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Abstract

Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In
a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in
haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of
inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is
therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a
Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of
latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We
estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is
below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the
proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone.
Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected
population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at
a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In
particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-
fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of
influenza ARs.
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Introduction

Each year, seasonal influenza is responsible for about three to

five millions severe illnesses and about 250,000 to 500,000 deaths

worldwide [1]. These epidemics can generate important economic

losses due to high levels of worker absenteeism as well as a

saturation of emergency services at the peak of the epidemic [1]. In

addition, avian or swine influenza viruses occasionally adapt to

humans and generate influenza pandemics like in 1918, 1957,

1968 and 2009, sometimes with catastrophic consequences like in

1918, when 20 to 50 million people died worldwide.

Appropriate assessment of the epidemiological characteristics of

the influenza virus is important to guide control policies. In

particular, this requires being able to track the number of

influenza cases with severe clinical outcomes (i.e. the tip of the

severity pyramid) as well as the total number of people infected by

an influenza virus (i.e. the base of the severity pyramid). For

example, the case fatality ratio (proportion of influenza cases who

die) is a key measure of severity that informs decision making

during influenza pandemics, and takes the number of influenza

related death as numerator and the number of influenza cases as

denominator. Estimates of infection attack rates are also essential

for characterizing the spread of the virus in human populations in

order to predict epidemic trajectory, the potential impact of

control measures such as social distancing measures, and the

likelihood and magnitude of subsequent epidemics arising from

continued circulation of the same virus [2,3].

Although it is usually possible to estimate the number of severe

influenza cases from sentinel surveillance (e.g. based on data

collected at medical practices, clinics or hospitals), it is much harder

to estimate the total number of people infected by an influenza virus.

First, a substantial proportion of influenza infections are asymp-

tomatic [4,5]. Second, among those with symptoms, only a

proportion seek healthcare; and this proportion may vary from

season to season or even during the course of an epidemic. Last,

Influenza-Like-Illness (ILI) symptoms are not specific to influenza.

So, a substantial proportion of patients consulting for ILI may not

have been infected by an influenza virus.

Serological studies have become the gold standard approach for

estimating influenza infection attack rates due to the difficulty of
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estimating infection rates by other means. Although cross-sectional

serological surveys can provide valuable and timely information,

paired blood samples collected before and after an epidemic in a

cohort of individuals is the optimal approach for precisely assessing

infection rates. The haemagglutination-inhibition (HI) assay

remains the most commonly used approach for detecting

serological evidence of recent influenza infection [6–12]. The

assay detects the presence of antibodies that prevent the

haemagglutinin protein of the influenza virus from agglutinating

red blood cells [13,14]. For each serum sample, antibody titers are

expressed as the reciprocal of the highest serum dilution that can

still prevent a fixed concentration of virus from agglutinating red

blood cells. A rise in antibody titers between the first and second

blood is taken as a marker of infection. However, because the

procedure is susceptible to measurement errors, a 2 fold rise (that

is a 1-dilution increase) is usually considered as insufficient

evidence for infection. Seroconversion is therefore typically

defined as a 4-fold rise (i.e. a 2-dilutions increase) or more in

antibody titers. This ad-hoc rule became established when these

methods were first developed and is now widely adopted [15,16].

In the meantime, however, statistical methods for addressing

measurement errors have made substantial progress. In particular,

there is now an extensive body of literature on methods to ensure

that the presence of measurement errors does not bias estimates of

key parameters of interest. Given these developments, it is timely

to revisit the way serological data are interpreted.

Central to the traditional approach to analyzing serological data

is the belief that data about 2-fold rises provide no information

since such increases can be caused by frequent measurement

errors. This concern about measurement errors is certainly

relevant when trying to make specific diagnoses for individual

cases. For example, one may be averse to the risk of false positives;

but less so to the risk of false negatives. However, estimating

infection attack rates at the population level is a very different aim

from setting up a specific diagnostic tool, and may benefit from a

different use of the data.

First, it is important to note that estimating infection attack rates

is not just a matter of specificity (i.e. ensuring that subjects

satisfying the diagnostic definition of infection were indeed

infected by an influenza virus) but also a matter of sensitivity (i.e.

ensuring that all subjects infected are diagnosed as such). An

approach that favours specificity over sensitivity may lead to

underestimating infection attack rates.

A second important observation is that, even in a context of

frequent 2-fold errors, data about 2-fold rises may still be

informative. Consider for example a situation where all individuals

exhibit a 2-fold rise during the season: such a pattern cannot be

explained by measurement error alone since measurement errors

are made both at baseline and post-epidemic and should be about

equally distributed provided the sample size is sufficiently large.

Here, we explore how modern statistics for the analysis of data

with measurement errors can change and improve our interpre-

tation of serology. We present a new method to quantify errors in

the measurement of antibody titers and to estimate the true

distribution of paired serological measurements corrected for

measurement errors. The methodology is applied to data collected

in a cohort study conducted in Vietnam between 2007 and 2009.

Results

Measurement errors
We estimate that the 1-sided probability of a 2-fold error was

9.3% (95% CI: 3.3%, 17.6%) when the true antibody titer was

below detection levels, rising to 20.2% (95% CI: 15.9%, 24.0%)

otherwise (posterior probability that latter larger than former:

98.7%). There was a satisfying fit of the model to replicate

measurement data (Figure 1). The model where measurement

errors were independent of true antibody titers failed to fit the data

(Figure S2 and Supplementary Material).

Distribution of true paired serology
Figure 2 summarizes the distribution of paired serology,

corrected for measurement errors for the different seasons (2008,

Spring 2009, Autumn 2009) and subtypes (H1N1, H3N2 and B).

A range of observations can be made.

