Ala-tRNA, Cys-tRNA and Val-tRNA
but whether PUS7 acts directly on tRNA has formally
not been shown (76). PUS1 is multisite specific so it is
a plausible candidate for the positions 30 to 32, even
though it has been found that the mouse homolog modi-
fies positions 27, 28, 34 and 36 (77). Finally, based on ex-
perimental evidence from Archaea (78), it had been pos-
tulated that the human Pus10 is required for the forma-
tion of �54 (28) and this was recently experimental vali-
dated in human (79).

• Q34: Queuosine in position 34 (Q34) is highly conserved
in bacteria and eukarya. Humans like all eukaryotes are
unable to synthesize Q but instead salvage the queuine (q)
base from their diet and gut microflora as a micronutrient
(80). Recent studies have shown that nutritionally deter-
mined Q-tRNA levels promote Dnmt2-mediated methy-
lation of tRNA-Asp and control translational speed of
Q-decoded codons as well as at near-cognate codons (81).
The heterodimeric human TGT enzyme formed by the
QTRT1 and QTRT2 (previously called QTRTD1) sub-
units is the only fully characterized enzyme of the Q
salvage pathway (80). A second human salvage-enzyme
member of the DUF2419 family has been identified but
its molecular function is unknown (82). Finally, the trans-
porter for the q base or the precursor nucleoside Q is still
elusive as well as the enzyme(s) that further modify the Q
residue by attaching galactosyl or mannosyl moieties.

• mcm5s2U34: Wobble uridine is generally modified in all
known organisms (see (83) for a recent review). The com-
bination of modifications at positions 2 and 5 of the nu-
cleobase results in an intricate tuning of codon-anticodon
interactions, thus allowing the translation apparatus to
distinguish codons in split-codon boxes and to introduce
additional amino acids (83,84). 5-carboxymethyluridine
(cm5U), the first step of the 5-modification is introduced
by the action of the Elongator complex, a heteromeric
complex consisting of two copies of Elp1–Elp6 that is
activated by several auxiliary proteins (85). Orthologs
of all yeast Elongator complex subunits are known and
described in humans. However, human orthologs of the
yeast regulatory components (the kinase Kti14, the phos-
phatase Sit4 and its regulatory subunits Sap185 and
Sap190) could not be identified. Here, functional screens
will be required to determine the counterparts of these
components in humans. The conversion of cm5U to

https://thebiogrid.org/127659
http://phylomedb.org/?q=search_tree&seqid=Q9H0K6
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mcm5U is catalyzed by the c-terminal Trm9 domain of
ALKBH8 (86–88). mcm5U in some tRNA can be fur-
ther hydroxylated to mchm5U by the AlkB Domain of
ALKBH8 (87) or 2′-O-methylated to mcm5Um by an un-
known enzyme. The enzyme required for ncm5U forma-
tion from cm5U is not known in any organism and re-
mains to be identified. 2-thiolation is achieved through
the action of the URM1 pathway that shares features of
bacterial sulfur-carrier proteins (SCP) and ubiquitin-like
proteins (UBL) (89). The URM1 pathway components
are straight forward to identify. Urm1 has two homologs
in humans: URM1 and MOCS2A. However, MOCS2A
is required for the synthesis of the molybdopterin cofac-
tor while URM1 is required for tRNA thiolation and
MOCS3 activates the SCP of both pathways (90). The fi-
nal step of the thiolation reaction is performed by a com-
plex consisting of CTU1 and CTU2.

• Missing methyltransferases. Methyltransferases are the
biggest group of RNA modifying enzymes. While many
tRNA methyltransferases have been discovered and char-
acterized, a few of them remain to be identified (Sup-
plementary Table S2). Members of the NSUN family
(PF01189) usually introduce m5C modifications (91) and
some such as NSUN2 are multi-site specific (92). How-
ever, NSUN2 is not required for the formation of m5C40
or m5C72 (92). NSUN7 is the only member of the NSUN
family without a known substrate (Supplementary Ta-
ble S4). Hence, it is a strong candidate for methylat-
ing one or both these positions. However, indirect data
links it to methylation of enhancer RNAs (93). Three
enzymes (METTL2A, METTL2B and METTL6) have
been found to be involved in m3C32 formation poten-
tially on different tRNA targets (94). Any of these three
might be required for introducing m3C at position e2
and/or 47 as the biochemical assays have been incon-
clusive to date (See (94), Supplementary Table S5). It is
unclear, which protein synthesizes m5U54 since two hu-
man homologs of yeast Trm2 were identified: TRMT2A
and TRMT2B (Supplementary Table S2). It is not known
whether these two proteins catalyze the same reaction or
whether they differ in substrate specificity or sub-cellular
localization. For example, TRMT2B is predicted to lo-
calize to mitochondria and might be required for mod-
ifying mitochondrial tRNAs (Supplementary Table S3).
Finally, no candidate can easily be proposed for the for-
mation of m1�39, �m39 and Gm39. The pool of methyl-
transferase candidates among proteins with uncharacter-
ized functions is large (∼8, Supplementary Table S4), and
we did not find evidence to favor a specific candidate.

