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A novel family of exponential Runge-Kutta (expRK)methods are designed incorporating the stable steady-state structure of genetic
regulatory systems. A natural and convenient approach to constructing new expRKmethods on the base of traditional RKmethods
is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods
are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK
methods are more efficient than some traditional exponential RK integrators in the scientific literature.

1. Introduction

One of the challenges in systems biology is to understand
how biochemical molecules, such as DNAs, mRNAs, and
proteins, interact to form harmonic and uniform cellular
systems which give rise to life (see [1, 2]). The synthetic
genetic regulatory networks (GRNs) play an important role
in the investigation of protein regulation processes in living
organisms (see [3–6]). By introducing ordinary differential
equations (ODEs) to describe the rates of change in the
concentrations of biochemical molecules, such as mRNAs
and proteins, more detailed understanding and insights of
the dynamic behavior exhibited by biological systems can be
achieved (see [7]). The first attempt to model the oscillation
in genetic regulation in terms ofODEswasmade byGoodwin
[8]. A standard presentation of general regulatory dynamics
can be found in themonographs byThomas andD’Ari [9] and
by Fall et al. [10]. Iwamoto et al. [11] presented a dynamical
model of the DNA damage signaling pathway that includes
p53 and whole cell cycle regulation and explored the rela-
tionship between p53 oscillation and cell fate selection. ODEs
models admit mathematically qualitative and quantitative
analysis to reveal the profound properties from steady states
with stability, bistability, oscillation, and limit cycles to chaos
(see [12–17] and the references therein).

A typical system of ODEs governing an 𝑁-gene acti-
vation-inhibition system has the form (see Polynikis et al.
[15])

Transcription: ̇𝑟𝑖 = 𝑓𝑅𝑖 (𝑝) − 𝛾𝑖𝑟𝑖,
Translation: 𝑝̇𝑖 = 𝑓𝑃𝑖 (𝑟𝑖) − 𝜇𝑖𝑝𝑖, (1)

where, for 𝑖 = 1, . . . , 𝑁, 𝑟𝑖 is the concentration of mRNA𝑅𝑖 produced by gene 𝑔𝑖, 𝑝𝑖 is the concentration of protein𝑃𝑖 translated from mRNA 𝑅𝑖, 𝛾𝑖 is the degradation rate of𝑅𝑖, and 𝜇𝑖 is the degradation rate of 𝑃𝑖. Function 𝑓𝑃𝑖 (𝑟𝑖) is
the translation function. Function 𝑓𝑅𝑖 (𝑝) is the regulation
function, typically taking the form of a sum of products of
functions 𝑓𝑅𝑖1(𝑝1), . . . , 𝑓𝑅𝑖𝑁(𝑝𝑁). If protein 𝑃𝑗 has no effect on
gene 𝑔𝑖, 𝑓𝑅𝑗 (𝑝𝑗) does not appear in 𝑓𝑅𝑖 . The partial derivative𝜕𝑓𝑅𝑖 /𝜕𝑝𝑗 > 0 if protein 𝑃𝑗 is an activator of gene 𝑔𝑖 and𝜕𝑓𝑅𝑖 /𝜕𝑝𝑗 < 0 if protein𝑃𝑗 is an inhibitor of gene𝑔𝑖.The genetic
regulatory system (1) can be written in matrix forṁ𝑟 (𝑡) = −Γ𝑟 (𝑡) + 𝐹 (𝑝 (𝑡)) ,𝑝̇ (𝑡) = 𝐾𝑟 (𝑡) − 𝑀𝑝 (𝑡) , (2)
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where 𝑟(𝑡) = (𝑟1(𝑡), . . . , 𝑟𝑁(𝑡))𝑇 and 𝑝(𝑡) = (𝑝1(𝑡), 𝑝2(𝑡), . . . ,𝑝𝑁(𝑡))𝑇 are𝑁-dimensional vectors representing the concen-
trations of mRNAs and proteins at time 𝑡, respectively, and𝐹(𝑝(𝑡)) = (𝐹1(𝑝(𝑡)), . . . , 𝐹𝑁(𝑝(𝑡)))𝑇, Γ = diag(𝛾1, . . . , 𝛾𝑁),𝑀 = diag(𝜇1, . . . , 𝜇𝑁), and𝐾 = diag(𝜅1, . . . , 𝜅𝑁) are diagonal
matrices.

The analytical solution of system (1) is in general not
acquirable due to the nonlinearity of the functions 𝑓𝑃𝑖 (𝑟𝑖)
and 𝑓𝑅𝑖𝑗 (𝑝𝑗). Therefore, in order to explore the dynamics
of the gene regulatory system (1), one usually resorts to
numerical solution. For example, Shinto et al. [18] proposed
a kinetic simulation model of metabolic pathways that
describes the dynamic behaviors of metabolites in acetone-
butanol-ethanol (ABE) production by Clostridium saccha-
roperbutylacetonicum N1-4 using a simulator WinBEST-KIT.
So far, differential equations for genetic regulation are mostly
solved by the classical four-stage Runge-Kutta (RK) method
or by the Runge-Kutta-Fehlberg adaptive method (see Hairer
et al. [19]). However, general-purpose RK methods have not
taken into account the special structure of system (1) and fail
to capture the dynamical features of the system effectively,
especially in the long time simulation (see Figure 11). Thanks
to new advances in the last two decades, new approaches have
been developed aiming at preserving the intrinsic geometric
or physical structures of the true solution. A comprehensive
account of structure-preserving algorithms can be found in
the monographs by Stuart and Humphries [20], Hairer et al.
[21], andWu et al. [22]. Recently Hochbruck and Ostermann
[23] investigated exponential Runge-Kuttamethods for initial
value problems of parabolic differential equations. This type
of methods simulates exactly the linear structure of the
differential equations. Defterli et al. [24] and Weber et al.
[25] considered discretizing and optimizing the so-called
gene-environment networks based on usually finite data
series.

From the dynamics point of view, there are two basic
categories of genetic regulatory systems: Category 1 consists
of systems having sustained oscillation, such as limit cycles;
Category 2 consists of systems having steady states. For the
genetic regulatory system (1) with a limit-cycle structure, You
[26] proposed a new class of phase-fitted and amplification-
fitted Runge-Kutta type methods which were shown to be
more effective and more efficient than the traditional Runge-
Kuttamethods of the same order. Very recently, You et al. [27]
developed a splitting approach for genetic regulatory systems
with a stable steady state. In the numerical simulation, the
new splitting methods constructed in that paper are shown
to be remarkably more effective and more suitable for long-
term computation with large steps than the general-purpose
Runge-Kutta methods. In order to respect the oscillatory
feature of the solution of some genetic regulatory systems,
Chen et al. [28] developed a new type of exponentially fitted
TDRK (EFTDRK) methods. Zhang et al. [29] constructed a
family of phase-fitted symmetric splitting methods of order
two and order four. The result of the numerical experiment
on the Lotka–Volterra system shows that the new phase-fitted
symmetric splitting methods are more effective than their
prototype splitting methods and can preserve the invariant

of the system in the long term compared with the classical
Runge-Kutta method of order four.

