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Observation of unusual topological surface states
in half-Heusler compounds LnPtBi (Ln¼ Lu, Y)
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C. Felser3 & Y.L. Chen1,2,6

Topological quantum materials represent a new class of matter with both exotic physical

phenomena and novel application potentials. Many Heusler compounds, which exhibit rich

emergent properties such as unusual magnetism, superconductivity and heavy fermion beha-

viour, have been predicted to host non-trivial topological electronic structures. The coexistence

of topological order and other unusual properties makes Heusler materials ideal platform to

search for new topological quantum phases (such as quantum anomalous Hall insulator and

topological superconductor). By carrying out angle-resolved photoemission spectroscopy and

ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln¼ Lu, Y), we directly

observe the unusual topological surface states on these materials, establishing them as first

members with non-trivial topological electronic structure in this class of materials. Moreover, as

LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights

them as promising candidates of topological superconductors.
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T
opological quantum materials, a new class of matter with
non-trivial topological electronic structures, has become
one of the most intensively studied fields in physics and

material science due to their rich scientific significance and broad
application potentials1,2. With the worldwide effort, there have
been numerous materials predicted and experimentally confirmed
as topologically non-trivial matter (including topological
insulators3,4, topological crystalline insulators5,6 and three-
dimensional (3D) topological Dirac and Weyl semimetals7–11).
However, there is a big family of materials—the Heusler
compounds—although being theoretically predicted to be
topologically non-trivial back in 2010 (refs 12–14), the non-
trivial topological nature has never been experimentally
confirmed up to date.

The ternary semiconducting Heusler compounds, with their
great diversity (B500 members, 4200 are semiconductors) give
us the opportunity to search for optimized parameters (for
example, spin–orbit coupling (SOC) strength, gap size and so on)
across different compounds—which is critical not only for
realizing the topological order and investigating the topological
phase transitions12, but also for designing realistic applications.
In addition, among the wealth of Heusler compounds, many
(especially those containing rare-earth elements with strongly
correlated f electrons) exhibit rich interesting ground state
properties, such as magnetism15,16, superconductivity17–19 or
heavy fermion behaviour20. The interplay between these
properties and the topological order makes Heusler compounds
ideal platforms for the realization of novel topological effects
(for example, exotic particles including image monopole effect
and axions and so on), new topological phases (for example,
topological superconductors21,22) and broad applications
(see ref. 23 for a review).

Rare-earth half-Heusler compounds LnPtBi (Ln¼Y, La and Lu)
represent a model system recently proposed that can possess
topological orders with non-trivial topological surface states (TSSs)
and large band inversion12,24. Moreover, due to the lack of the
inversion symmetry in their crystal structure, non-centrosymmetric
superconducting LnPtBi compounds (Tc¼ 0.717, 0.918 and 1.0 K19

for Ln¼Y, La and Lu, respectively) may also host unconventional
cooper pairs with mixed parity, making them promising candidates
for the investigation of topological superconductivity and the
search for Majorana fermions25.

However, despite the great interests and intensive research
efforts in both theoretical12,13,26 and experimental27–29

investigations, the topological nature on LnPtBi remains
elusive. A previous angle-resolved photoemission spectroscopy
(ARPES) study has reported metallic surface states27 with
apparently different dispersion shapes and Fermi surface
(FS) crossing numbers from the predicted TSSs in LnPtBi
compounds12,13, making the topological nature of LnPtBi
controversial.

In this work, by carefully performing comprehensive ARPES
measurements and ab initio calculations, we resolve this unsettled
question. We observe the non-trivial TSSs with linear dispersions
in half-Heusler compounds LuPtBi and YPtBi (on the Bi-and
Y-terminated (111) surface, respectively); and remarkably, in
contrast to many topological insulators that have TSSs inside
their bulk gap1,3,30, the TSSs in LnPtBi show their unusual
robustness by lying well below the Fermi energy (EF) and strongly
overlapping with the bulk valence bands (similar to those
in HgTe31–33). In addition to the TSSs, we also observe
numerous metallic surface states crossing the EF with large
Rashba splitting, which not only makes them promising
compounds for spintronic application, but also provides the
possibility to mediate topologically non-trivial superconductivity
in the superconducting phase of these compounds.

