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Abstract 

Background:  Lung cancer has been a common malignant tumor with a leading cause of morbidity and mortality, 
current molecular targets are woefully lacking comparing to the highly progressive cancer. The study is designed to 
identify new prognostic predictors and potential gene targets based on bioinformatic analysis of Gene Expression 
Omnibus (GEO) database.

Methods:  Four cDNA expression profiles GSE19188, GSE101929, GSE18842 and GSE33532 were chosen from GEO 
database to analyze the differently expressed genes (DEGs) between non-small cell lung cancer (NSCLC) and normal 
lung tissues. After the DEGs functions were analyzed, the protein–protein interaction network (PPI) of DEGs were 
constructed, and the core gene in the network which has high connectivity degree with other genes was identified. 
We analyzed the association of the gene with the development of NSCLC as well as its prognosis. Lastly we explored 
the conceivable signaling mechanism of the gene regulation during the development of NSCLC.

Results:  A total of 92 up regulated and 214 down regulated DEGs were shared in four cDNA expression profiles. 
Based on their PPI network, TOP2A was connected with most of other genes and was selected for further analysis. 
Kaplan–Meier overall survival analysis (OS) revealed that TOP2A was associated with worse NSCLC patients survival. 
And both GEPIA analysis and immunohistochemistry experiment (IHC) confirmed that TOP2A was aberrant gain of 
expression in cancer comparing to normal tissues. The clinical significance of TOP2A and probable signaling pathways 
it involved in were further explored, and a positive correlation between TOP2A and TPX2 expression was found in lung 
cancer tissues.

Conclusion:  Using bioinformatic analysis, we revealed that TOP2A could be adopted as a prognostic indicator of 
NSCLC and it potentially regulate cancer development through co-work with TPX2. However, more detailed experi-
ments are needed to clarify its drug target role in clinical medical use.
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Background
Lung cancer has been a malignant tumor with a leading 
cause of both morbidity and mortality worldwide [1–3], 
and 80–85% is non-small cell lung cancer (NSCLC), with 
different biological processes and pathological appear-
ance to the other 10–15% small cell lung cancer (SCLC) 
[4]. NSCLC includes lung adenocarcinoma, squamous 
cell carcinoma and large cell carcinoma. Although can-
cer is still a challenging and incurable disease, the up-
rising new therapies including immunotherapy and 
targeted therapies are bringing promising effect to the 
clinical patients treatment [5]. Especially in lung adeno-
carcinoma, great improvement is taking place in tar-
geted therapies, nearly ten genes have been developed as 
drug targets, including epidermal growth factor receptor 
(EGFR), anaplasticlymphoma kinase (ALK), ROS1, RET, 
HER2, BRAF, PIK3CA, Kras, Nras and MET [6–8] the 
drugs that are developed based on these genes expression 
situation are all showing exciting curative effect [8–14].

However, the available ten bio-targets are still num-
bered as opposed to the highly heterogeneous, compli-
cated and progressive cancer development [4, 15–17]. 
As a well known fact that the main reason responsible 
for the incurability of cancer is their fast “adaptive” to 
outer environment changes, malignant tumors posses 
ever-changing characteristics according to different clini-
cal treatments [9, 18]. Not to mention the other subtypes 
of NSCLC besides adenocarcinoma, including squamous 
carcinoma and large cell carcinoma, the drug targets are 
woefully numbered currently. For instance, in the squa-
mous carcinoma, only FGFR2 and DDR2 are known to be 
aberrantly mutated and could be developed into potential 
clinical use as drug targets, but as for now, both drugs are 
still in clinical trial stage [19]. As for the large cell carci-
noma, there is none probable drug target yet [20]. It is of 
vital importance to keep identifying new prognostic bio-
markers and other potential gene targets [21].

Recently, great advance is happening to high-through-
put technologies, bringing in tremendous amount of 
clinical data, which provides a rich source for research-
ers to better understand the molecular basis of cancer 
development and to identify disease-causing gene altera-
tions thus exploring potential drug targets for therapeu-
tic intervention [22–24]. Large portion of these data are 
public open and accessible to world wide researchers. 
Bioinformatic is a data-driven branch of science, with 
many of the algorithms and databases developed to ana-
lyze different types of data [25]. A lot of analysis tools 
including software, databases and website services are 
powerful and free [25–28], although some software are 
commercial, they can be purchased at a virtually very low 
cost by school students and education institutes teachers 
[29].