The purpose of this paper is to develop a novel type
of exponential RK methods for the simulation of genetic
regulatory systems which have an asymptotically stable
steady state. In Section 2 we present the general scheme
of exponential Runge-Kutta (expRK) methods for solving
initial value problems of ODEs based on a matrix form of
the variation-of-constants formula. A convenient approach
of transiting traditional RK methods into a special type of
expRK methods is given. In Section 3 we integrate the above
three regulatory systems by the new expRK methods as well
as their prototype RK methods for comparison. Section 4 is
devoted to conclusive remarks. In Appendix, we analyze the
linear stability and phase properties of the expRK methods.

2. Exponential Runge-Kutta Methods

2.1. Formulation of Exponential RK Methods for Systems with
a Stable Steady-State Structure. Prior to dealing with the
genetic regulatory system (2) numerically, we first consider
the general initial value problem (IVP) of the autonomous
system of ODEs 𝑦̇ = 𝑓 (𝑦) , 𝑡 > 0,𝑦 (0) = 𝑦0, (3)

where 𝑦 : [0, +∞) → R𝑑 and “𝑦̇” represents the derivative of𝑦 with respect to time. We make the following assumptions
on system (3):
(A1) The origin 𝑦∗ = 0 is a steady state of the system; that

is, 𝑓(0) = 0.
(A2) The Jacobian (𝜕𝑓/𝜕𝑦)(0) has eigenvalues of negative

real parts in a neighborhood of the origin. Then,
according to the theorem in Section 8.5 of Hirsch et
al. [30], the origin is an asymptotically stable steady
state; that is, for every solution 𝑦(𝑡) of system (3)
through a point in the neighborhood of the steady
state, lim𝑡→+∞𝑦(𝑡) = 0.

(A3) The function 𝑓 : R𝑑 → R𝑑 is continuously
differentiable and satisfies the Lipschitz condition;
that is, there exists a constant 𝐿 (called the Lipschitz
constant) such that󵄩󵄩󵄩󵄩𝑓 (𝑦) − 𝑓 (𝑧)󵄩󵄩󵄩󵄩 ≤ 𝐿 󵄩󵄩󵄩󵄩𝑦 − 𝑧󵄩󵄩󵄩󵄩 (4)

for all 𝑦, 𝑧 ∈ R𝑑.
Let us recall the general-purpose Runge-Kutta methods

for IVP (3).

Definition 1. An 𝑠-stage Runge-Kutta (RK) method for sys-
tem (3) has the scheme𝑌𝑖 = 𝑦𝑛 + ℎ 𝑠∑

𝑗=1

𝑎𝑖𝑗𝑓 (𝑌𝑗) , 𝑖 = 1, . . . , 𝑠,
𝑦𝑛+1 = 𝑦𝑛 + ℎ 𝑠∑

𝑖=1

𝑏𝑖𝑓 (𝑌𝑖) , (5)

where 𝑐𝑖, 𝑎𝑖𝑗, 𝑏𝑖, 𝑖, 𝑗 = 1, . . . , 𝑠, are real numbers.
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Scheme (5) can be expressed briefly by the Butcher
tableau of its coefficients

𝑐 𝐴𝑏𝑇 =
𝑐1 𝑎11 ⋅ ⋅ ⋅ 𝑎1𝑠... ... d

...𝑐𝑠 𝑎𝑠1 ⋅ ⋅ ⋅ 𝑎𝑠𝑠𝑏1 ⋅ ⋅ ⋅ 𝑏𝑠
. (6)

The order conditions for the RK method (5) can be found in
Hairer et al. [19]. Note that the general RK scheme (5) does
not take into account the special structure of the equilibrium
structure of the system so that the computational results are
usually not satisfactory. In order to simulate more effectively
system (3)with a steady state at the origin, we rewrite problem
(3) in an equivalent form𝑦̇ − Ω𝑦 = 𝑔 (𝑦) ,𝑦 (0) = 𝑦0, (7)

where thematrixΩ = (𝜕𝑓/𝜕𝑦)(0), the function 𝑔(𝑦) = 𝑓(𝑦)−Ω𝑦 = O(‖𝑦‖2), ‖ ⋅ ‖ is the Euclidean norm, andΩ is called the
rate matrix of system (3). The matrix form of the variation-
of-constants formula for system (3) is given by𝑦 (𝑡𝑛 + 𝜇ℎ)= exp (𝜇ℎΩ) 𝑦 (𝑡𝑛)+ exp (𝜇ℎΩ)∫𝑡𝑛+𝜇ℎ

𝑡𝑛

exp (− (𝜉 − 𝑡𝑛)Ω) 𝑔 (𝑦 (𝜉)) d𝜉, (8)

where 𝜇 and ℎ are real numbers and 𝑡𝑛 = 𝑛ℎ, 𝑛 = 0, 1, . . ..
Approximating the integral on the right-hand side of (8)
by some effective quadrature formulas leads to a numerical
integrator. In general we have the following definition of the
so-called exponential Runge-Kutta methods.

Definition 2. An 𝑠-stage exponential Runge-Kuttamethod for
system (3) has the scheme

𝑌𝑖 = exp (𝑐𝑖𝑉)𝑦𝑛 + 𝑠∑
𝑗=1

𝑎𝑖𝑗 (𝑉) (ℎ𝑓 (𝑌𝑗) − 𝑉𝑌𝑗) ,𝑖 = 1, . . . , 𝑠,𝑦𝑛+1 = exp (𝑉) 𝑦𝑛 + 𝑠∑
𝑖=1

𝑏𝑖 (𝑉) (ℎ𝑓 (𝑌𝑖) − 𝑉𝑌𝑖) ,
(9)

where 𝑐𝑖, 𝑖 = 1, . . . , 𝑠, are real numbers and 𝑎𝑖𝑗(𝑉) and 𝑏𝑖(𝑉),𝑖, 𝑗 = 1, . . . , 𝑠, are real 𝑑×𝑑matrix-valued functions of matrix𝑉 = ℎΩ.

It is convenient to express scheme (9) by the Butcher
tableau 𝑐 exp (𝑐𝑉) 𝐴 (𝑉)

exp (𝑉) 𝑏𝑇 (𝑉)
= 𝑐1 exp (𝑐1𝑉) 𝑎11 (𝑉) ⋅ ⋅ ⋅ 𝑎11 (𝑉)... ... ... d

...𝑐𝑠 exp (𝑐1𝑉) 𝑎𝑠1 (𝑉) ⋅ ⋅ ⋅ 𝑎𝑠𝑠 (𝑉)
exp (𝑉) 𝑏1 (𝑉) ⋅ ⋅ ⋅ 𝑏𝑠 (𝑉) , (10)

where exp(𝑐𝑉) = (exp(𝑐1𝑉)𝑇, . . . , exp(𝑐𝑠𝑉)𝑇)𝑇. For a com-
prehensive review of exponential integrators with the con-
struction, analysis of convergence and error bounds, order
conditions, example integrators, and applications, the reader
is referred to Hochbruck and Ostermann [23].