The first observation concerns 2-fold rises in antibody titers

between baseline and post serology (yellow bars). Such increases

are usually ignored in analyses because 2-fold errors are common.

In some instances, like for example subtypes H3N2 and B in 2008

and H1N1pdm09 in Autumn 2009, 2-fold rises appeared

negligible and at levels that could be generated by measurement

errors alone, since 0 was within the 95% CI of the estimated

proportion of subjects having a 2-fold rise (Figures 2B, 2C, 2G). In

other instances, however, the proportion of individuals experienc-

ing a 2-fold rise ranged from 20% to 33% with lower bounds of

the 95% CIs above 0 (range: 7%–23%), indicating that these rises

cannot be solely explained by measurement errors. Assuming that

most of these 2-fold rises were due to infection, our estimate of

infection attack rates AR§2f :r: for H1N1 in 2008 and H1N1,

H3N2 and B in Spring 2009 would be dramatically higher than

traditional estimate AR§4f :r: based on 4-fold rises or more

(Figure 3A). So, even if only a proportion of the 2-fold rises were

due to influenza infections, the traditional estimate AR§4f :r: might

still represent a substantial underestimate of the true infection

attack rates

The fact that AR§2f :r: and AR§4f :r: were very similar for

H3N2 and B in 2008 and virtually identical for H1N1pdm09 in

Autumn 2009 (Figure 3A) highlights important heterogeneities in

the way antibody titers increase by season/subtype (Figure 3B).

For example, for H1N1pdm09 in Autumn 2009, almost all those

experiencing a rise in antibody titers exhibited a 4-fold rise or

more; but for H1N1 in 2008, most of those experiencing a rise

only had a 2-fold increase. The absence of a simple linear

relationship between AR§4f :r: and the proportion of 2-fold rises

Author Summary

Each year, seasonal influenza is responsible for about three
to five million severe illnesses and about 250,000 to
500,000 deaths worldwide. In order to assess the burden of
disease and guide control policies, it is important to
quantify the proportion of people infected by an influenza
virus each year. Since infection usually leaves a ‘‘signature’’
in the blood of infected individuals (namely a rise in
antibodies), a standard protocol consists in collecting
blood samples in a cohort of subjects and determining the
proportion of those who experienced such rise. However,
because of inherent measurement errors, only large rises
are accounted for in the standard 4-fold rise case
definition. Here, we revisit this 70 year old and widely
accepted and applied criterion. We present innovative
statistical techniques to better capture the impact of
measurement errors and improve our interpretation of the
data. Our analysis suggests that the number of people
infected by an influenza virus each year might be
substantially larger than previously thought, with impor-
tant implications for our understanding of the transmission
and evolution of influenza – and the nature of infection.

The Interpretation of Influenza Paired Serology
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suggests that the standard approach of inflating AR§4f :r: by a

fixed proportion (generally equal to the proportion of PCR

positive cases who do not seroconvert; around 10–20%) to get

corrected estimates of infection attack rates may be inappropriate.

Rather, corrections might have to be applied on a season-to-

season and subtype-to-subtype basis.

The last notable observation is that decay in antibody titers is

observed. For example, 30% (95% CI: 22, 36) of individuals

exhibited a decay for subtype H3N2 in 2008.

PCR positive cases
Figure 4 shows the observed rise in antibody titers for PCR

positive cases. Twenty seven percent of these cases experienced no

rise or only a 2-fold rise in titer during the season. This again

suggests that the case definition of a 4-fold rise or more may

underestimate attack rates by at least 27%. PCR positive cases with

low baseline titers experienced an average increase significantly

larger than those with higher baseline titers (p = 0.026) (Figure 4)

[17,18].

Cross-reactivity between subtypes
Simulations were run to test the hypothesis of an absence of

cross-reactivity between subtypes H1N1, H3N2 and B in 2008 and

Spring 2009 (see Supplementary Material). We found that there

was good adequacy between the data and patterns that would be

obtained in the absence of cross-reactivity. The hypothesis of an

absence of cross-reactivity could therefore not be rejected (Figure

S3).

Model fitting
Figure 5 compares the distribution of observed paired serology

as observed in the data (black point) and as predicted by the

model. Model fit was satisfactory.

Figure 1. Fit of the model to data on replicate measurements. Observed (red point) and expected (mean: blue point/95% CI: blue bar)
number of pairs (observed AT level, replicate AT level). Pairs are sorted by panel according to the number of dilution difference between the
observed and the replicate measurement.
doi:10.1371/journal.ppat.1003061.g001

The Interpretation of Influenza Paired Serology
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Figure 2. Distribution of paired serology, corrected for measurement errors as a function of season (2008, Spring 2009, Autumn
2009) and subtype (H1N1, H3N2 and B) (in Autumn 2009, subtyping was only conducted for H1N1pdm09). In each panel, individuals
are sorted by baseline AT levels on the y-axis. For a given baseline, the grey bar indicates the expected proportion of individuals with post AT level
equal to baseline AT level; the yellow bar indicates the proportion with a 2 fold rise (2f.r.); the red bar indicates the proportion with a 4 fold rise or
more (4f.r.+); the green bar indicates the proportion with a decay. The black thin lines give the 95% CI. The legend gives the mean [95% CI]. A: H1N1,
2008. B: H3N2, 2008. C: B, 2008. D: H1N1, Spring 2009. E: H3N2, Spring 2009. F: B, Spring 2009. G: H1N1pdm09, Autumn 2009.
doi:10.1371/journal.ppat.1003061.g002

The Interpretation of Influenza Paired Serology
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Simulation study
In a simulation study, we found that estimates of parameters

characterizing measurement errors were unbiased (Table 1), as

well as those characterizing the selection process (Table S2). We

also found that estimates of the proportion of subjects with an

antibody titer increase (empirical absolute bias: 0.1%), of the

proportion of subjects with an antibody titer decay (empirical

absolute bias: 0.0%) and of the probabilities characterizing

Figure 3. Increases in antibody titers. A: Posterior distribution of the percentage of subjects with a 4 fold rise or more in AT (pink) and with a 2
fold rise or more in AT (blue) for the different subtypes and the different seasons (2008 (08), Spring 2009 (S09), Autumn 2009 (A09)). B: Posterior
distribution of the percentage of subjects with a 2 fold rise in AT among those with a rise in AT. Boxplots give percentiles 2.5%, 25%, 50%, 75%, 97.5%
of the distribution.
doi:10.1371/journal.ppat.1003061.g003

The Interpretation of Influenza Paired Serology
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jointly baseline antibody titers and the change in antibody titers

during a season (empirical absolute bias: 0.0%) were unbiased

(Figure 6).