In the study, multiple bioinformatic tools were applied 
to analyze the four cDNA expression profiles from 
Gene Expression Omnibus (GEO) database includ-
ing GSE19188, GSE101929, GSE18842 and GSE33532. 
Firstly, GEO2R tool was used to detect the differently 
expressed genes (DEGs) between NSCLC and normal 
lung tissues, the DEGs that were shared in all four pro-
files were chosen. Secondly, the protein–protein inter-
action (PPI) network of shared DEGs was constructed 
using Cytoscape3.6.0 software, and the core gene with 
highest connectivity degree with other genes was identi-
fied. Then, the correlation with NSCLC patients overall 
survival rate (OS) was evaluated with KM plotter online 
databases and clinical significance was analyzed based on 
immunohistochemistry experiment (IHC) results data. 
Last but not least, the potential function signaling behind 
the core gene’s regulation on NSCLC development was 
preliminary explored and genes that co-work with it were 
explored using STRING, Oncomine and GEPIA. The 
results shall provide delightful insights to the unearth of 
prognostic biomarker candidates and new potential bio 
targets to NSCLC patients.

Materials and methods
Data source: cDNA expression profiles from GEO database
Four cDNA expression profiles GSE19188 [30], 
GSE101929 [31], GSE18842 [32] and GSE33532 [33] 
were chosen from GEO online public database [34] 
based on the sample size and their publication time (we 
mainly focused on the profiles that contains at least 20 
paired samples and those being publicated recently). 
And GSE19188 profile was based on GPL570[HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array, containing 91 NSCLC samples and 20 normal lung 
tissues. GSE101929 was based on GPL570[HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, 
containing 32 NSCLC samples and 34 normal lung sam-
ples. GSE18842 was based on GPL570[HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array, con-
taining 46 NSCLC samples and 45 normal lung samples. 
And GSE33532 was based on GPL570[HG-U133_Plus_2] 
Affymetrix Human Genome U133 Plus 2.0 Array, con-
taining 80 NSCLC samples and 20 normal lung samples.

Identification of DEGs between NSCLC and normal lung 
tissue
To analyze the DEGs between NSCLC and normal lung 
tissues, GEO2R tool [35], which is a public interactive 
online service was used in four cDNA profiles respec-
tively. The criteria for DEGs selection were set as adjusted 
P value < 0.05 and |log2FC| ≥ 2. And E Chart online ser-
vice for Venn diagram was then used to screen the DEGs 
that were shared in all four cDNA profiles. Meanwhile, 
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GO and KEGG were used to preliminary analyze the 
main biological processes, molecular functions and sign-
aling pathways the DEGs enriched in.

PPI network construction and core gene identification
To construct the PPI network of shared DEGs, the Search 
Tool for the Retrieval of Interacting Genes (STRING) was 
used, which is an online database for searching the direct 
(physical) and indirect (functional) association between 
various proteins. STRING contains the information of 
9643763 proteins from 2031 species up to now [27, 36]. 
The cut-off criteria to construct the network was set as 
confidence score ≥ 0.4 and maximum number of interac-
tors = 0. Additionally, the top gene with highest connec-
tivity degree with surrounding genes was picked based 
on the PPI network by Cytoscape3.6.0 software [37].

Kaplan–Meier survival analysis
Kaplan–Meier plotter is an open access online service for 
the overall survival analysis of various cancers including 
lung cancer, breast cancer, gastric and ovarian cancer, 
as well as hepatocellular carcinoma, containing a total 
of 10,461 patients samples and their clinical informa-
tion [38, 39]. In the study, we used Kaplan–Meier plot-
ter to analyze the correlation between TOP2A gene and 
NSCLC patients OS, followed by drawing the survival 
curve. Additionally, the clinical and mRNA transcription 
data including 574 lung adenocarcinoma and 555 lung 
squamous cell carcinoma were downloaded from TCGA 
database for multivariate COX regression analysis and 
exploring TOP2A expression relationship with clinical 
parameters.

GEPIA analysis of gene expression
GEPIA is a newly developed online software, which is 
based on the sequencing database of 9736 cancer and 
8587 normal samples from TCGA and GTEx programs. 
The software is commonly used for analyzing certain 
genes expression differences between cancer and normal 
tissues in various tumor types [40, 41]. In the study, we 
used GEPIA to preliminary explore the expression dif-
ferences of TOP2A between NSCLC and normal lung 
samples.

Immunohistochemistry (IHC) experiment regents 
and tissue samples
All of the clinical patients sample were stored in our 
biobank, and they were all collected from routine surger-
ies at General Surgery Department and sent for pathol-
ogy examination at the Department of Pathology of local 
Hospital. Informed consent from the patients as well 
as approval by the Hospital Institutional Board were 
obtained (ShanXi, China).

IHC experiment was performed on VENTANA plat-
form (Roche), the TOP2A recombinant primary rabbit 
monoclonal antibody (SY27-00) was purchased from 
Invitrogen, secondary antibody (Envision/HRP kit) and 
DAB detection kit were from ZSBG-Bio. Other rea-
gents including H2O2, phosphate-buffered saline (PBS) 
and hematoxylin stain were from the hospital supply 
department.