It is noted that if we need to integrate a system 𝑧󸀠 = 𝜓(𝑧)
near a stable steady state 𝑧∗ ̸= 0, the exponential RK scheme
(9) should take the form𝑦𝑛 = 𝑧𝑛 − 𝑧∗,𝑌𝑖 = exp (𝑐𝑖𝑉)𝑦𝑛+ 𝑠∑

𝑗=1

𝑎𝑖𝑗 (𝑉) (ℎ𝜓 (𝑌𝑗 + 𝑧∗) − 𝑉𝑌𝑗) ,𝑖 = 1, . . . , 𝑠,𝑦𝑛+1 = exp (𝑉) 𝑦𝑛 + 𝑠∑
𝑖=1

𝑏𝑖 (𝑉) (ℎ𝜓 (𝑌𝑖 + 𝑧∗) − 𝑉𝑌𝑖) ,𝑧𝑛+1 = 𝑦𝑛+1 + 𝑧∗,
(11)

where 𝑉 = ℎΩ withΩ = (𝜕𝜓/𝜕𝑧)(𝑧∗).
2.2. A Special Class of Exponential RK Methods. Based on an
RK method (5), we can formulate, as a special case of the
exponential RK method (9), the following scheme for system
(3): 𝑌𝑖 = exp (𝑐𝑖𝑉)𝑦𝑛+ 𝑠∑

𝑗=1

𝑎𝑖𝑗 exp ((𝑐𝑖 − 𝑐𝑗)𝑉) (ℎ𝑓 (𝑌𝑗) − 𝑉𝑌𝑗) ,𝑖 = 1, . . . , 𝑠,𝑦𝑛+1 = exp (𝑉) 𝑦𝑛+ 𝑠∑
𝑖=1

𝑏𝑖 exp ((1 − 𝑐𝑖) 𝑉) (ℎ𝑓 (𝑌𝑖) − 𝑉𝑌𝑖) ,
(12)

where 𝑐𝑖, 𝑎𝑖𝑗, and 𝑏𝑖, 𝑖, 𝑗 = 1, . . . , 𝑠, are the constant
coefficients of the RK method (5). Note that as Ω → 0 (𝑉 →0), scheme (12) reduces to the RK method (5). The latter is
called the prototype RKmethod of the former. In the sequel of
this paper, scheme (12)will be referred to as an expRKmethod.
Its Butcher tableau can be written as follows:



4 Computational and Mathematical Methods in Medicine

𝑐 exp (𝑐𝑉) exp (𝑐𝑉)𝑇𝐴 exp (−𝑐𝑉)
exp (𝑉) 𝑏𝑇 exp ((𝑒 − 𝑐) 𝑉)
= 𝑐1 exp (𝑐1𝑉) 𝑎11 𝑎12 exp ((𝑐1 − 𝑐2) 𝑉) ⋅ ⋅ ⋅ 𝑎1𝑠 exp ((𝑐1 − 𝑐𝑠) 𝑉)... ... ... ... d

...𝑐𝑠 exp (𝑐1𝑉) 𝑎𝑠1 exp ((𝑐𝑠 − 𝑐1) 𝑉) 𝑎𝑠2 exp ((𝑐𝑠 − 𝑐2) 𝑉) ⋅ ⋅ ⋅ 𝑎𝑠𝑠
exp (𝑉) 𝑏1 exp ((1 − 𝑐1) 𝑉) 𝑏2 exp ((1 − 𝑐2) 𝑉) ⋅ ⋅ ⋅ 𝑏𝑠 exp ((1 − 𝑐𝑠) 𝑉) , (13)

where 𝑒 = (1, . . . , 1)𝑇, exp((𝑒 − 𝑐)𝑉 = (exp((1 − 𝑐1)𝑉)𝑇, . . . ,
exp((1 − 𝑐𝑠)𝑉)𝑇)𝑇, and exp(𝑐𝑉)𝑇𝐴 exp(−𝑐𝑉) = (exp((𝑐𝑖 −𝑐𝑗)𝑉)𝑎𝑖𝑗)𝑠×𝑠.

In Kronecker’s notation, scheme (12) can be written as𝑌 = exp (𝑐𝑉) 𝑦𝑛 ⊗ 𝑒+ exp (𝑐𝑉) (𝐴 ⊗ 𝐼𝑑) (exp (−𝑐𝑉) (ℎ𝑓 (𝑌) − 𝑉𝑌)) ,𝑦𝑛+1= exp (𝑉) 𝑦𝑛+ exp (𝑉) (𝑏𝑇 ⊗ 𝐼𝑑) (exp (−𝑐𝑉) (ℎ𝑓 (𝑌) − 𝑉𝑌)) ,
(14)

where 𝐼𝑑 is the 𝑑×𝑑 unit matrix and exp(−𝑐𝑉)(ℎ𝑓(𝑌)−𝑉𝑌) =(exp((−𝑐1)𝑉)𝑇(ℎ𝑓(𝑌1) − 𝑉𝑌1), . . . , exp((−𝑐𝑠)𝑉)𝑇(ℎ𝑓(𝑌𝑠) −𝑉𝑌𝑠))𝑇.
Among simple examples are the following:

(a) The exponential Euler method (explicit), denoted by
expEuler:𝑦𝑛+1 = exp (𝑉) 𝑦𝑛 + exp (𝑉) (ℎ𝑓 (𝑦𝑛) − 𝑉𝑦𝑛) (15)

(b) The exponential backward Euler method (implicit),
denoted by expImEuler:𝑦𝑛+1 = exp (𝑉) 𝑦𝑛 + (ℎ𝑓 (𝑦𝑛+1) − 𝑉𝑦𝑛+1) (16)

(c) The exponential trapezoidal rule (implicit), denoted by
expTrap:𝑦𝑛+1 = exp (𝑉) 𝑦𝑛 + exp (𝑉)2 (ℎ𝑓 (𝑦𝑛) − 𝑉𝑦𝑛)+ 12 (ℎ𝑓 (𝑦𝑛+1) − 𝑉𝑦𝑛+1) (17)

(d) The exponential Heun rule (explicit), denoted by
expHeun:𝑦𝑝 = exp (𝑉) 𝑦𝑛 + exp (𝑉) (ℎ𝑓 (𝑦𝑛) − 𝑉𝑦𝑛) ,𝑦𝑐 = exp (𝑉) 𝑦𝑛 + (ℎ𝑓 (𝑦𝑝) − 𝑉𝑦𝑝) ,𝑦𝑛+1 = 𝑦𝑝 + 𝑦𝑐2 (18)

(e) The exponential midpoint rule (implicit), denoted by
expMid:𝑦𝑛+1 = exp (𝑉) 𝑦𝑛 + exp(𝑉2 )⋅ (ℎ𝑓(exp (𝑉/2) 𝑦𝑛 + exp (−𝑉/2) 𝑦𝑛+12 )

− 12𝑉(exp(𝑉2 )𝑦𝑛 + exp (−𝑉2 )𝑦𝑛+1))
(19)

Two typical expRK methods, denoted by expRK3/8 and
expRK4, have the prototype RK methods of order four,
denoted by RK3/8 and RK4, respectively, whose respective
Butcher tableaux are given in Page 138 of [19]013 1323 −13 11 1 −1 118 38 38 18

, (20)

012 1212 0 121 0 0 116 26 26 16
(21)

The (algebraic) order is a measure of the accuracy of
numericalmethod.Amethod is said to have order 𝑝 if its local
error LE = O(ℎ𝑝+1).
Theorem 3. The expRK method (12) has the same algebraic
order as its prototype RK method.
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Proof. The conclusion follows by expanding the exponential
functions exp(𝑐𝑖𝑉), exp((𝑐𝑖 − 𝑐𝑗)𝑉), and exp((1 − 𝑐𝑖)𝑉) in
scheme (12) in series of 𝑉 = ℎΩ, hence in series of ℎ, and
comparing this series with that of the true solution.