Age-specific patterns
Our statistical model describes the distribution of paired

serology across all subjects. However, since we infer true paired

serology for each individual, it is possible to reconstruct a

posteriori the distribution of true paired serology for the

different age groups. The age-specific distributions for true

paired serology are presented in Figure S4. Interesting

differences can be noticed between age groups. For example

and consistent with the literature, for H1N1pdm09 in Autumn

2009, the proportion of 4-fold rises falls from 39% (95% CI:

37%, 39%) in ,18 y.o. to 15% (95% CI: 15%,16%) in 18–

48 y.o. and 8% (95% CI: 7,9) in .48 y.o. For H3N2 in 2009,

the decay in antibody titers was more important among

,18 y.o. (53%; 95% CI: 38%, 65%) than among older age

groups (25%, 95% CI 19%, 30% for 18–48 y.o. and 18%, 95%

CI 12, 22 for .48 y.o.). For H3N2 in Spring 2009, although the

proportions of 4-fold rises were similar across age groups, our

analysis suggests that the proportion of 2-fold rises may have

been higher among ,18 y.o (43%, 95% CI: 23, 58) than in

other age groups (30%, 95% CI 17%, 41% for 18–48 y.o. and

27%, 95% CI 13, 38 for .48 y.o.). We find that, for each age

group, there is a satisfying adequacy between the observed

distribution of paired serology and that predicted by the model

(Figure S5).

Discussion

In this paper, we have revisited the traditional interpretation of

paired serological measurements of influenza antibody titers. Until

now, data on 2-fold rises have been largely ignored because of the

belief that measurement errors made them unreliable. Although

this may be a valid concern if the aim is to get a specific diagnosis

for individual cases, we argue that this is less so when the objective

is to interpret antibody titer variations at the population level. We

have shown that it is possible to quantify measurement errors, and

to reconstruct the distribution of paired serology corrected for

measurement errors. Our method gave unbiased estimates in a

simulation study.

After correction for measurement errors for the Vietnamese

data examined here, we found that for some seasons and subtypes

the proportions of individuals with 2-fold rises in antibody titers

was too large to be explained by measurement errors alone.

Estimates of infection attack rates varied greatly depending on

whether or not 2-fold rises were included. It is therefore important

to determine the biological phenomenon that could cause such

increases, in particular whether they are caused by exposure to

influenza viruses.

A first hypothesis is that 2-fold titer increases are caused by

infection by an influenza virus. In support of this hypothesis, it is

clear that a proportion of virologically- or RT-PCR- confirmed

influenza cases do not achieve a 4-fold rise in HI titer. This

proportion was 27% in our dataset, similar to a large cohort of

confirmed pandemic cases in the US [19]. However, past work has

shown this proportion to be as high as 77% in people who have

Figure 4. Distribution of observed increase in PCR positive cases as a function of baseline. Individuals with a low antibody titer baseline
(0–1) are in blue; those with a higher baseline (2–4) are in red.
doi:10.1371/journal.ppat.1003061.g004

The Interpretation of Influenza Paired Serology
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Figure 5. Model adequacy to the data. Distribution of ‘‘observed’’ paired serology as predicted by the model (color bars) and as observed in the
data (black point) as a function of season (2008, Spring 2009, Autumn 2009) and subtype (H1N1, H3N2 and B). In each panel, individuals are sorted by
baseline AT levels on the y-axis. For a given baseline, the grey bar indicates the expected proportion of individuals with post AT level equal to
baseline AT level; the yellow bar indicates the proportion with a 2 fold rise (2f.r.); the red bar indicates the proportion with a 4 fold rise or more (4f.r.+);
the green bar indicates the proportion with a decay. The black thin lines give the 95% CI. The legend gives the mean [95% CI]. A: H1N1, 2008. B:
H3N2, 2008. C: B, 2008. D: H1N1, Spring 2009. E: H3N2, Spring 2009. F: B, Spring 2009. G: H1N1pdm09, Autumn 2009.
doi:10.1371/journal.ppat.1003061.g005

The Interpretation of Influenza Paired Serology
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high pre-existing antibody titers [17], or as low as 10% in patients

seeking medical care for pandemic H1N1 infection in 2009 [20]. It

is clear that antibody titer changes following infection vary

between individuals and are affected by factors including pre-

existing titer and timing of serum collection. In particular, since

there is an upper limit to antibody concentrations, individuals with

high pre-existing titers are limited in their ability to generate 4-fold

rises and may produce only a 2-fold titer increase in response to

infection [15]. However, the analysis performed here shows that 2

fold titer changes are common even among individuals with low

pre-existing titers. Antibody concentrations reach a peak 4–7

weeks after infection and then decay over a period of around six

months to a plateau that is maintained for several years [21].

Although the profile of HA antibody decay is not well

characterised, the probability of detecting 2- or 4- fold rises will

vary with the interval following infection. However, in our data the

longest interval between the peak transmission period and blood

sampling was in season 3, when the proportion of 2-fold titer rises

was lowest.