Immunohistochemistry (IHC) experiment protocol
IHC experiment was conducted to confirm the gene 
expression between NSCLC and normal lung tissues 
using 107 cases of biobank cancer samples following 
the experimental procedure as below.

The 107 paraffin-embedded tissue were made in tis-
sue arrays first and made to slices. The stored slices 
were firstly taken out of refrigerator and rewarmed at 
room temperature for 20  min, followed by the depar-
affin, rehydration and a 10  min boiling in 10  mmol/l 
citrate buffer for antigen retrieval. The sections would 
then be soaked in methanol containing 0.3% H2O2 for 
10  min with the purpose of inhibiting of endogenous 
peroxidase activity. After being blocked with bovine 
serum albumin in PBS for 30  min, the sections would 
be incubated with primary antibody (dilution 1:250) for 
2  h at 37  °C in Biochemistry Cultivation Cabinet, and 
another 40 min at 37 °C with species-specific secondary 
antibodies labeled with horseradish peroxidase (HRP) 
and finally visualized in DAB followed by the counter-
staining of nuclei with hematoxylin.

Evaluation of IHC results
The relative TOP2A protein expression level was eval-
uated according to both the tissue section’s staining 
intensity and staining area. The intensity and area of 
immunostaining was scored by two experienced pathol-
ogists in our department with no prior knowledge of 
the clinical and pathological details of the patients. 
Nuclear staining was regarded as positive according 
to TOP2A antibody specification sheet. The staining 
intensity was classified based on the following criteria: 
none (0), mild (1), moderate (2) and strong (3). And the 
staining area was stratified as follows: < 5% (0), 6–25% 
(1), 26–50% (2), 51–75% (3) and > 75% (4). The final 
TOP2A expression level in each sample was scored by 
multiply the staining intensity by staining area, using 
the score = 6 as cutoff point, final score < 6 was defined 
as negative, and score ≥ 6 was classified as positive [42].

Additionally, the gene’s clinical significance was ana-
lyzed based on the clinical data of above 107 patients.
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Related signaling pathways and co‑work genes mining
The Oncomine database is a web-based data mining 
platform that incorporates 264 independent datasets 
for collecting, standardizing, analyzing, and delivering 
transcriptomic cancer data for biomedical research [43]. 
In the study, we used Oncomine for analyzing the vari-
ous expression levels of TOP2A in different subtypes of 
NSCLC and exploring the co-expression genes relating 
to TOP2A. As for the TOP2A expression in subtypes of 
NSCLC, the query terms were set as: ① analysis type: 
lung cancer vs normal analysis; ② GENE: TOP2A; and 
for the co-expression analysis, the query terms were set 
as: ① GENE: TOP2A; ② analysis type: co-expression 
analysis; ③ non small cell lung cancer.

RNA extraction and quantity real‑time PCR (qRT‑PCR)
Total mRNA of 30 lung adenocarcinoma and 30 lung 
squamous cell carcinoma samples were extracted using 
RNAiso-Plus (TAKARA, DaLian, China), and mRNA 
of matched adjacent normal tissue of each cancer sam-
ple were also extracted. cDNA was then synthesized 
from 1  μg extracted mRNA using cDNA synthesis kit 
(TAKARA, DaLian, China) according to the manufac-
turer’s instructions. Real-time PCR was performed on 
Roche z 480 with primers as:

TOP2A:

Former: CAT​TGA​AGA​CGC​TTC​GTT​ATGG​
Reverse: CAG​AAG​AGA​GGG​CCA​GTT​GTG​

TPX2:

Former: CTT​CCA​ATC​ACC​GTC​CCC​
Reverse: TAT​TTC​CAC​AGT​TCT​TGC​CTCT​

GAPDH:

Former: AGA​AGG​CTG​GGG​CTC​ATT​TG
Reverse: AGG​GGC​CAT​CCA​CAG​TCT​TC

The cycling conditions were: 95  °C 5  min for 1 cycle; 
95 °C 5 s, 60 °C 30 s, and 72 °C 34 s for 40 cycles followed 
by the melting curve stage. The relative expression of 
TOP2A and TPX2 were evaluated based on the 2−ΔΔCT 
calculation, each sample get three replicates.

Statistical analysis
Chi-square test was used to analyze the relationship 
between TOP2A expression and NSCLC clinicopatho-
logical features. T-test was used to analyze the relative 
mRNA expression of TOP2A and TPX2 in qPT-PCR 
experiment, and Pearson analysis was performed for 

exploring the connection between TOP2A and TPX2 
genes. P < 0.05 was considered statistically significant.