The next theorem asserts that exponential RK method
(12) preserves the steady state of system (3).

Theorem4. Suppose that𝑓 in system (3) satisfies the Lipschitz
condition and the origin is a steady state of the system; that is,𝑓(0) = 0. Then the origin is also a fixed point of the expRK
method (12) for small step size ℎ.

The proof is given in Appendix A.
In order to apply the expRK method (9) or (12) to system

(2), we first use a coordinate transform 𝑢(𝑡) = 𝑟(𝑡)−𝑟∗, V(𝑡) =𝑝(𝑡) −𝑝∗ to translate the steady state (𝑟∗, 𝑝∗) of the system to
the origin and yields𝑢̇ (𝑡) = −Γ𝑢 (𝑡) + 𝐹󸀠 (𝑝∗) V (𝑡) + 𝐺 (V (𝑡)) ,

V̇ (𝑡) = 𝐾𝑢 (𝑡) − 𝑀V (𝑡) , (22)

where 𝐹󸀠(𝑝∗) is the Jacobian matrix of 𝐹(𝑝) at point 𝑝∗ and𝐺(V(𝑡)) = 𝐹(𝑝∗ + V(𝑡)) − 𝐹󸀠(𝑝∗)V(𝑡) − 𝐹(𝑝∗). Then system (2)
can be written in the form (7) with 𝑦(𝑡) = (𝑢(𝑡), V(𝑡))𝑇 where
the rate matrix Ω = (−Γ 𝐹󸀠 (𝑝∗)𝐾 −𝑀 ) (23)

and the function 𝑔(𝑦) = (𝐺(V)𝑇, 0)𝑇.
3. Numerical Illustrations

From Theorem 4, contrast to traditional RK methods, expo-
nential RK methods, especially expRK methods, retain the
rate of growth, phase, and amplification of the exact solution
of the test equation (B.1) without error. Then it is reasonable
to expect expRK (12) to bemore effective than their prototype
RK methods. In this section, in order to compare their
effectiveness, we apply them to three test systems—one-gene
self-regulation system, two-gene cross-regulation system,
and the p53-mdm2 system.

(I) A One-Gene System of Self-Regulation. The first model we
consider is the one-gene system with self-regulation given bẏ𝑟 (𝑡) = −𝛾𝑟 (𝑡) + 𝐹 (𝑝 (𝑡)) ,𝑝̇ (𝑡) = −𝜇𝑝 (𝑡) + 𝜅𝑟 (𝑡) , (24)

where 𝐹(𝑝(𝑡)) = 𝛼/(1 + 𝑝(𝑡)2/𝜃2) represents the action of
an inhibitory protein that acts as a dimer and 𝛾, 𝜇, 𝜅, 𝛼, 𝜃 are
positive constants. For a similar model with delays see Xiao
and Cao [31].

(II) A Two-Gene System with Cross-Regulation. The sec-
ond model is a two-gene activation-inhibition system with

cross-regulation (studied by Polynikis et al. [15], Widder et
al. [17], Chen et al. [32], You [26], and You et al. [27])̇𝑟1 = 𝑚1𝐻+ (𝑝2; 𝜃2, 𝑛2) − 𝛾1𝑟1,̇𝑟2 = 𝑚2𝐻− (𝑝1; 𝜃1, 𝑛1) − 𝛾2𝑟2,𝑝̇1 = 𝜅1𝑟1 − 𝜇1𝑝1,𝑝̇2 = 𝜅2𝑟2 − 𝜇2𝑝2,

(25)

where, for 𝑖 = 1, 2, 𝑟𝑖 is the concentration of mRNA 𝑅𝑖
produced by gene𝑔𝑖,𝑝𝑖 is the concentration of protein𝑃𝑖,𝑚𝑖 is
the maximal transcription rate of gene 𝑔𝑖, 𝜅𝑖 is the translation
rate of mRNA 𝑅𝑖, and 𝛾𝑖 and 𝜇𝑖 are the degradation rates of
mRNA 𝑅𝑖 and protein 𝑃𝑖, respectively. The functions𝐻+ (𝑝2; 𝜃2, 𝑛2) = 𝑝𝑛22𝜃𝑛22 + 𝑝𝑛22 ,𝐻− (𝑝1; 𝜃1, 𝑛1) = 𝜃𝑛11𝜃𝑛11 + 𝑝𝑛11 (26)

are the Hill functions of activation and repression, respec-
tively.The parameters 𝜃1, 𝜃2 are the expression thresholds. The
integer value of 𝑛𝑖 (𝑖 = 1, 2), called the Hill coefficient, stands
for the number of protein monomers required for saturation
of binding toDNA. It is easy to see that the activation function𝐻+ is increasing in 𝑝2 and the repression function 𝐻− is
decreasing in 𝑝1.
(III) The p53-mdm2 System. The third model is for the
damped oscillation of the p53-mdm2 regulatory pathway.
Strictly speaking, this system is not of the form (1). We adopt
this model since its solutions also have a stable steady-state
structure of interest. The system, given by van Leeuwen et al.
[33] with the small transient stress stimulus 𝑆(𝑡) = 0, has the
form 𝑃̇𝐼 = 𝑠𝑝 + 𝑗𝑎𝑃𝐴 − 𝑑𝑝𝑃𝐼 − 𝑘𝑐𝑃𝐼𝑀+ 𝑗𝑐𝐶,𝑀̇ = 𝑠𝑚0 + 𝑠𝑚1𝑃𝐼 + 𝑠𝑚2𝑃𝐴𝑃𝐼 + 𝑃𝐴 + 𝐾𝑚 + (𝑘𝑢 + 𝑗𝑐) 𝐶− (𝑑𝑚 + 𝑘𝑐𝑃𝐼)𝑀,𝐶̇ = 𝑘𝑐𝑃𝐼𝑀− (𝑗𝑐 + 𝑘𝑢) 𝐶,𝑃̇𝐴 = − (𝑗𝑎 + 𝑑𝑝) 𝑃𝐴,

(27)

where 𝑃𝐼 represents the concentration of the p53 tumor
suppressor,𝑀 (mdm2) is the concentration of the p53’s main
negative regulator, 𝐶 is the concentration of the p53-mdm2
complex, 𝑃𝐴 is the concentration of an active form of p53
that is resistant againstmdm2-mediated degradation, 𝑠∗ (∗ =𝑝,𝑚0,𝑚1) are de novo synthesis rates, 𝑘∗ (∗ = 𝑎, 𝑐, 𝑢) are
production rates, 𝑗∗ (∗ = 𝑎, 𝑐) are reverse reactions (e.g.,
dephosphorylation), 𝑑𝑝 is the degradation rate of active p53,
and𝐾𝑚 is the saturation coefficient.
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3.1. Accuracy Test

3.1.1. The One-Gene System. Steady states of system (24) can
be determined by the cubic equation (1/𝜃2)𝑝∗3+𝑝∗+𝛼𝜅/𝛾𝜇 =0 and the relation 𝑟∗ = (𝜇/𝜅)𝑝∗. If the system is written in the
form (7), the rate matrix