A second hypothesis is that 2-fold rises correspond to infection

which is attenuated by mucosal or serological antibodies to

homologous or heterologous strains, or by innate or cell mediated

immunity. Antibody responses to inactivated influenza vaccines

clearly demonstrate the potential for antigenic stimulation without

active infection and the phenomenon of boosting of immunity in

exposed yet uninfected individuals is well documented for other

viruses (e.g. varicella zoster [22]).

A third hypothesis is that 2-fold rises are an artefact unrelated to

influenza infection or exposure. Seasonal variation in titres

independent of infection might result from the presence of non-

specific inhibitors of agglutinination. For example, this could

happen if the circulation of other viruses boosted the immune

system, leading to small increases in all antibody titers. In such a

scenario, one might expect the effect to be similar on the different

subtypes. However, in 2007, a large proportion of individuals

exhibited 2-fold increases for H1N1 but not for H3N2 or B,

suggesting that this hypothesis is not strongly supported by the

data.

Figure 6. Performance of the method to reconstruct the true
distribution of paired serology. Eighty datasets are simulated with
known parameters (see Methods). A: Estimated percentage of subjects
with an increase in antibody titers as a function of the true percentage
in the simulated dataset. B: Estimated percentage of subjects with a
decay in antibody titers as a function of the true percentage in the
simulated dataset. C: Estimated probabilities characterizing jointly
baseline AT level and the change in AT level during the epidemic _
similar to those presented in Figure 1 _ as a function of the true
probability in the simulated dataset.
doi:10.1371/journal.ppat.1003061.g006

Table 1. Performance of the method to estimate parameters
characterizing measurement errors.

p0 p1 e

Simulation value 9.0% 20.0% 0.50%

Mean estimate (SD) 9.5% (4.1%) 19.8% (2.3%) 0.065% (0.21%)

p0: probability of a 1-sided 1-dilution error if true AT level is = 0.
p1: probability of a 1-sided 1-dilution error if true AT level is .0.
e: probability that measurement goes wrong and that observed AT level is
Uniformly drawn in (0,…,K).
Eighty datasets are simulated with known parameters (see Methods). The table
gives the simulation value of parameters and the mean (standard deviation) of
estimates.
doi:10.1371/journal.ppat.1003061.t001

The Interpretation of Influenza Paired Serology
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It is also important to understand why 2-fold titers changes were

prominent during some seasonal influenza epidemics but not

during the pandemic. One possibility may be that there was

greater antigenic mismatch for some seasonal strains because of

unrecognised co-circulation of different influenza strains from

those used as antigens in the HI assay. In this situation, anti-HA

antibodies generated by infection have lower avidity for the HA of

the assay virus. Conversely, original antigenic sin, where an

infection results in an anamnestic response and the generation of

antibodies directed towards an earlier infecting strain, might also

explain 2-fold titer rises in response to infection [17]. In all these

scenarios however, 2-fold increases would still represent infection

by an influenza virus.

It is unlikely that 2-fold increases represent cross-reactivity of HI

antibodies to strains of one subtype with strains of other subtypes.

This is confirmed by our analysis that did not reject the hypothesis

of an absence of cross-reactivity between subtypes.

It is therefore important for future work to determine if 2-fold

titer increases represent infection, antigenic stimulation (attenuat-

ed infection), or artefact. If influenza infection rates are higher

than currently recognised this might change our understanding of

influenza transmission and of intra-host and inter-host immune

mediated evolutionary pressures, and may have implications for

the feasibility of control measures.

In the dataset examined here, 2-fold increases exceeded 4-fold

increases for H1N1 in 2008 and H1N1, H3N2 and B in Spring

2009. There was no clear pattern with respect to subtype or strain.

The seasonal H1N1 strain circulating in 2008 (A/Brisbane/59/

2007) was antigenically distinct from those circulating previously

(A/Solomon Islands/03/2006 and A/New Caledonia/20/1999-

like), but this strain continued to circulate in Spring 2009. The

seasonal H3N2 strain circulating in Spring 2009 (A/Perth/16/

2009) was antigenically distinct from the 2007/8 strain (A/

Brisbane/10/2007). H3N2 A/Perth/16/2009-like viruses have

been difficult to propagate and we had difficulty propagating

sufficient virus for the HI assays using A/Perth/16/2009-like

viruses isolated from the cohort during the Spring 2009 season.

We therefore used a virus isolated from a patient in Hanoi by the

National Influenza Center, and propagated in eggs followed by

MDCK cells (TX265M2E1) for undertaking HI testing of sera

collected in Spring 2009. It is possible that the propagation in eggs

this virus underwent might have resulted in some antigenic

change, resulting in lower titers in the HI assay. National influenza

surveillance data indicates that both influenza B lineages -

Yamagata and Victoria- co-circulated during the study period,

with the Yamagata lineage dominating in 2007 and 2008 and the

Victoria lineage in 2009. For all HI assays, we used the same

influenza B virus, which was isolated in 2008 and was

characterized antigenically as Yamagata lineage-like, as with all

influenza B viruses isolated from the cohort in 2008. While

Yamagata viruses dominated the influenza B samples we collected

in 2007 and 2008, the Victoria lineage was predominant in 2009.

This may be a factor explaining the lower influenza B titer

increases seen in that year. If heterogeneities in the proportion of

2-fold titer rises are largely attributable to a poor match between

assay antigen and infecting virus, future seroprevalence and

seroincidence surveys will need to use a greater diversity of

antigens than typically used currently.