Results
Identification of 306 DEGs shared by four GEO profiles
We chose four cDNA expression profiles GSE18842, 
GSE19188, GSE33532 and GSE101929 from GEO data-
base to analyze the DEGs between NSCLC and nor-
mal lung tissues. And a total of 1029, 635, 795 and 1304 
DEGs including 419, 170, 248, 428 up-regulated and 
610, 465, 547, 876 down-regulated genes were identi-
fied in GSE18842, GSE19188, GSE33532 and GSE101929 
respectively (Fig. 1a–d). Meanwhile, a whole of 306 DEGs 
including 92 up-regulated and 214 down-regulated genes 
were shared in all four profiles shown by the Venn dia-
gram (Fig. 1e, f ).

The results of GO and KEGG revealed that the cellular 
components of 214 down-regulated DEGs were mainly 
enriched in plasma membrane and extracellular space, 
the biological processes were focused on cell communi-
cation and signal transduction, and the signaling path-
ways were mostly epithelial to mesenchymal transition 
related (Fig. 2b).

Interestingly, as for the 92 up-regulated DEGs, the cel-
lular components were mainly focused on centrosome, 
spindle microtubule and chromosome region, the bio-
logical processes were enriched in spindle assembly, and 
the signaling pathways were mainly mitotic and DNA 
replication related (Fig. 2a). All molecular aspects includ-
ing cell components, biological processes and signaling 
pathways point to the cell division process, indicating 
the worthy of consideration potential value of cell cycle 
related genes in the development of lung cancer.

TOP2A works as the core gene in 306 DEGs PPI network
To reveal the protein–protein relationship of DEGs, we 
constructed the PPI network of 306 shared DEGs using 
STRING and Cytoscape3.6.0 software (Fig. 3a). Based on 
the network, we identified TOP2A as the top gene with 
highest connectivity degree with other genes, suggesting 
its core position in the network (Fig. 3b, c).

Additionally, Kaplan–Meier plotter overall survival 
analysis which contains 1928 NSCLC samples revealed 
that TOP2A statistical significantly correlates with 
patients OS. Higher TOP2A expression was associated 
with worse NSCLC OS suggesting its probable tumor 
promoter function and potential survival predictor 
(Fig. 4c).

Aberrant TOP2A up regulation in human NSCLC cancer
We analyzed the expression profile of TOP2A in vari-
ous human tumors using Oncomine database, and the 
results revealed that TOP2A expression was higher in 
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Fig. 1  The DEGs screened from four GEO expression profiles. Up-regulated (red-colored spots) and down-regulated (green-colored spots) DEGS in 
NSCLC comparing to normal lung tissues were screened from GEO profiles a GSE19188, b GSE101929, c GSE18842 and d GSE33532 respectively. e 
92 up-regulated and f 214 down-regulated DEGs were shared by four GEO expression profiles
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a

b

Fig. 2  GO/KEGG analysis of 92 up-regulated and 214 down-regulated DEGs. a GO and KEGG reveals the main cellular components, biological 
processes and signaling pathways the 92 up-regulated DEGs enriched in. b GO and KEGG reveals the main cellular components, biological 
processes and signaling pathways the 214 down-regulated DEGs enriched in
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most solid tumors including lung cancer, bladder can-
cer, brain cancer, breast cancer, digestive tract can-
cers, liver cancer and many other cancers comparing 
to their matched normal tissues (Fig. 4a). And another 
analysis performed by GEPIA also showed consistent 

results that TOP2A was broad-spectrum up-regulated 
in various human tumors except for acute myeloid leu-
kemia (Fig.  4b). Both Oncomine and GEPIA analysis 
suggested the aberrant gain of expression of TOP2A 
in NSCLC, including adenocarcinoma (483 cancer and 
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347 normal cases analyzed) and squamous cell carci-
noma (486 cancer and 338 normal cases analyzed) 
comparing to normal lung tissues (Fig. 4d).

Additionally, Oncomine analysis of cancer vs normal 
samples revealed that TOP2A expressed statistical sig-
nificantly higher in all subtypes of NSCLC, including 
adenocarcinoma, squamous cell carcinoma and large 
cell carcinoma comparing to normal tissues (Table 1).