Ω = (−𝛾 − 2𝛼𝑝∗/𝜃2(1 + 𝑝∗2/𝜃2)2𝜅 −𝜇 ) , (28)

and the function

𝑔 (𝑦) = ( 𝛼1 + (𝑦2 + 𝑝∗)2 /𝜃2 + 2𝛼𝑝∗/𝜃2(1 + 𝑝∗2/𝜃2)2𝑦20 ) , (29)

where 𝑦 = (𝑦1, 𝑦2)𝑇 = (𝑟 − 𝑟∗, 𝑝 − 𝑝∗). With the parameter
values (provided by [31]) 𝛼 = 3,𝛾 = 1,𝜇 = 1.5,𝜅 = 5,𝜃 = 1,

(30)

this system has a unique positive steady state (𝑟∗, 𝑝∗) =(0.6, 2) where the rate matrix Ω has eigenvalues 𝜆1,2 =−1.2500 ± 2.9767𝑖, where 𝑖 is the imaginary unit satisfying𝑖2 = −1. Since the two eigenvalues both have negative real
parts, the steady state is asymptotically stable. Figure 1(a)
shows three solution trajectories on the phase plane starting
at (𝑟(0), 𝑝(0)) = (0.2, 0.3), (0.2, 0.8), (0.2, 2.3), respectively.
Figure 1(b) shows the time evolution of concentrations of
mRNA and protein starting at (𝑟(0), 𝑝(0)) = (1.2, 0.3).

With the above values of parameters and initial data, we
integrate system (25) on the time interval [0, 100] by the
methods expEuler, expHeun, expRK3/8, and expRK4 as well
as their corresponding prototype methods. We plot the error
growth of the protein on the time interval [50, 100]. The
numerical results are presented in Figures 2 and 3.

The system is solved on the time interval [0, 100] with
initial values of mRNA and protein 𝑟(0) = 0.6 and 𝑝(0) =0.8 and with different step sizes. The numerical results are
presented in Tables 1 and 2.

3.1.2. The Two-Gene System. The steady states 𝑦∗ = (𝑟∗1 , 𝑟∗2 ,𝑝∗1 , 𝑝∗2 )𝑇 of system (25) are determined by the equations𝜃𝑛22 𝑝∗1 (𝑝∗1 𝑛1 + 𝜃𝑛11 )𝑛2 + (𝑝∗1 − 𝑚1𝑘1𝛾1𝜇1 )(𝑚2𝑘2𝛾2𝜇2 𝜃𝑛11 )𝑛2= 0, (31)

𝑟∗1 = 𝜇1𝜅1 𝑝∗1 ,𝑟∗2 = 𝜇2𝜅2 𝑝∗2 ,𝑝∗2 = 𝑚2𝜅2𝜃𝑛11𝛾2𝜇2 (𝜃𝑛11 + 𝑝∗1 𝑛1) .
(32)

Putting in the form (7), system (25) has the rate matrixΩ = 𝜕𝑓𝜕𝑦 (𝑦∗)
= ((((
(

−𝛾1 0 0 𝑚1𝑛2𝜃𝑛22 𝑝∗2 𝑛2−1(𝜃𝑛22 + 𝑝∗2 𝑛2)20 −𝛾2 −𝑚2𝑛1𝜃𝑛11 𝑝∗1 𝑛1−1(𝜃𝑛11 + 𝑝∗1 𝑛1)2 0𝜅1 0 −𝜇1 00 𝜅2 0 −𝜇2
))))
)

(33)

and the function𝑔 (𝑦)
= ((((
(

𝑚1 𝑝2𝑛2𝜃𝑛22 + (𝑦4 + 𝑝∗2 )𝑛2 − 𝛾1𝑟∗1 − 𝑚1𝑛2𝜃𝑛22 𝑝∗2 𝑛2−1(𝜃𝑛22 + 𝑝∗2 𝑛2)2 𝑦4𝑚2 𝜃𝑛11𝜃𝑛11 + (𝑦3 + 𝑝∗1 )𝑛1 − 𝛾2𝑟∗2 − 𝑚2𝑛1𝜃𝑛11 𝑝∗1 𝑛1−1(𝜃𝑛11 + 𝑝∗1 𝑛1)2 𝑦300
))))
)

(34)

with 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑇 = (𝑟1−𝑟∗1 , 𝑟2−𝑟∗2 , 𝑝1−𝑝∗1 , 𝑝4−𝑝∗4 )𝑇.
The characteristic equation of the rate matrixΩ is(𝜆 + 𝛾1) (𝜆 + 𝛾2) (𝜆 + 𝜇1) (𝜆 + 𝜇2) + 𝐷 = 0, (35)
where 𝐷 = 𝑚1𝑚2𝜅1𝜅2 𝑛1𝑛2𝑝∗1 𝑛1−1𝑝∗2 𝑛2−1𝜃𝑛11 𝜃𝑛22(𝑝∗1 𝑛1 + 𝜃𝑛11 )2 (𝑝∗2 𝑛2 + 𝜃𝑛22 )2 . (36)

For a certain value of 𝐷 = 𝐷Hopf , the real part of one of the
eigenvalues crosses zero, indicating a loss of stability through
a Hopf bifurcation. For 𝑛1 > 1 and 𝑛2 > 1, [17] has calculated
this value explicitly as𝐷Hopf= (𝛾1 + 𝛾2) (𝛾1 + 𝜇1) (𝛾2 + 𝜇1) (𝛾1 + 𝜇2) (𝛾2 + 𝜇2) (𝜇1 + 𝜇2)(𝛾1 + 𝛾2 + 𝜇1 + 𝜇2)2 . (37)

In our experiment, we take the values of parameters as
follows: 𝑛1 = 𝑛2 = 3,𝑚1 = 𝑚2 = 1.8,𝑘1 = 𝑘2 = 1,𝛾1 = 𝛾2 = 1,𝜇1 = 𝜇2 = 1,𝜃1 = 𝜃2 = 0.6542.

(38)
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Figure 1: One-gene system: (a) solution trajectories; (b) time evolution of concentrations of mRNA and protein.
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Figure 2: Accuracy comparison for the one-gene system: (a) Euler and expEuler; (b) Heun and expHeun with step size ℎ = 1.2.
Figure 4(a) shows three solution trajectories projected on
the mRNA 1-protein 1 plane starting at (𝑟1(0), 𝑟2(0), 𝑝1(0),𝑝2(0)) = (0.1, 0.5, 0, 0),(0.3, 0.3, 0, 0), and (0.5, 0.2, 0, 0), re-
spectively. Figure 4(b) shows the time evolution of concen-
trations of protein 1 and protein 2.

We solve (31) for 𝑝∗1 by Newton’s iteration and then
substitute it into (32) obtaining𝑟∗1 = 0.81471271066221,𝑟∗2 = 0.61403210214378,𝑝∗1 = 0.81471271066221,𝑝∗2 = 0.61403210214378.

(39)

The rate matrix (33) has the eigenvalues with negative real
parts:𝜆1,2 = −1.94911366876016 ± 0.94911366876016𝑖,𝜆3,4 = −0.05088633123984 ± 0.94911366876016𝑖. (40)

Therefore the steady state 𝑦∗ is asymptotically stable.
With the values of parameters (38) and initial data and

initial values 𝑟1(0) = 0.6, 𝑟2(0) = 0.8, 𝑝1(0) = 0, and 𝑝2(0) =0, we integrate system (25) on the time interval [0, 100] by the
methods expEuler, expHeun, expRK3/8, and expRK4 as well
as their corresponding prototype methods with the step sizesℎ = 1.8, ℎ = 1.7, ℎ = 1.5, ℎ = 1.678, respectively. In Figures
5 and 6, we plot the global error growth of protein 1 on the
time interval [50, 100].
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In Tables 3 and 4, average errors are compared for
differential step sizes.