Results
Basic physical properties of LnPtBi. A crystallographic unit cell
of LnPtBi is shown in Fig. 1a, which comprises of a zinc-blend
unit cell from Bi and Pt atoms and rocksalt unit cell from Bi and
Ln. For ARPES measurements, the LnPtBi single crystals were
cleaved in situ in the ultra-high vacuum measurement chamber,
resulting in either (111) or (001) surfaces. The unit cell along
the (111) cleavage surface is illustrated in Fig. 1b and the
corresponding hexagonal surface Brillouin zone (BZ) is shown in
Fig. 1d, which could be viewed as the projection of the bulk BZ
(Fig. 1c) of LnPtBi along the [111] direction (Fig. 1d).

The unit cell along the [111] direction consists of alternating
Ln, Pt and Bi layers (Fig. 1b). As there are fewer chemical bonds
to break between Ln and Bi layer (two comparing to three
between Ln and Pt or Pt and Bi layers) and the Ln–Bi layer
distance is twice as large as the Ln–Pt or Pt–Bi layer spacing
(see Fig. 1b), it is more energetically favourable to cleave the
material between Ln and Bi layers. In the discussion of the main
text, we will focus on the electronic structure of Bi-terminated
(111) surface LuPtBi and Y-terminated (111) surface of YPtBi.
ARPES results (as well as ab initio calculations) along (001)
cleavage surfaces of LuPtBi and YPtBi are presented in
Supplementary Information.

The core level photoemission spectra of LuPtBi is shown in
Fig. 1e, from which the characteristic Bi 5d and Lu 4f doublets are
clearly observed. The large spectral weight of Bi peaks over the Lu
peaks in the (111) surface clearly indicates its Bi termination. The
broad area FS mapping covering multiple BZs in Fig. 1f also
illustrates the hexagonal symmetry (with the correct lattice
parameters) resulting from the (111) cleaved surface.

General electronic structure of LuPtBi (111) surface. In Fig. 2,
detailed electronic structures of LuPtBi within a surface BZ are
illustrated. From the FS maps (Fig. 2a–c) and 3D spectral
intensity plots (Fig. 2d,e) around both the �G point and BZ
boundary (�K and �M points), there are clearly multiple bands
crossing EF, forming a twin hexagonal hole pockets at �G and
complex electron pockets at �K and �M, both of which show clear
Rashba splitting. Around �G, there is another pair of double L
shape hole bands just below EF. These features broadly agree with
the previous ARPES report27 (also see Supplementary Figs 1
and 2 and Supplementary Note 1 for the detailed discussions on
the features near �G). However, in this work, with the high
instrument resolution and data statistics we successfully observed
a critical additional X shape band dispersing between 0.4 and
0.8 eV with the band crossing point (that is, Dirac point) at
EbB0.5 eV at the �G point—which is the long-sought-after TSSs,
as we will discuss in details below.

Surface states on LuPtBi (111) surface. To help understand the
origin of these electronic states, we carried out band structure
calculations of Bi-terminated LuPtBi (111) surface with two
different methods (Fig. 3a,b, see the ‘Methods’ section for more
details), and both agree well with the measurement and clearly
reproduce the X shape TSS observed in our measurements
(Fig. 3c–f). In Fig. 3a, we first employed a slab model for the ab
initio calculations (method one). This method, which takes into
account the charge density redistribution due to surface potential
modification by ab initio calculations, can describe all surface
states including TSSs and those from the trivial dangling bonds.
To further identify the TSS, we carried out another method
(Fig. 3b) by calculating the k-resolved local density of states of a
semi-infinite surface using the recursive Green’s function
(method two)34 constructed from Wannier function-based
tight-binding parameters extracted from the bulk material35.
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Such method could reveal TSSs clearly and avoid the trivial
surface states by removing the dangling bond orbitals in the
Hamiltonian (as can be clearly seen in Fig. 3b).

The combination of the two methods thus allows us to
unambiguously identify the TSSs from other trivial dangling bond
states (further experimental evidence of the non-trivial nature of
the TSSs can be found in Supplementary Fig. 3 and
Supplementary Note 2). As shown in Fig. 3a, all sharp dispersions
(three Kramers pairs and one X shape state, labelled as SS1–SS3
and TSS respectively) are of surface origin and agree excellently
with the observed band structures (Fig. 3c–f). Moreover, the three
Kramers pairs (SS1, SS2 and SS3) are all absent in the result from
method two (Fig. 3b) while the X shape band remains, illustrating
their topologically trivial origin (that is, being trivial surface states
due to dangling bonds), as opposite to the TSS shown in Fig. 3b.