IHC experiment validation of TOP2A gain of expression
Immunohistochemistry (IHC) was carried out in 107 
paired NSCLC and matched normal lung tissues (includ-
ing 61 adenocarcinoma and 46 squamous cell carci-
noma cases) (Fig. 5a–c). The results showed that TOP2A 
expression was significantly higher in cancer tissues com-
paring to matched normal sections. Significant TOP2A 
gain of expression ratio (36.4%) in NSCLC were observed 
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Fig. 4  Prognosis value and expression analysis of TOP2A. a Expression of TOP2A in different types of human cancers. This graphic generated by 
Oncomine indicates the numbers of datasets with statistically significant (P < 0.01) mRNA over-expression (red) or down-expression (blue) of TOP2A 
(cancer vs. normal tissue). The threshold was designed with the following parameters: P-value of 1E−4, fold change of 2, and gene ranking of 10%. 
b Expression of TOP2A in different types of human cancers by GEPIA analysis. c Overall survival value of TOP2A by Kaplan–Meier survival analysis. d 
Aberrant gain of expression of TOP2A in NSCLC comparing to normal lung tissues, including lung adenocarcinoma (left column) squamous cancer 
(right column). *P < 0.05
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by IHC staining in verse the low ratio (less than 1%) in 
normal tissues (P < 0.001).

Additionally, we analyzed the association between 
TOP2A expression and NSCLC clinicopathologi-
cal parameters. Statistical analysis results showed that 
TOP2A positive staining ratio was higher in squamous 
cell carcinoma than in adenocarcinoma (P = 0.000). And 
TOP2A was tend to be more positively expressed in male 
than female patients (P = 0.001). Smoking or not also has 
an influence of gene expression, TOP2A was more likely 
to be positive in smoking patients than in non-smoking 
ones (P = 0.006). Meanwhile, no significance TOP2A 
expression differences were found regarding to patients 
age, tumor location, size, stages or existing evasion to 
bronchial tubes and lymph nodes (Table 2).

TCGA data explored independent prognostic indicator 
value of TOP2A in adenocarcinoma
Since the number of samples cases being used for IHC 
experiment was relatively low (61 cases for adenocarci-
noma and 46 for squamous cell carcinoma respectively), 
and the number of patients with greater than 2, 3, 4 and 
5  years follow-up was 70, 22, 9 and 6 respectively, the 
median follow-up of the 107 cases was 30  months. To 
avoid the limitations of relatively small number samples 
and short duration of follow-up, greater data of NSCLC 
samples were downloaded from TCGA database, includ-
ing the clinical and mRNA transcription information of 
574 lung adenocarcinoma and 555 lung squamous cell 
carcinoma for multivariate regression analysis.

The clinical parameters based on TCGA data revealed 
a consistent result as our IHC experiment of local hos-
pital patients. Besides the relatively high expression in 
cancers comparing to normal tissues (Fig. 6a, h), TOP2A 
expression was tend to be higher in male and smoker 
patients comparing to female and non-smokers (Fig. 6c, 
e, j, l). Meanwhile, no significance relationship was found 

between TOP2A expression and patients race (Fig. 6d, k), 
age (Fig. 6b, i) and cancer stage (Fig. 6f, m). Interestingly, 
TCGA data revealed that TOP2A expression statistical 
significantly associates with lymph node metastasis (N 
stage), that TOP2A was higher expressed in N3 compar-
ing to N0 and N2 adenocarcinoma, and in N1, N3 com-
paring to N0, N2 squamous cell carcinoma. The lack of 
difference of TOP2A expression in different N stage of 
our IHC samples was considered to be of the small num-
ber of samples, especially after being sub-classed into dif-
ferent N stages.

Meanwhile, multivariate COX regression analysis 
revealed that T stage, N stage and TOP2A expression 
work as independent prognostic factors in lung adeno-
carcinoma. However, only M stage works as an inde-
pendent prognostic factor in squamous cell carcinoma 
(Table 3).

TOP2A centered signaling pathways
To preliminary understand the biological processes that 
TOP2A mainly participates in and the signaling pathways 
involving, we conducted Go and KEGG pathway analysis. 
Interestingly, the results showed that the top 5 biological 
processes TOP2A participates in were mitotic cell cycle, 
cell division, mitotic cell cycle process, nuclear division 
and chromosome segregation respectively (Table 4), and 
the top signaling pathways TOP2A involved were cell 
cycle, oocyte meiosis and progesterone-mediated oocyte 
maturation related (Table 5).

All 5 top processes and key signaling pathways pointed 
to the orientation of cellular mitotic regulation, indicat-
ing the vital effect TOP2A has on cell division process 
in  vivo and the potential worthy of consideration value 
TOP2A working as another chemotherapy drug target, 
the hypothesis is based on a well known fact that most 
current chemotherapy drugs are developed according to 
their regulation on cell cycle procedures.