There are often strong age-related patterns in influenza

serology. Ideally, we would therefore like to fit our statistical

model independently for each age group. However, simulation

studies indicate that the relatively small number of observations

per age group would lead to relatively inaccurate estimates. We

have therefore opted for an intermediate estimation strategy. Our

statistical model fits a single distribution of true paired serology to

all subjects; but since we infer true paired serology for each

individual, we can reconstruct a posteriori the distribution of true

paired serology for the different age groups. Even with such a

conservative approach (i.e. it favours scenarios where the different

age groups exhibit similar distributions), we were able to detect

clear age-related patterns. In particular, it indicated that age may

be another factor that influences the occurrence of a 2-fold rise.

Larger sample sizes will be needed to investigate this possibility

further.

The presence of relatively large proportions of individuals

experiencing a 2-fold increase in antibody titers is not a peculiarity

of the Vietnamese data examined here. Similar shifts were

observed on data gathered by Cowling et al, with micro-

neutralization assays for 2009 H1N1pdm09 influenza and on HI

assays for seasonal influenza [23] (Figure S6).

It is well known that there may be substantial within- and

between- laboratory variability in HI assays as well as in other

serological assays such as virus neutralisation (VN) [24]. The level

of intra-laboratory variations may depend on both the laboratory

and the type of assay used [24]. Here, we have introduced an

approach that allows controlling for within-laboratory variations.

The only additional data needed compared with standard

serological surveys is that replicate measurements are performed

for a subset of subjects. These replicate measurements allow

within-laboratory quantification of variation in assay performance.

With this information, it is then possible to reconstruct the

distribution of paired serology that is corrected for the estimated

level of within-laboratory variations. Although our approach gives

a better control on within-laboratory variation, it does not address

the problem of between-laboratory variation. The use of standards

in bioassays is critical for minimising the impact of the latter

problem [24].

To conclude, while a 4-fold titer increase may be a highly

specific diagnostic of infection by an influenza virus for individual

cases, this criterion is less justifiable when the objective is to

estimate community ARs. Our work shows that requiring a 4-fold

titer increase may lead to ARs being substantially underestimated.

More research is needed to determine what proportion of 2-fold

rises are causally linked to exposure to influenza, and what

proportion may be caused by other mechanisms. It will be

important to determine whether the high proportion of 2-fold titer

increases seen in the settings of Vietnam and Hong Kong [23] are

also observed in other (e.g. temperate climate) settings.

Materials and Methods

Data
Samples were collected from a household-based cohort of 940

participants in 270 households in a single community in semi-rural

northern Vietnam as previously described [5]. None of the

participants had ever received influenza immunisation. Partici-

pants were under weekly active surveillance by village health

workers for influenza-like-illness (ILI) and in the event of an ILI

were asked to provide a nose and throat swab for detection of

influenza RNA by reverse-transcription polymerase chain reac-

tion. Participants were also asked to provide serial blood samples

at times when national influenza surveillance data indicated that

influenza circulation was minimal. The samples described here

were collected over a period of three consecutive influenza

seasons, from December 2007 through April 2010. The bleeding

times were 1st–7th December 2007 (bleed 1), 9th–15th December

2008 (bleed 2), 2nd–4th June 2009 (bleed 3), and on the 3rd April

2010 (bleed 4). This provided three sets of paired samples either
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side of an influenza transmission season: 548 paired samples for

season 1 (2008), 501 paired samples for season 2 (Spring 2009),

and 540 paired samples for season 3 (Autumn 2009). In season 1,

the influenza A virus strains detected in the cohort through ILI

surveillance were A/H1N1/Brisbane/59/2007-like and A/

H3N2/Brisbane/10/2007-like; in season 2, they were A/H1N1/

Brisbane/59/2007-like and A/H3N2/Perth/16/2009-like; and in

season 3, it was A/H1N1/California/7/2009-like. There was co-

circulation of influenza B Yamagata lineage and Victoria lineage

in both season 1 and season 2, with a predominance of Yamagata

lineage in season 1 and Victoria lineage in season 2.

Laboratory methods
Nasal and oropharangeal swabs were assessed by real-time

reverse-transcriptase polymerase chain reaction (RT-PCR), ac-

cording to WHO/USCDC protocols [25]. Influenza hemagglu-

tination inhibition (HI) assays were performed according to

standard protocols [WHO 2011 manual]. The seasonal influenza

A viruses used were isolated from participants’ swabs or from

swabs taken from patients presenting in Ha Noi in the same season

and propagated in embryonated hen’s eggs or in MDCK cells. A

reference antigen supplied by WHO (A/H1N1/California/7/

2009-like) was used to assess season 3/pandemic sera. A single

influenza B virus isolated from a participant during 2008 was used

to assess serum for both the first and second seasons. The virus had

a titer of 320 with B/Wisconsin/1/2010 (Yamagata) reference

antisera and of ,10 with B/Brisbane/60/2008 (Victoria) antisera.

Each virus was first assessed for haemagglutination of erythrocytes

from chickens, guinea pigs and turkeys then titrated with optimal

erythrocytes. Serum was treated with receptor destroying enzyme

(Denka Seiken, Japan) then heat inactivated and adsorbed against

packed erythrocytes. Eight 2-fold dilutions of serum were made

starting from 1:10 and incubated with 4 HA units/25 ml of virus.

Appropriate erythrocytes were added and plates read when

control cells had settled. Virus, serum and positive controls were

included in each assay. Pre- and post-season sera were tested in

pairs. Each serum was tested in a single dilution series. The HI

titre was read as the reciprocal of the highest serum dilution

causing complete inhibition of RBC agglutination, partial agglu-

tination was not scored as inhibition of agglutination. If there was

no inhibition of HI at the highest serum concentration (1:10

dilution) the titer was designated as 5. Only one sample had a titer

.1280 and this was not adjusted. Replicate HI assay measure-

ments were performed on a subset of samples from patients that

seroconverted (i.e. 4-fold rise in titer) as well as some others that

had titers $20 in both pre and post-season sera.