The surface origin of both the TSS and SS1–SS3 in Fig. 3 can
also be experimentally verified by performing the photon energy
dependence photoemission measurement30, as presented in Fig. 4
(also in Supplementary Fig. 4 and Supplementary Note 3 along
the other high symmetry direction). In Fig. 4a, dispersions along
�G–�K– �M directions measured using a wide range of
photon energies (50–75 eV) were plotted, the dispersions of TSS

and SS1–SS3 under all photon energies are identical (though the
relative intensity can vary with photon energy due to
the photoemission matrix element effect30). To further visualize
the dispersion of these bands along kz, we extract the momentum
distribution curves (MDCs) at EF (cutting through SS1 and SS2)
and 0.65 eV below EF (cutting through TSS, SS2 and SS3) and plot
them as the function of photon energy (see Fig. 4b,c). Evidently,
the peaks from TSS and SS1–SS3 bands show no kz dispersion
as they all form straight vertical lines. Thus, the surface nature
of these bands (TSS and SS1–SS3) are clearly established. By
fitting the Dirac type X shape linear dispersion (Fig. 4d), we can
extract the band velocity at the Dirac point as 2.37 eV Å
(3.59� 105 m s� 1) and 3.13 eV Å (4.74� 105 m s� 1) along the
�G–�K and �G– �M direction, respectively.

Surface states on YPtBi (111) and LnPtBi (001) surface.
Similarly, for the other compound YPtBi, our calculation and
measurements also agree well and both clearly show the TSS
(Fig. 4e–g, also see Supplementary Fig. 5 and Supplementary
Note 4 for the calculation). More measurements, as well as
calculations on different cleaved surfaces (001) and different
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Figure 1 | Crystal structure of LnPtBi and cleavage surface measured by ARPES. (a) Crystal structure of half-Heusler alloy LnPtBi crystal shows a

composite of zinc-blend and rocksalt lattices. (b) Unit cell of LnPtBi at the (111) cleavage surface shows the stacking of triangular Ln, Pt and Bi layers. a0 is

the in-plane lattice constant of the (111) surface unit cell. (c) Bulk BZ of LnPtBi with high symmetry points labelled. Arrows and shaded surfaces indicate the

projection to [100], [010] and [001] directions. (d) Surface BZ in the [111] direction with the high symmetry points labelled. (e) Core level photoemission

spectrum on LuPtBi (111) and (001) surfaces clearly shows the characteristic Lu 4f and Bi 5d doublets. These spectra are measured with 75 and 215 eV

photons, respectively. (f) Broad FS map of LuPtBi covering five BZs, confirming the shape and size of the surface BZ (overlaid yellow hexagons) on the (111)

cleave plane. The uneven intensity of the FS at different BZs results from the matrix element effect.
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termination layers (Bi or Ln terminations), are presented in
Supplementary Figs 6 and 7 and Supplementary Note 5, all
showing excellent agreements. Interestingly, in both compounds,
the observed TSS coexist and overlap in energy with the bulk
valence band (appear as broad dispersing background intensity in
Figs 3 and 4), demonstrating its unusual robustness.

Circular dichroism (CD)-ARPES of LuPtBi surface states.
CD-ARPES measurement on the Bi-terminated (111) surface of
LuPtBi has also been carried out (see Fig. 5). As one can see from
the cut along the �G– �M direction, the photoemission spectra
intensity under circularly polarized right (CR) or circularly
polarized left (CL) photons only emphasizes one of the two
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branches of SS3 and TSS bands, showing clear circular dichroism
as reflected in the CR–CL difference spectrum (Fig. 5a and the
peak analysis of the MDCs at various energies in Fig. 5c). The
obvious dichroic photoemission results are in consistence with
the non-degenerate spin configurations in SS3 and TSS, as indi-
cated by the spin-resolved ab initio calculations (see
Supplementary Fig. 8 in Supplementary Note 6). We note that
due to the complexity of the asymmetry of measurement geo-
metry and orbitals effect in CD-ARPES36, we encourage future
spin-ARPES measurements for a more quantitative measurement
on the spin polarization of TSS and SS3 bands.