3.1.3. The p53-mdm2 System. The steady state 𝑦∗ = (𝑃∗𝐼 ,𝑀∗,𝐶∗, 𝑃∗𝐴) is determined by the following equations:𝑠𝑝 − 𝑑𝑝𝑃∗𝐼 − 𝑘𝑐𝑘𝑢𝑑𝑚 (𝑗𝑐 + 𝑘𝑢)𝑃∗𝐼 (𝑠𝑚0 + 𝑠𝑚1𝑃∗𝐼 + 𝐾𝑚𝑃∗𝐼 )= 0,

𝑀∗ = 𝑠𝑚0𝑑𝑚 + 𝑠𝑚1𝑃∗𝐼𝑑𝑚 (𝑃∗𝐼 + 𝐾𝑚) ,𝐶∗ = 𝑘𝑐𝑗𝑐 + 𝑘𝑢𝑃∗𝐼𝑀∗,𝑃∗𝐴 = 0.
(41)

Putting in the form (7), system (27) has the rate matrix

Ω = 𝜕𝑓𝜕𝑦 (𝑦∗) = (
(

−𝑑𝑝 − 𝑘𝑐𝑀∗ −𝑘𝑐𝑃∗𝐼 𝑗𝑐 𝑗𝑎𝑠𝑚1𝐾𝑚 + (𝑠𝑚1 − 𝑠𝑚2) 𝑃∗𝐴(𝑃∗𝐼 + 𝑃∗𝐴 + 𝐾𝑚)2 − 𝑘𝑐𝑀∗ − (𝑑𝑚 + 𝑘𝑐𝑃∗𝐼 ) 𝑘𝑢 + 𝑗𝑐 𝑠𝑚2𝐾𝑚 + (𝑠𝑚2 − 𝑠𝑚1) 𝑃∗𝐼(𝑃∗𝐼 + 𝑃∗𝐴 + 𝐾𝑚)2𝑘𝑐𝑀∗ 𝑘𝑐𝑃∗𝐼 − (𝑘𝑢 + 𝑗𝑐) 00 0 0 𝑗𝑎 + 𝑑𝑝
)
)

. (42)

and the function

𝑔 (𝑦) = (−𝑘𝑐𝑦1𝑦2𝑔2 (𝑦)𝑘𝑐𝑦1𝑦20 ), (43)

where 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑇 = (𝑃𝐼 − 𝑃∗𝐼 ,𝑀 −𝑀∗, 𝐶 − 𝐶∗, 𝑃𝐴 −𝑃∗𝐴)𝑇, and

𝑔2 (𝑦) = −(((𝑠𝑚1 − 𝑠𝑚2) 𝑃∗𝐴 + 𝑠𝑚1𝐾𝑚) 𝑦1 + ((𝑠𝑚2 − 𝑠𝑚1) 𝑃∗𝐼 + 𝑠𝑚2𝐾𝑚) 𝑦4) (𝑦1 + 𝑦4)(𝑦1 + 𝑃∗𝐼 + 𝑦4 + 𝑃∗𝐴 + 𝐾𝑚) (𝑃∗𝐼 + 𝑃∗𝐴 + 𝐾𝑚)2 − 𝑘𝑐𝑦1𝑦2. (44)

We use the parameter values (see [33]) as follows:𝑠𝑚0 = 2 × 10−3 nMmin−1,𝑘𝑎 = 20min−1,𝑗𝑎 = 0.2min−1,𝑠𝑚1 = 0.15 nMmin−1,𝑘𝑐 = 4min−1 nM−1,𝑗𝑐 = 2 × 10−3min−1,𝑠𝑚2 = 0.2 nMmin−1,𝑘𝑢 = 0.4min−1,𝑑𝑚 = 0.4min−1,𝑠𝑝 = 1.4 nMmin−1,𝐾𝑚 = 100 nM,𝑑𝑝 = 2 × 10−4min−1.

(45)

For simplicity, we take the small function 𝑆(𝑡) ≡ 0. The
systemhas a unique steady state (𝑃∗𝐼 ,𝑀∗, 𝐶∗, 𝑃∗𝐴) = (9.42094,0.0372868, 3.49529, 0). The rate matrixΩ has the eigenvalues𝜆1 = −38.4766,𝜆2,3 = −0.0028 ± 0.0220𝑖,𝜆4 = −0.2002. (46)

Since all the eigenvalues have negative real parts, the steady
state is asymptotically stable.

Figure 7(a) shows three solution trajectories projected
on the inactive p53-complex plane starting at (𝑃𝐼(0),𝑀0(0),𝐶0(0), 𝑃𝐴(0)) = (5, 0.01, 0, 0), (30, 0.01, 0, 0), (15, 0.01, 0, 0),
respectively. Figure 7(b) shows the time evolution of concen-
trations of p53 and mdm2.

With the values of parameters in (45) and initial data and
initial values 𝑃𝐼(0) = 10,𝑀(0) = 0.1, 𝐶(0) = 3, and 𝑃𝐴(0) =0,8, we integrate system (25) on the time interval [0, 100] by
the methods expEuler, expHeun, expRK3/8, and expRK4 as
well as their corresponding prototype methods with the step
size ℎ = 1/16. In Figures 8 and 9, we plot the global error
growth of the inactive p53 on the time interval [50, 100].
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Figure 3: Accuracy comparison for the one-gene system: (a) RK3/8 and expRK3/8; (b) RK4 and expRK4 with step size ℎ = 1.6.
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Figure 4: Two-gene system: (a) phase trajectories projected on mRNA 1-protein 1 plane; (b) time evolution of concentrations of proteins.

The problem is solved on the interval [0, 50] for differen-
tial step sizes and the average errors are presented in Tables 5
and 6.

From Figures 2, 3, 5, 6, 8, and 9 and Tables 1–6, we
can see that the new expRK methods expEuler, expHeun,
expRK3/8, and expRK4 are much more accurate than their
corresponding prototype methods.

3.2. Efficiency Test. In this subsection we will compare the
simulation efficiency of the newly constructed exponential
RK methods with some famous exponential integrators. The
integrators we choose for comparison are listed as follows:

Table 1: One-gene system: comparison of average errors for Euler,
expEuler, Heun, and expEuler methods.

Step
size Euler expEuler Heun expHeun1/4 3.5849 × 10−2 1.1696 × 10−3 2.1384 × 10−2 1.5011 × 10−41/8 2.6231 × 10−2 5.2015 × 10−4 2.0930 × 10−2 5.7342 × 10−51/16 2.2715 × 10−2 2.3383 × 10−4 2.0539 × 10−2 3.8767 × 10−51/32 2.1259 × 10−2 9.8536 × 10−5 2.0284 × 10−2 3.5349 × 10−5

(i) expRK3/8: the expRK method defined by (12) whose
prototype RK method is given by (20)
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Figure 5: Accuracy comparison for the two-gene system: (a) Euler and expEuler; (b) Heun and expHeun.
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Figure 6: Accuracy comparison for the two-gene system: (a) RK3/8 and expRK3/8; (b) RK4 and expRK4.