Table 1  The significant changes of  TOP2A expression in  transcription level between  different types of  lung cancer 
and normal tissues (ONCOMINE database)

Subtype of lung cancer P-value Fold change Rank (%) Sample References

Lung adenocarcinoma 1.65E−5 4.578 1 9 Yamagata

Squamous cell lung carcinoma 2.84E−6 4.284 1 12 Yamagata

Lung adenocarcinoma 1.13E−19 11.812 1 110 Hou

squamous cell lung carcinoma 2.34E−38 23.698 1 92 Hou

Large cell lung carcinoma 6.08E−9 24.158 1 84 Hou

Squamous cell lung carcinoma 7.26E−9 35.709 1 38 Bhattacharjee

Small cell lung carcinoma 8.63e−8 12.935 1 23 Bhattacharjee

Lung adenocarcinoma 2.17E−5 3.222 2 46 Garber

Squamous cell lung carcinoma 1.53E−6 4.478 1 19 Garber

Large cell lung carcinoma 3.82E−5 4.043 1 10 Garber
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Fig. 5  Expression level of TOP2A in NSCLC verses normal lung tissues revealed by IHC experiment. 107 Local hospitalized cancer samples were 
made into tissue arrays (as the left line graphics). Two spots were picked from each sample to avoid the tumor heterogeneity (in a vertical line, the 
first two adjacent round tissues (vertical 1, 2) is from the tumor region of one patient case, the second two adjacent tissues (vertical 3, 4) is from the 
matched normal FFPE block of same patient case). The number in the horizontal row meas different sample case (horizontal 1, 2, 3… is different 
patient cases 1, 2, 3…). The relative expression of TOP2A in qualified in a lung adenocarcinoma microarray, b squamous cell carcinoma array and c 
normal lung tissues revealed by IHC experiment
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Co‑expression of TOP2A protein
We conducted the co-expression analysis of TOP2A pro-
tein with 3 different bioinformatic tools. Firstly, we used 
Oncomine database which covers 8603 genes in 203 can-
cer samples, and we identified TPX2 as the top gene with 
best correlation with TOP2A, R value = 0.862 (Fig.  7a). 
Then, PPI network confirmed the positive correlation 
between TOP2A and TPX2, R value = 0.993 (Fig.  7b). 

Last but not least, we performed GEPIA analysis, which 
result revealed TPX2 working as a co-expression protein 
with TOP2A, P < 0.001 and R = 0.57 (Fig.  7c). All these 
findings suggest that TOP2A is closely related to TPX2 
signaling pathways in NSCLC.

Additionally, qRT-PCR was conducted on 30 paired 
lung adenocarcinoma and squamous cell carcinoma sam-
ples of local hospital (different from the 107 samples used 
to make tissue array) to validate the relation between 
TOP2A and TPX2. The result revealed that both TOP2A 
and TPX2 expressed much higher in cancers (both LUAD 
and LUSC) comparing to normal lung tissues (Fig.  7d, 
f ), and Pearson correlation analysis results showed that 
TOP2A expression was highly similar to TPX2, R = 0.59, 
0.79 in LUAD and LUSC respectively (Fig. 7e, g).

All the bioinformatic analysis and qRT-PCR experi-
mental results support the hypothesis that TOP2A 
potentially regulate NSCLC cancer development through 
co-work with TPX2.

Discussion
Lung cancer is a common malignant tumor with top 
mortality and morbidity in both male and female can-
cer patients [4]. And 80–85% of lung cancer is NSCLC, 
which includes adenocarcinoma, squamous cell carci-
noma and large cell carcinoma. Although current molec-
ular targeted therapy and immunotherapy have been 
bringing promising effect for NSCLC treatment, the 
targets are still limited comparing to highly progressive 
and evolutionary cancer cells, the outcome of patients is 
not promising [15, 16]. The study is to identify potential 
prognostic indicators and new drug targets of NSCLC 
using bioinformatic analysis.

Bioinformatic has been a data-driven branch of science, 
which is commonly used for high-through data analysis 
and involves a large number of powerful analysis tools, 
software packages and database [25]. Great utilizing of 
these tools and software shall be an effective methodol-
ogy for avoiding unnecessary repeated labour and mining 
useful insights buried in the high-throughput informa-
tion, for instance, chips and sequencing “big-data”.

GEO database together with TCGA database, are two 
most commonly used databases to worldwide research-
ers, both databases are open-access to public and own-
ing tremendous amount of information. In the study, we 
firstly chosen four cDNA expression profiles GSE18842, 
GSE19188, GSE33532 and GSE101929 based on the 
number of samples and the publication data from GEO 
database. The profiles contains a total of 249 NSCLC and 
119 normal samples, and GEO2R tool was then used to 
analyze the DEGs between cancer and normal tissues, 
discovering that 306 DEGs were shared in all four pro-
files, including 214 down-regulated and 92 up-regulated 

Table 2  The relationship between  TOP2A and  NSCLC 
clinical pathological parameters

Group TOP2A P value

− +

Histological subtype

 Adenocarcinoma 48 (78.7%) 13 (21.3%) P = 0.000

 Squamous carcinoma 20 (43.5%) 26 (56.5%)