Statistical analysis
A less technical description of statistical methods is given for

non-specialists in Box 1 and Figure 7.

Notation. Antibody titers (AT) are discrete measurements

that can take a finite number of values. In our dataset, they can

take 9 values: a0 = 10, a1 = 20, a2 = 40,…, a8 = 2560, with the

general form being at = 10|2t for t = 0,…,K (K = 8). For simplicity,

in the rest of the paper, antibody titers are labelled by integer t. For

example, AT level t = 0 corresponds to antibody titers a0 = 10.

We denote Ob
i,y,s,O

p
i,y,s

n o
the ‘‘observed’’ AT levels measured at

baseline (b) and post epidemic (p) in individual i, during season y

( = 2008, Spring 2009, Autumn 2009) and for subtype s ( = H1N1,

H3N2, B). In addition, for a subset of the blood samples, a replicate

measurement of antibody titers was performed. We denote the

replicate measurement for individual i, during season y and for

subtype s (with j = b for baseline and j = p for post epidemic serology)

by R
j
i,y,s R

j
i,y,s~NA if no replicate measurement was performed.

Measurement errors mean that observed and replicate AT levels

may be different from the true (but unobserved) AT levels that we

denote by T
j
i,y,s.

Hierarchical structure of the statistical model. We build

a 3-level Bayesian hierarchical model to characterize measurement

errors together with the underlying true distribution of baseline and

post-epidemic serology. The model is defined by the following equation:

P O
j
i,y,s,R

j
i,y,s,T

j
i,y,s

n o
i,y,s,j

,h

� �
~

P
i,y,sf g

py,s Tb
i,y,s,T

p
i,y,s

n o
Dh

� �
M Oi,y,s,Ri,y,sDTi,y,s,h
� �� �

P hð Þ

where h is the parameter vector of the model.

The first level py,s Tb
i,y,s,T

p
i,y,s

n o
Dh

� �
of the model characterises

the underlying true distribution of baseline and post-epidemic

serology for each season and subtype. The second level

M Oi,y,s,Ri,y,sDTi,y,s,h
� �

characterises measurement errors: given

true AT levels Ti,y,s, it gives the probability to measure Oi,y,s,Ri,y,s

for the observed and replicate serology. The third level specifies our

priors on model parameters. Each of those levels is described below,

with more technical details given in the Supplementary Material.

Model for the underlying true serology. We consider the

most general model for the joint distribution of true paired

serology. For an individual i, during season y and for subtype s,

each pair of serology measurements Tb
i,y,s,T

p
i,y,s

n o
is drawn from a

Multinomial distribution

Multinomial 1, py,s tb,tp

� �� 	
tb~0:::K;tp~0:::Kf g

� �

where py,s tb,tp

� �
is the probability that Tb

i,y,s~tb,T
p
i,y,s~tp

n o
. We

estimate these probabilities from the data.

Model for measurement errors. The quantity of antibod-

ies in the blood of a subject can be thought of as a continuous

variable. However, observations (i.e. AT titers) are discrete. We

build a model of measurement errors that accounts for the

continuous nature of the underlying biological variable. As

mentioned earlier, AT measurements can take K values

T = 0,…, K, corresponding to dilution levels of the HI assay. If

the true (discrete) AT level is T, we assume that the continuous

(unobserved) true quantity of antibodies in the blood, CT , is

uniformly distributed in the interval T ; Tz1½ ½. Conditional on the

true quantity of antibodies CT , we introduce a function f(.) that

indicates how far off from CT the observation can be:

f CODCTð Þ~
cT z1

2
1{DCO{CT Dð ÞcT if DCO{CT Dƒ1

0 if DCO{CT Dw1

(

Conditional on true AT level T and on the titration not going

wrong, the probability that the observed AT level is O is given by:

g1 ODTð Þ~
ðTz1

CT ~T

ðhmax Oð Þ

CO~hmin Oð Þ
f CODCTð ÞdCT dCO

where hmin Oð Þ~O for O.0 and hmin 0ð Þ~{?; hmax Oð Þ~Oz1
for O,K and hmax Kð Þ~? (NB: boundaries 0 and K are treated

as special cases since data are truncated at those levels).

(1)
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The probability of a 1-dilution (2-fold) error on one side (e.g. on

the left) is 1= 2 cTz2ð Þð Þ.When the true AT level is not on the

boundary 0 or K, the 2-sided probability of a 1-dilution error is

1= cTz2ð Þ.
The joint probability for the pair observed O,replicate Rf g is:

g2 O,RjTð Þ~ðTz1

CT ~T

ðhmax Oð Þ

CO~hmin Oð Þ

ðhmax Rð Þ

CR~hmin Rð Þ
f COjCTð Þf CRjCTð ÞdCT dCOdCR

We also assume that there is a probability e that the titration goes

wrong and the resulting titre measurement is an integer uniformly

drawn from 0 to K. Conditional on true AT levels T, the probability

distribution for O is therefore:

gO ODTð Þ~ 1{eð Þg1 ODTð Þz e

Kz1

and the joint probability for the pair observed O,replicate Rf g is:

gR O,RjTð Þ~ 1{eð Þ2g2 O,RjTð Þz

e

Kz1
g1 OjTð Þzg1 RjTð Þð Þz e

Kz1

� �2

Prior model. For each season y and subtype s, we assume

that the set of probabilities py,s tb,tp

� �� 	
characterizing true paired

serology has a Dirichlet prior distribution Dirichlet ay,s

� 	� �
,

where hyperparameter ay,s has a uniform hyperprior distribution

on [0, 1000] (see Supplementary Material). The Dirichlet

distribution is the conjugate prior of the multinomial distribution.

Other parameters of the model have uniform priors.