(ii) expRK4: the expRK method defined by (12) whose
prototype RK method is given by (21)

(iii) COX-MATTHEWS: the exponential RK method
given by Cox and Matthews [34]

(iv) KROGSTAD: the exponential RK method given by
Krogstad [35]

(v) STREHMEL-WEINER: the exponential RK method
given by Strehmel [36] (Example 4.5.5)

(vi) HOCHBRUCK-OSTERMANN: the exponential RK
method given by Hochbruck and Ostermann [23]

The criterion for the efficiency is the digital logarithm
of the global error against the CPU-time consumed. System
(25) with parameters (38) is solved on the time interval[0, 100] with the step sizes ℎ = 1/2𝑗, 𝑗 = 1, 2, 3, 4. The
numerical results are displayed in Figure 10, where we can
see that the new exponential RKmethods expEuler, expHeun,
expRK3/8, and expRK4 are much more efficient than the
other exponential RK methods we select from the literature.
For the two-gene system, among all the exponent integrators
we consider, expEuler, though the simplest, turns out to be
the most efficient. It is also interesting to observe that as



Computational and Mathematical Methods in Medicine 11

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

Inactive p53

C
om

pl
ex

(a)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

15

20

25

mdm2

p53

Time
(b)

Figure 7: p53-mdm2 system: (a) phase curves projected on the inactive p53-complex plane; (b) time evolution of concentrations of p53 and
mdm2.
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Figure 8: Accuracy comparison for the p53-mdm2 system: (a) Euler and expEuler; (b) Heun and expHeun.

integration step size decreases from ℎ = 1/2, expRK4 cannot
produce smaller error, just increasing the computation effort.

4. Conclusions and Discussions

Most genetic regulatory systems carry their own structures,
such as stable steady states and sustained oscillation, bista-
bility. Traditional Runge-Kutta (RK) methods have not taken
into account these characteristic structures and may give
misleading information. To see this, one only needs to
integrate the two-gene system (25) by RK4 with step sizeℎ = 1.32. The simulation result, as presented in Figure 11, is
qualitatively wrong. The exponential RK methods for system
(3) originate from the discretization of the matrix form of

Table 2: One-gene system: comparison of average errors for RK3/8,
expRK3/8, RK4, and expRK4 methods.

Step
size RK3/8 expRK3/8 RK4 expRK41/4 3.0743 × 10−2 3.1270 × 10−5 3.1713 × 10−2 2.2006 × 10−41/8 2.5309 × 10−2 3.4131 × 10−5 2.5490 × 10−2 3.4655 × 10−51/16 2.2533 × 10−2 3.4373 × 10−5 2.2569 × 10−2 3.4403 × 10−51/32 2.1219 × 10−2 3.4407 × 10−5 2.1227 × 10−2 3.4408 × 10−5
variation-of-constants formula (8). This type of integrators
has the property that they can integrate exactly linear systems
of ODEs and thus can preserve the steady-state structure of
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Figure 9: Accuracy comparison for the p53-mdm2 system: (a) RK3/8 and expRK3/8; (b) RK4 and expRK4.
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Figure 10: Efficiency curves with step sizes ℎ = 1/2𝑗, 𝑗 = 1, 2, 3, 4.
system (3). From the numerical results presented in Section 3,
an expRK method is more accurate than its traditional
prototype RK method for long-term simulation with large
step sizes. On the other hand, despite the simple form, the
new expRK methods considered in this paper are tested
to be more efficient than those prominent exponential RK
methods when they are applied to genetic regulatory systems.
The following advantages contribute to the high accuracy
and high efficiency of the expRK methods compared to the
classical RK methods.

Exact solution
RK4 solution

0.8
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0.7
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0.5
120100806040200

Figure 11: RK4 simulation with step size ℎ = 1.32 compared with
the exact solution.

(a) The scheme of the expRK methods recovers by the
exponential functions the principal oscillatory structure of
the true solution, which is contained in linear part (the
Jacobian) of the system.

(b)The construction of the scheme is very simple and the
coefficients are immediately obtained from a classical Runge-
Kutta (RK) method.

(c) As shown in Appendix, the expRK methods (RK3/8
and RK4) have distortion and dissipation of the same order as
their prototype RKmethods but have dispersion of one order
higher than their prototype RK methods. As the principal
frequency is estimated accurately enough, that is, the ratio of
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Table 3: Two-gene system: comparison of average errors for Euler,
expEuler, Heun, and expHeun methods.

Step
size Euler expEuler Heun expHeun1 1.6832 4.4456 × 10−3 2.9451 × 10−1 2.1871 × 10−31/2 9.21627 × 10−1 2.4275 × 10−3 4.0230 × 10−2 1.0848 × 10−31/4 5.1922 × 10−1 1.4028 × 10−3 1.0096 × 10−2 9.5000 × 10−41/8 1.8775 × 10−1 1.0103 × 10−3 2.7588 × 10−3 9.4565 × 10−41/16 5.0636 × 10−2 9.0239 × 10−4 1.1937 × 10−3 9.4830 × 10−41/32 1.8282 × 10−2 8.9416 × 10−4 9.8137 × 10−4 9.4942 × 10−4
Table 4: Two-gene system: comparison of average errors for RK3/8,
expRK3/8, RK4, and expRK4 methods.

Step
size RK3/8 expRK3/8 RK4 expRK41 4.6619 × 10−2 8.7331 × 10−4 8.6240 × 10−3 9.7906 × 10−41/2 3.7028 × 10−1 9.4577 × 10−4 5.2468 × 10−1 9.4457 × 10−41/4 3.2666 × 10−1 9.4805 × 10−4 3.6973 × 10−1 9.4766 × 10−41/8 1.3398 × 10−1 9.4894 × 10−4 1.4412 × 10−1 9.4891 × 10−41/16 4.4359 × 10−2 9.4947 × 10−4 4.5572 × 10−2 9.4947 × 10−41/32 1.7338 × 10−2 9.4974 × 10−4 1.7525 × 10−2 9.4974 × 10−4
Table 5: p53-mdm2 system: comparison of average errors for Euler,
expEuler, Heun, and expHeun methods.

Step
size Euler expEuler Heun expHeun1/16 3.5455 9.7152 × 10−3 3.3784 2.47061 × 10−31/32 1.3141 × 10−3 5.3681 × 10−3 1.7446 × 10−4 1.2767 × 10−31/64 6.5825 × 10−4 2.7553 × 10−3 5.9564 × 10−5 4.383 × 10−41/128 3.0970 × 10−4 1.3769 × 10−3 4.7031 × 10−5 1.1482 × 10−4
Table 6: p53-mdm2 system: comparison of average errors for RK3/
8, expRK3/8, RK4, and expRK4 methods.

Step
size RK3/8 expRK3/8 RK4 expRK41/16 3.1651 2.2126 × 10−4 3.2096 7.8709 × 10−41/32 1.2676 × 10−3 2.5953 × 10−5 1.2770 × 10−3 9.4086 × 10−51/64 6.4492 × 10−4 4.2016 × 10−5 6.4759 × 10−4 4.8393 × 10−51/128 3.0628 × 10−4 4.4244 × 10−5 3.0697 × 10−4 4.4697 × 10−5
the error of estimation and the testing frequency |𝑟| ≪ 1, the
coefficients of the leading terms of distortion and dissipation
of the new expRK methods are much less than those of their
prototype RK methods. Moreover, if 𝜔 is known to be the
exact frequency (𝑟 = 1), expRK methods become zero-
distortive, zero-dispersive, and zero-dissipative.