Gender

 Male 35 (51.5%) 33 (48.5%) P = 0.001

 Female 33 (84.6%) 6 (15.4%)

Age

 < 55 15 (75.0%) 5 (25.0%) P = 0.238

 ≥ 55 53 (60.9%) 34 (39.1%)

Smoke

 No 34 (79.1%) 9 (20.9%) P = 0.006

 Yes 34 (53.1%) 30 (46.9%)

Location

 Upper lobe 31 (58.5%) 22 (41.5%) P = 0.521

 Middle lobe 7 (63.6%) 4 (36.4%)

 Lower lobe 30 (69.8%) 13 (30.2%)

Tumor size

 < 2 cm 13 (76.5%) 4 (23.5%) P = 0.228

 ≥ 2 cm 55 (61.6%) 35 (38.9%)

Differentiation poorly

 Differentiated 13 (54.2%) 11 (45.8%) P = 0.182

 Moderately differentiated 47 (63.5%) 27 (36.5%)

 Well differentiated 8 (88.9%) 1 (11.1%)

p-Stage

 I 22 (64.7%) 12 (35.3%) P = 0.907

 II 19 (67.9%) 9 (32.1%)

 III 11 (57.9%) 8 (42.1%)

 IV 16 (61.5%) 10 (38.5%)

Invasion of capsule

 No 42 (68.9%) 19 (31.1%) P = 0.190

 Yes 26 (56.5%) 20 (43.5%)

Invasion of bronchial stump

 No 63 (65.6%) 33 (34.4%) P = 0.188

 Yes 5 (45.5%) 6 (54.5%)

LN metastasis

 − 46 (62.2%) 28 (37.8%) P = 0.656

 + 22 (66.7%) 11 (33.3%)
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genes. GO and KEGG analysis revealed that most of the 
92 up-regulated DEGs were focused on cell cycle and cell 
division related signaling.

To better understand the internal relationship of 306 
genes, PPI network was constructed. And top 15 genes 
with strongest connection with other genes were identi-
fied, including TOP2A, BIRC5, CDC20, UBE2C, CCNB1, 
CDK1, AURKA, TTK, CCNA2, BUB1, KIF11, FOXM1, 
PBK, KIAA0101 and NDC80. Out of the 15 genes, 
TOP2A possess best connection with surroundings.

TOP2A, which is short for Topoisomerase II 
Alpha, locates at 17q21.2 and encodes an enzyme 
that controls and alters the topological states of DNA 

during transcription. This enzyme has been known to 
be involved in processes such as chromosome conden-
sation, chromatid separation, and the relief of torsional 
stress that occurs during DNA transcription and replica-
tion. A most well known disease associated with TOP2A 
is female breast cancer, it is usually deleted or amplified 
simultaneously with ERBB2, thus the two genes are com-
monly co-tested in breast cancer patients for further 
proper use of anticancer agent herceptin [44–46]. And, 
TOP2A was reported to be targeted by tumor suppressor 
like miR-144-3p in glioblastoma, thus resulting in can-
cer cell apoptosis [47]. As in lung cancer, Pabla et al. [48] 
reported that TOP2A could be a potential new indicator 

Table 3  Cox proportional hazards regression on NSCLC overall survival

Variables Lung adenocarcinoma Lung squamous cell carcinoma

Hazard ratio 95% CI P value Hazard ratio 95% CI P value

T

 T1 vs T2 vs T3 vs T4 1.356 1.104–1.665 0.004 1.275 0.998–1.630 0.052

N

 N0 vs N1–3 1.839 1.198–2.822 0.005 1.097 0.726–1.657 0.66

M

 M0 vs M1 1.031 0.865–1.229 0.735 1.235 1.017–1.500 0.033

TOP2A expression

 < median vs > median 0.663 0.500–0.879 0.004 1.246 0.914–1.699 0.064

Table 4  Biological process events centered on TOP2A

Description Counts Background 
gene counts

FDR Matching proteins in the network

Mitotic cell cycle 10 628 9.19E−12 BUB1, CCNB2, CDC20, CDK1, DLGAP5, NCAPG, PBK, TOP2A, TPX2, UBE2C

Cell division 9 483 6.67E−11 BUB1, CCNB2, CDC20, CDK1, NCAPG, TOP1, TOP2A, TPX2, UBE2C

Mitotic cell cycle process 9 564 1.76E−10 BUB1, CCNB2, CDC20, CDK1, DLGAP5, NCAPG, TOP2A, TPX2, UBE2C