Identification of the genes encoding for mitochondrial tRNA
modifications enzymes

The Suzuki laboratory published a thorough compilation
of tRNA modification enzymes for the full set of 22 bovine
mito-tRNAs (23) and most of their functional annota-
tions can be transferred to orthologous human enzymes
(Figure 2B, Supplementary Table S3). Furthermore, some
open cases have been solved since. Notably, ALKBH1 and
NSUN3 are required for the formation of f5C in initiator
tRNA (95–97). The same ALKBH1 enzyme is further re-

quired for hm5C and f5C formation in cytosolic tRNA (95).
A more complete compilation of the predicted human mi-
tochondrial tRNA modification enzymes was published re-
cently with extensive added functional information (24). We
compiled these predictions and added evidence codes result-
ing in a list of 35 enzymes required to modify the full set of
mitochondrial tRNAs (Figure 2B and Supplementary Table
S3). An additional evidence code to classify enzymes that
have been experimentally validated in the cytoplasm but not
in mitochondria was added (evidence code 6). We will dis-
cuss here the remaining open questions.

The Q base is found in mitochondrial tRNAs and the
catalytic subunit QTRT1 of the human transglycosylase
complex is found in the mitoproteome (Supplementary Ta-
ble S3). In the cytoplasm, QTRT1 forms a complex with
QTRT2 (98) but it is not known whether this interaction
also occurs in mitochondria. It has been shown that QTRT1
and QTRT2 are associated with the mitochondria with
QTRT2 more loosely bound than QTRT1 (99). Is it possible
that QTRT2 facilitates the transport of q, as the mitochon-
drial queuine transporter is missing?

Similar to cytosolic pseudourine synthases, the set of en-
zymes introducing � residues in mitochondrial tRNAs is
far from complete, in particular since different enzymes can
introduce the same modification at a given position in dif-
ferent tRNAs, implying that many more might be miss-
ing. RPUSD4 was recently shown to modify 16S rRNA
from mitochondria and introduce �39 in mito-tRNAPhe

but not in mito-tRNAGly (72). PUS3 was predicted to mod-
ify other mitochondrial tRNAs such as mito-tRNAGln at
position 39 (23). However, experimental data on PUS3 is
available only for cytosolic tRNAs, requiring additional
confirmation of its mitochondrial targets. Two pseudouri-
dine synthases without known substrates (RPUSD3 and
PUS1L) localize to the mitochondria (Supplementary Table
S4). RUPSD3 modifies mitochondrial mRNAs (73), leaving
PUS1L as a strong candidate for an enzyme that modifies
positions 30, 31, 50 and/or 57 (Supplementary Table S4).
Nevertheless, we cannot exclude that a pseudouridine syn-
thase not predicted to be mitochondrial such as RPUSD1
or RPSUD2 is actually dually-targeted as it has been re-
cently shown for Pus10 that is translocated to the mitochon-
dria only under specific physiological conditions (100).

In general, the situation is more complex when one gene
encodes for two proteins that localize to different sub-
cellular compartments, since the mitochondria-targeted
isoform is often not identified as a mitochondrial protein.
Thirty- seven proteins are predicted to be required for mito-
chondrial tRNA modifications with nine of these currently
unknown, and eleven modify only mitochondrial tRNAs
(Supplementary Table S3). In the Mitocarta analysis that
integrates 14 different sources of predictions and experi-
mental data to compile a list 1158 human mitochondrial
protein (37), ten of these proteins were correctly identified
as mitochondrial (Supplementary Table S3). The only ex-
ception is CDK5RAP1, an enzyme required for the thio-
lation reaction during ms2i6A formation (101,102). Of the
dually targeted proteins, ten were correctly assigned as mi-
tochondrial in Mitocarta (Supplementary Table S3) while
seven others were not: TRM5, YRDC, PUS3, NSUN2,
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TRM112, METTL2B and QTRT2. TRM112 and QTRT2
are non-catalytic subunits and it cannot be excluded that
they are dispensable in mitochondria, as tRNA modifi-
cation machineries can be simpler in mitochondria. For
example, only two proteins are required for the synthesis
of t6A in mitochondria while six proteins are required in
the cytosol (103). The case of PUS3 has already been dis-
cussed above. For the remaining three cases, dual localiza-
tion data in yeast for Sua5p (104) and for Trm5p (105)
as well as predicted isoforms (see http://www.uniprot.org/
uniprot/Q08J23 for NSUN2) suggest that they can be sim-
ilarly found in both compartments in humans. Hence, the
MitoCarta set of mitochondrial proteins may be incom-
plete.