Data augmentation and inference. True AT levels

Tb
i,y,s,T

p
i,y,s

n o
i,y,s

are considered as augmented data and a Markov

chain Monte Carlo (MCMC) sampling algorithm is used to explore

the joint distribution of augmented data and parameters [26]. At

each iteration of the MCMC, the following updates, which are

detailed in the Supplementary Material, are implemented:

– Update 1: For each subject i, season y, subtype s, independence

sampler for true AT levels Tb
i,y,s,T

p
i,y,s

n o
;

– Update 2: For each season y and subtype s, Gibbs sampler for

the probability distribution of paired serology py,s tb,tp

� �� 	
tb~0:::K ;tp~0:::Kf g;

– Update 3: For each season y and subtype s, Metropolis-

Hastings update of hyperparameter ay,s;

– Update 4: Metropolis-Hastings update of parameters charac-

terizing measurement errors.

Information on measurement errors is contained in the data

from the subset of individuals for whom a replicate measurement

was performed. If update 4 (on measurement error parameters)

was run on the full likelihood, the inference would suffer a

‘‘feedback’’ problem, with estimates of measurement errors being

potentially largely driven by the larger (yet poorly informative)

subset of individuals for whom no replicate measurements are

available. We therefore use a standard strategy to circumvent this

problem that consists in only using the contribution of individuals

with replicate measurements in update 4 (see for example, function

‘‘cut’’ in WinBugs) [27–29]. Technical details are given in the

Supplementary Material.

Selection of subjects for whom replicate measurements

were performed. The subjects for whom replicate measure-

ments were performed were not selected at random (Table S1).

For example, those that had low antibody titers at baseline and

post epidemic were never selected. To correct for this selection

bias we model the selection process and make estimation of

parameters characterizing measurement errors conditional on

those individuals being selected. Technical details are given in the

Supplementary Material.

Simulation study. In order to assess the performance of the

method to quantify measurement errors and reconstruct the true

distribution of paired serology, a simulation study is implemented.

Eighty datasets with a structure similar to ours (i.e. same number

of subtype/season, same number of observed paired serology per

subtype/season) are simulated from the posterior mean of the

parameters and the distribution of the true paired serology. The

selection of subjects for whom replicate measurements are

performed is simulated as in our model. We then applied our

statistical model to each of the simulated datasets and assessed the

bias on parameters quantifying measurement errors and on the

true distribution of paired serology.

Ethics statement

The research was approved by the institutional review board of

the National Institute of Hygiene and Epidemiology, Vietnam; the

Oxford Tropical Research Ethics Committee, University of

Oxford, UK; and the Ethics Committee of the London School

Box 1. Less-technical description of the
statistical method

In this box, we provide a less-technical description of the
statistical method to give non-specialists an intuition of
how it works. Readers should refer to the methods section
for a technically rigorous description. From observed and
replicate measurements of baseline and post epidemic
ATs, our aim is to i) quantify measurement errors and ii)
derive the true distribution of paired serology, that is, for
example, to be able to estimate the true (i.e. after
correction for measurement errors) proportion of subjects
with ATs 10 at baseline and 40 post epidemic. For the sake
of clarity, in this box, we restrict to the study of baseline
ATs; but extending the approach to the joint analysis of
baseline and post epidemic ATs is straightforward. We
consider a toy dataset with 5 subjects with observed and
replicate measurements for baseline ATs (Figure 7, panel
A). Because of measurement errors, true baseline ATs are
unknown (Figure 7, panel A). The statistical procedure is
iterative. At iteration 1 (Figure 7, panel B), we start by
initiating the model parameters and true ATs with arbitrary
values (steps a and b). We can then derive the distribution
of true ATs (step c) and calculate the probability
(‘likelihood’) of the observed and replicate ATs given this
initial set of parameters and characterisation of true ATs
(step d). We are then running an iterative procedure called
Markov chain Monte Carlo (MCMC) sampling. At each
iteration (Figure 7, panel C) we are proposing new values
for model parameters (step a) and for the true ATs of
subjects (step b) in an attempt to improve the likelihood.
After a certain number of iterations, parameters converge
to the posterior distribution. This distribution gives likely
values of parameters and also informs on uncertainty
about those parameters. From the large sample of
parameter values generated through 150,000 iterations
of the MCMC procedure, we can calculate the posterior
mean and 95% Credible Intervals (CI) of the parameters.
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of Hygiene and Tropical Medicine, UK. All participants provided

written informed consent.

Supporting Information

Figure S1 Fit of the model where measurement errors
are independent of true antibody titers to data on
replicate measurements. Observed (red point) and expected

(mean: blue point/95% CI: blue bar) number of pairs {observed

AT level, replicate AT level}. Pairs are sorted by panel according

to the number of dilution difference between the observed and the

replicate measurement.

(EPS)

Figure S2 Adequacy of model where measurement
errors are independent of true antibody titers to the
data. Distribution of ‘‘observed’’ paired serology as predicted by

the model (color bars) and as observed in the data (black point) as a

function of season (2008, Spring 2009, Autumn 2009) and subtype

(H1N1, H3N2 and B). In each panel, individuals are sorted by

baseline AT levels on the y-axis. For a given baseline, the grey bar

indicates the expected proportion of individuals with post AT level

equal to baseline AT level; the yellow bar indicates the proportion

with a 2 fold rise (2f.r.); the red bar indicates the proportion with a

4 fold rise or more (4f.r.+); the green bar indicates the proportion

with a decay. The black thin lines give the 95% CI. The legend

gives the mean [95% CI]. A: H1N1, 2008. B: H3N2, 2008. C: B,

2008. D: H1N1, Spring 2009. E: H3N2, Spring 2009. F: B, Spring

2009. G: H1N1pdm09, Autumn 2009.

(EPS)

Figure S3 Testing the absence of cross-reactivity be-
tween subtypes. For each year and each subtype, individuals

were partitioned between those with no increase in titers (coded 0),

those with a 1-dilution increase (coded 1) and those with a 2

dilution or more increase (coded 2). The population was then

partitioned in 27 groups according to outcome for triplet H1N1-

H3N2-B. For example triplet 1-0-0 consists of individuals with a 1-

dilution increase for H1N1 but no increase for H3N2 and B; 1-2-0

are individuals with a 1-dilution increase for H1N1, 2-dilution

increase for H3 but no increase for B etc. Red points show the

mean posterior distribution for triplet H1N1-H3N2-B, corrected

for measurement errors. The boxplots in the figure show the

distribution that would be obtained if there was no cross-reactivity

between subtypes.