Nuclear division 7 268 4.29E−09 BUB1, CDC20, DLGAP5, NCAPG, TOP2A, TPX2, UBE2C

Chromosome segregation 6 253 1.89E−07 BUB1, CDC20, DLGAP5, NCAPG, TOP1, TOP2A

Table 5  KEGG signaling pathways centered on TOP2A

Term description Counts Background gene 
counts

FDR Matching proteins in the network

Cell cycle 4 123 5.57E−06 BUB1, CCNB2, CDC20, CDK1

Oocyte meiosis 4 116 5.57E−06 BUB1, CCNB2, CDC20, CDK1

Progesterone-mediated oocyte maturation 3 94 8.19E−05 BUB1, CCNB2, CDK1

p53 signaling pathway 2 68 0.0022 CCNB2, CDK1

Ubiquitin mediated proteolysis 2 134 0.0066 CDC20, UBE2C

Cellular senescence 2 156 0.0074 CCNB2, CDK1

Viral carcinogenesis 2 183 0.0086 CDC20, CDK1

HTLV-I infection 2 250 0.0137 CCNB2, CDC20
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in PD-L1 negative NSCLC, however, deeper analysis is 
still needed for mechanism explanation. In the study, we 
analyzed TOP2A function in NSCLC development using 
bioinformatic tools.

Firstly, Kaplan–Meier plotter overall survival analysis 
was used to reveal the correlation between TOP2A and 
NSCLC OS, and the results showed that TOP2A statis-
tical significantly correlates with patients OS, higher 
TOP2A expression was associated with worse OS. And 
Multivariate Cox regression analysis supported TOP2A 
expression works as an independent prognostic indicator 
in lung adenocarcinoma, suggesting its probable tumor 
promoter and potential survival indicator function in fur-
ther clinical use.

Then, to validate the aberrant gain of expression of 
TOP2A in NSCLC, GEPIA was firstly performed, and 
the results showed that TOP2A was up-regulated in 
cancers comparing to normal tissues. Our IHC experi-
ment which was conducted on 107 cases of local hospi-
talized NSCLC patients surgery samples also confirmed 
the results, significant TOP2A gain of expression ratio 
(36.4%) in NSCLC was observed by IHC staining in verse 
the low ratio (less than 1%) in normal tissues. Meanwhile, 
clinical significance analysis showed that TOP2A expres-
sion was associated with cancer subtype, patients gender 
and smoking. TCGA data also supported the associa-
tion between TOP2A expression and clinical parameters 
including patients gender and smoking status.

Additionally, TOP2A involving signaling pathways 
revealed that its main function in NSCLC is also cell 
cycle regulation related, consistent with the previous 
GO/KEGG analysis of up-regulated DEGs in NSCLC. 
And three different analyzing software including 
Oncomine database, PPI network and GEPIA software all 
predicted the positive correlation between TOP2A and 
TPX2, and qRT-PCR experiment conducted on 30 paired 
local hospital adenocarcinoma and squamous cell car-
cinoma samples validated the association between two 
genes, indicating TPX2 is a probable co-working partner 
of TOP2A.

TPX2, locates at 20q11.21, is one of the main spindle 
assembly factors that play a key role in inducing micro-
tubule assembly and growth during M phase of mitosis 
[49–51]. Previous studies reported that TPX2 mRNA 
expression during cell cycle progression is high in G2/M 
phase, decreases dramatically upon G1 phase entry, 
increases upon entry into S phase, and peaks again at 
the next G2/M phase [52–56]. The drop in TPX2 is con-
sistent with the drastic reorganization in structure and 
dynamics of the mitotic spindle [57]. Due to its important 
role in microtubule assembly and mitosis, TPX2 has been 
found to be over expressed in various human cancers, 
for instance clear renal cell carcinoma [58], esophageal 

carcinoma [59], hepatocellular carcinoma (HCC) [52, 
60], gastric cancer [61], bladder carcinoma [62] and so 
on. TPX2 expression has been shown to be positively 
correlated with poor prognosis, metastasis, and recur-
rence [49, 63].

However, above results aren’t yet enough to put TOP2A 
or TPX2 as a drug target in NSCLC, to distinguish gene 
aberrations that can cause the disease and may serve as 
drug targets with those only closely linked to the disease 
and consequently are associated with the disease devel-
opment, comprehensive and longitudinal experiments, as 
well as clinical trials are needed to be performed.

Conclusion
In summary, using bioinformatic analysis, we analyzed 
306 DEGs between NSCLC and normal lung tissues, and 
TOP2A was identified as the core gene in the network. 
IHC experiment validated the aberrant gain of expression 
of TOP2A in cancer comparing to normal tissues. OS 
analysis revealed the association between TOP2A expres-
sion and worse prognosis. Additionally, TOP2A could 
be effected on NSCLC cell cycle progression through 
co-working with TPX2. Large-scale and comprehensive 
studies are needed to confirm the findings before pro-
moting the clinical utility of TOP2A as a prognosis indi-
cator and drug target.
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