Discussion
Our discovery of the unusual TSSs on these materials establishing
them as first examples with non-trivial topological electronic
structure showing unusual robustness in Heusler materials with
great tenability due to the vast number of compounds in the
family. The non-trivial topology in the electronic structure can
also help the understanding of various exotic properties recently
discovered in half-Heusler compounds, including the large
magnetoresistance29, chiral anomaly and Weyl fermions37,38

and their unconventional superconductivity39,40. Moreover, the
interplay between topological electronic structure and the
rich properties in Heusler materials further makes them
ideal platforms for the realization of novel topological effects

(for example, exotic particles including image monopoles41 and
axions42) and new topological phases (for example, strain
induced topological phase transition14 and topological
superconductors).

Methods
Angle-resolved photoemission spectroscopy. ARPES measurements on single
crystals LnPtBi (Ln¼ Lu, Y) were performed at beamline 10.0.1 of the Advanced
Light Source (ALS) at Lawrence Berkeley National Laboratory, USA and beamline
I05 of the Diamond Light Source (DLS), UK. The measurement pressure was kept
below 3� 10� 11/8� 10� 11 Torr in ALS/DLS, and data were recorded by Scienta
R4000 analysers at 20 K sample temperature at both facilities. The total convolved
energy and angle resolutions were 16 meV/30 meV and 0.2�/0.2� at ALS/DLS,
respectively. ARPES circular dichroism measurement was performed at BL5-4 of
the Stanford Synchrotron Radiation Lightsource, SLAC national laboratory with
20 eV photons.

Ab initio calculations. To simulate a surface, a 54-atomic-layer thick slab model
was used with a vacuum more than 10 Å to diminish the coupling between the top
and bottom surfaces. The ab initio calculations were performed within the fra-
mework of the density functional theory and generalized gradient approxima-
tion43,44. In the bulk calculations, the density functional theory Bloch wave
functions were projected to Wannier functions35, Ln-d, Pt-sd and Bi-p atomic like
orbitals. In a half-infinite surface model, we projected the Green function of the
bulk to the surface unit cell and obtained the surface local density of states based on
the Wannier functions.

We could also calculate the surface bandstructure from tight binding model on
the Bi-terminated (111) surface of LuPtBi. The metallic surface states (Fig. 4,
SS1–SS3) observed on the Bi-terminated LuPtBi (111) surface all exhibit large spin
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splitting, thus reflecting very large SOC strength. The surface state SS1 constitutes
the FS, in particular, around the �K and �M points (Fig. 2). They are mainly
composed by Bi-pz orbitals of the top Bi layer. The surface Bi atoms form a
triangular lattice.

We wrote the effective tight-binding model for the SS1 surface states by
considering the nearest neighbour hopping:

H ¼ H0 þHR þHKM ð1Þ

H0 ¼ � t�oij4scþis cjs ð2Þ
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(1) About the nearest neighbour hopping. We consider a triangle lattice as
illustrated in Supplementary Fig. 9. We take the lattice parameter a¼ 1 and
in-plane lattice vectors: a1 ¼ 1; 0ð Þ and a2 ¼ 1=2;
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3
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(2) The Rashba term can be written as
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(3) The Kane–Mele term HKM . In the triangular lattice, the value of nij depends on
the hopping direction, as shown in Supplementary Fig. 9. We derived this term as

HKM kð Þ ¼ bsz sin kxð Þ� sin
kx

2
þ ky

ffiffiffi
3
p

2

� �
þ sin � kx

2
þ ky

ffiffiffi
3
p

2

� �� �
ð8Þ

We fitted the surface band structure using the parameters t¼ 0.35, a¼ 0.5 and
b¼ 0.1 and well reproduced the ab initio surface states (Supplementary Figs 9 and
10). Without the Kane–Mele term, the band degeneracy cannot be lifted at the �K
point, although �K is not time-reversal invariant.

Recently a similar SOC effect45 has been employed to describe the surface states
on the Tl/Si(111)–(1� 1) surface46. Existence of strong Rashba effect and the
unconventional SOC effect from the surface and the non-centrosymmetric bulk
induces significant effect such as weak antilocalization and high mobility in
transport measurements, and makes the LnPtBi a feasible candidate for spintronics
applications.

Data availability. All relevant data are available on request, which should be
addressed to Y.L.C.
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