(EPS)

Figure S4 Age-specific distribution of paired serology,
corrected for measurement errors as a function of
season (2008, Spring 2009, Autumn 2009) and subtype
(H1N1, H3N2 and B) (in Autumn 2009, subtyping was
only conducted for H1N1pdm09). In each panel, individuals

are sorted by baseline AT levels on the y-axis. For a given baseline,

the grey bar indicates the expected proportion of individuals with

Figure 7. Less technical description of the statistical method. This figure illustrates the description of the method that is made in Box 1.
doi:10.1371/journal.ppat.1003061.g007
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post AT level equal to baseline AT level; the yellow bar indicates

the proportion with a 2 fold rise (2f.r.); the red bar indicates the

proportion with a 4 fold rise or more (4f.r.+); the green bar

indicates the proportion with a decay. The black thin lines give the

95% CI. The legend gives the mean [95% CI]. A: H1, 2008,

,18 y.o. B: H3, 2008, ,18 y.o. C: B, Spring 2009, ,18 y.o. D:

H1, 2008, ,18 y.o. E: H3, Spring 2009, ,18 y.o. F: B, Spring

2009, ,18 y.o. G: H1pdm, Autumn 2009, ,18 y.o. H: H1, 2008,

18–48 y.o. I: H3, 2008, 18–48 y.o. J: B, Spring 2009, 18–48 y.o.

K: H1, 2008, 18–48 y.o. L: H3, Spring 2009, 18–48 y.o. M: B,

Spring 2009, 18–48 y.o. N: H1pdm, Autumn 2009, 18–48 y.o. O:

H1, 2008, .48 y.o. P: H3, 2008, .48 y.o. Q: B, Spring 2009,

.48 y.o. R: H1, 2008, .48 y.o. S: H3, Spring 2009, .48 y.o. T:

B, Spring 2009, .48 y.o. U: H1pdm, Autumn 2009, .48 y.o.

(EPS)

Figure S5 Model adequacy to age-specific data. Distri-

bution of ‘‘observed’’ paired serology as predicted by the model

(color bars) and as observed in the data (black point) as a function

of season (2008, Spring 2009, Autumn 2009), subtype (H1N1,

H3N2 and B) and age group (,18 y.o., 18–48 y.o., .48 y.o.). In

each panel, individuals are sorted by baseline AT levels on the y-

axis. For a given baseline, the grey bar indicates the expected

proportion of individuals with post AT level equal to baseline AT

level; the yellow bar indicates the proportion with a 2 fold rise

(2f.r.); the red bar indicates the proportion with a 4 fold rise or

more (4f.r.+); the green bar indicates the proportion with a decay.

The black thin lines give the 95% CI. The legend gives the mean

[95% CI]. A: H1, 2008, ,18 y.o. B: H3, 2008, ,18 y.o. C: B,

Spring 2009, ,18 y.o. D: H1, 2008, ,18 y.o. E: H3, Spring

2009, ,18 y.o. F: B, Spring 2009, ,18 y.o. G: H1pdm, Autumn

2009, ,18 y.o. H: H1, 2008, 18–48 y.o. I: H3, 2008, 18–48 y.o.

J: B, Spring 2009, 18–48 y.o. K: H1, 2008, 18–48 y.o. L: H3,

Spring 2009, 18–48 y.o. M: B, Spring 2009, 18–48 y.o. N:

H1pdm, Autumn 2009, 18–48 y.o. O: H1, 2008, .48 y.o. P: H3,

2008, .48 y.o. Q: B, Spring 2009, .48 y.o. R: H1, 2008,

.48 y.o. S: H3, Spring 2009, .48 y.o. T: B, Spring 2009,

.48 y.o. U: H1pdm, Autumn 2009, .48 y.o.

(EPS)

Figure S6 Distribution of observed paired serology in
[23]. A: HI assay for seasonal H1N1 influenza (2009). B: Micro-

neutralization assay for pandemic H1N1 influenza (2009). C: HI

assay for pandemic A(H1N1)pdm09 influenza (2009).

(EPS)

Table S1 Probability (numerator/denominator) that
replicate measurements are performed during 2008
and Spring 2009 seasons, for subtype H1N1, as a
function of observed serology at baseline and post
epidemic. The colors indicate how we model the probability of

selection. Yellow cells correspond to cells for which we assume that

the probability of selection is null. The probabilities associated to

the 4 other colors are estimated from the data (gS1: orange ; gS2:

red; gS3: light green; gS4: green). See Supplementary Material for

details.

(DOCX)

Table S2 Performance of the method to estimate
parameters characterizing how subjects with duplicate
measurements were selected. Those parameters are defined

in Table S1 (see also section 1 of Supplementary Material). Eighty

datasets are simulated with known parameters (see Methods). The

table gives the simulation value of parameters and the mean

(standard deviation) of estimates.

(DOCX)

Text S1 Technical details on the model, the estimation
procedure, sensitivity analyses, and the test for the
hypothesis of cross-reactivity between subtypes.
(DOCX)
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