Finally, the enzymes required for the formation of m2G6,
m5C72 and of several � residues are experimentally unchar-
acterized (Supplementary Table S3). As discussed above,
the two candidates for the formation of cytosolic m2G6 are
THUMPD2 and THUMPD3. These two proteins are not
predicted to localize to mitochondria (37) but this predic-
tion might not be correct. The same is true for the candidate
for the cytosolic m5C72 methylase, NSUN7.

Tissue expression and proteomics data of tRNA modification
enzymes

Disease phenotypes of aberrant tRNA modification en-
zymes are often linked to neuronal phenotypes, metabolic
disorders and cancer (17–21). However, the tissue-specific
expression profiles of tRNA modification genes have not
been systematically explored. Therefore, we used expression
data available through the Genotype-Tissue-Expression
(GTEx) project and compared expression levels of all mod-
ification genes in representative tissues of all organs (Fig-
ure 3). We also compiled tissue-specific proteomics evidence
from the human proteome map (41) (Supplementary Figure
S1). Overall, there are several general trends: First, expres-
sion levels of modification genes are quite uniform between
different tissues. Second, expression levels of most genes are
relatively low, in particular in whole blood. Third, generally
high expression levels are observed in testis and transformed
cells. Fourth, expression levels in brain are below average of
the tissues with the exception of the cerebellum, where ex-
pression of a small number of genes reaches levels that are
similar to expression observed in testis. This is surprising
given the typical neuronal phenotypes observed upon de-
fects in human modification enzymes. There are, however,
clusters of genes that are upregulated in several brain tis-
sues (Figure 3). These findings may point to a more crucial
function during early steps of differentiation and prolifer-
ation of stem cells. Thus, it is likely that many of the ob-
served defects in humans are either developmental pheno-
types or relatively subtle. Finally, even though most genes
of different pathways are found in similar clusters, this is
not true for all pathways, e.g. the ELP pathway. A simi-
lar trend is seen when analyzing the proteomics data (Sup-
plementary Figure S1). With the highly expressed genes, a
correlation was observed between the transcriptomic and
proteomics data (for example DUS2, PUS3 or TRMT5 in
testis), however, the proteomic data is less complete due to
the low expression levels of most enzymes (Supplementary

Figure 3. Expression of tRNA modification genes and candidates in a rep-
resentative set of healthy human tissues. (A) Empirically selected tissues
with physiological relevance are included. (B) Like (A), but only represent-
ing a set of brain tissues. Genes are clustered according to similarity in the
expression profile. Source: gtexportal.org. Genes included are from Sup-
plementary Table S2.

http://www.uniprot.org/uniprot/Q08J23
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Figure S1). These observations suggest that tRNA modifi-
cation enzymes are able to maintain sufficiently high mod-
ification levels in differentiated tissues likely because of the
high stability of tRNA and low tRNA synthesis levels. Fur-
thermore, some modification enzymes bind to RNA that are
not their natural targets (See (106–109) for specific exam-
ples). Hence, it is likely beneficial to maintain low expres-
sion levels of these enzymes to avoid unspecific modification
of cellular RNA like mRNA or rRNA.

CONCLUSIONS

This inventory of human tRNA modifications and the cor-
responding enzymes surprisingly reveals that despite the
fact that the field of RNA modifications has dramatically
expanded in recent years with 50 human modifications en-
zymes identified only in the last 10 years, the picture is
far from complete. We estimate that between ∼135 genes
are required to modify cytosolic and mitochondrial tRNAs
and that 23% of these genes still need to be identified and
that another 22% require further experimental validations.
Approximately 50% of the human modification genes have
been linked to a number of human diseases (Table 1). Fur-
thermore, all genes required for the formation of iron-sulfur
clusters affect tRNA modification indirectly and are linked
to diseases that are likely not mediated by tRNA modifica-
tion defects. Like described before (17–22) the phenotypes
are most often neurodegenerative or neurodevelopmental
diseases like microcephaly and intellectual disabilities, but
also renal and metabolic defects. Finally, roughly 50% of
the disease genes have been linked to cancer (Table 1), sug-
gesting that tRNA modification enzymes may provide inter-
esting targets for cancer therapies. Also, given the wide di-
versity of tRNA transcript sequences in humans, the prefer-
ence of different members of the modification enzyme fam-
ilies for different tRNA isodecoders remains an open ques-
tion. An in-depth analysis of tRNA modification dynam-
ics in various stress conditions and cell types will reveal the
intimate relationship between tRNAs and their modifying
partners in more detail. This compilation can act as a guide
for future experiments to complete the characterization of
the set of human tRNA modification enzymes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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