Although there may exist other methods of higher alge-
braic order that have higher accuracy, the expRK methods
(12) are the most natural ones and are the most convenient to
use. Note also that, similar to the approach of ode45, we can
control the step by embedding two expRKmethods of orders𝑝 and 𝑝 + 1 into a pair to achieve higher efficiency.

Indeed, the test problem (25) is assumed to be nonstiff and
this may be why our expRKmethods outperform the existing
exponential Runge-Kutta methods of Cox and Matthews,
Hochbruck and Ostermann, Krogstad, and Stehmel and
Weiner.The consideration of expRKmethods for stiff genetic
regulatory system (such as the p53-mdm2 systems, whose
Jacobian possesses eigenvalues with large negative real parts
or with purely imaginary eigenvalues of large modulus) is
an interesting theme for future work. These systems contain
different time scales due to coexistence of fast reactions and
slow reactions which are frequently encountered in real cell
processes. The expRK methods adapted to stiff systems will
have amore delicate scheme to incorporate the stiff structure.

Appendix

A. Proof of Theorem 4

A fixed point of scheme (12) is a point 𝑦∗ such that 𝑦𝑛 = 𝑦∗
implies 𝑦𝑛+1 = 𝑦∗. We have assumed that 𝑓(0) = 0. Suppose
that 𝑦𝑛 = 0 in scheme (12). The internal stages of scheme (12)
define a nonlinear operatorΨ : 𝑌 󳨃→ Ψ(𝑌) onR𝑠𝑑. For 𝑌,𝑍 ∈
R𝑠𝑑, the internal stages of system (12) are

‖L (𝑌) −L (𝑍)‖ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩ℎ( 𝑠∑𝑗=1𝑎1𝑗 exp ((𝑐1 − 𝑐𝑗)𝑉)
⋅ (𝑓 (𝑌𝑗) − 𝑓 (𝑍𝑗) − Ω (𝑌𝑗 − 𝑍𝑗)) , . . . , 𝑠∑

𝑗=1

𝑎𝑠𝑗⋅ exp ((𝑐𝑠 − 𝑐𝑗)𝑉)
⋅ (𝑓 (𝑌𝑗) − 𝑓 (𝑍𝑗) − Ω (𝑌𝑗 − 𝑍𝑗)))𝑇󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩≤ ℎ 𝑠∑
𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄩󵄩󵄩󵄩󵄩exp ((𝑐𝑖 − 𝑐𝑗)𝑉)󵄩󵄩󵄩󵄩󵄩 ⋅ (󵄩󵄩󵄩󵄩󵄩𝑓 (𝑌𝑗)
− 𝑓 (𝑍𝑗)󵄩󵄩󵄩󵄩󵄩 + ‖Ω‖ ⋅ 󵄩󵄩󵄩󵄩󵄩𝑌𝑗 − 𝑍𝑗󵄩󵄩󵄩󵄩󵄩) ≤ ℎ 𝑠∑

𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨⋅ 󵄩󵄩󵄩󵄩󵄩exp ((𝑐𝑖 − 𝑐𝑗)𝑉)󵄩󵄩󵄩󵄩󵄩 ⋅ (𝐿 + ‖Ω‖) 󵄩󵄩󵄩󵄩󵄩𝑌𝑗 − 𝑍𝑗󵄩󵄩󵄩󵄩󵄩≤ ℎ 𝑠∑
𝑖,𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ⋅ 󵄩󵄩󵄩󵄩󵄩exp ((𝑐𝑖 − 𝑐𝑗)𝑉)󵄩󵄩󵄩󵄩󵄩 ⋅ (𝐿 + ‖Ω‖) ⋅ ‖𝑌− 𝑍‖ = 𝐿1 ‖𝑌 − 𝑍‖ ,

(A.1)

where 𝐿1 = ℎ∑𝑠𝑖,𝑗=1 |𝑎𝑖𝑗| ⋅ ‖ exp((𝑐𝑖 − 𝑐𝑗)𝑉)‖(𝐿 + ‖Ω‖) < 1 ifℎ < 1/∑𝑠𝑖,𝑗=1 |𝑎𝑖𝑗| ⋅ ‖exp((𝑐𝑖 − 𝑐𝑗)𝑉)‖ ⋅ (𝐿+ ‖Ω‖). Therefore,Ψ is
a contraction onR𝑠𝑑. By the Banach contraction theorem, the
operator Ψ has a unique fixed point 𝑌 = 0; that is, 𝑌𝑖 = 0 for𝑖 = 1, . . . , 𝑠 which implies that 𝑦𝑛+1 = 0. We have proven that
the origin 𝑦∗ = 0 is the unique fixed point of the exponential
RK method (12).
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B. Analysis of Linear Stability, Distortion,
Dispersion, and Dissipation

In this section, in order to examine the behavior of an RK
or expRK method Φℎ : 𝑦𝑛 → 𝑦𝑛+1 for the dynamical
system defined by ODE (3) with a stable steady state 𝑦∗ =0, we analyze its linear stability and estimate the orders of
distortion, dispersion, and dissipation.

Let us consider the linear scalar test equation𝑦̇ − Ω𝑦 = 𝜀𝑦, (B.1)

where the complex number Ω is an estimate of the principal
rate and 𝜀 is the error of the estimation. Applying an RK
method (5) or an expRK method (12) to (B.1) yields𝑦𝑛+1 = 𝑅 (𝑉, 𝑧) 𝑦𝑛, 𝑉 = ℎΩ, 𝑧 = ℎ𝜀, (B.2)

where 𝑅(𝑉, 𝑧) is called the stability function of the method.
For an 𝑠-stage RK method,𝑅 (𝑉, 𝑧) = 1 + 𝐻𝑏𝑇 (𝐼𝑠 − 𝐻𝐴)−1 𝑒, 𝐻 = 𝑉 + 𝑧, (B.3)

where 𝐼𝑠 is the 𝑑 × 𝑑 identity matrix and the 𝑠-dimensional
vector 𝑒 = (1, . . . , 1)𝑇. For an explicit 𝑠-stage RK method,
since the matrix 𝐴 is an 𝑠 × 𝑠 lower-triangular, then 𝐴𝑠 = 0
and 𝑅 (𝑉, 𝑧) = 1 + 𝐻𝑏𝑇𝑒 − 𝐻2𝑏𝑇𝐴𝑒 + ⋅ ⋅ ⋅+ (−1)𝑠−1𝐻𝑠−1𝑏𝑇𝐴𝑠−1𝑒. (B.4)

On the other hand, an 𝑠-stage expRK method (12) has a
distortion𝑅 (𝑉, 𝑧) = exp (𝑉) + 𝑧 exp (𝑉) 𝑏 (𝑉)𝑇 (𝐼𝑠 − 𝑧𝐴)−1 𝑒. (B.5)

If the expRK method is explicit,𝑅 (𝑉, 𝑧) = exp (𝑉) (1 + 𝑧𝑏 (𝑉)𝑇 𝑒 − 𝑧2𝑏 (𝑉)𝑇𝐴𝑒 + ⋅ ⋅ ⋅+ (−1)𝑠−1 𝑧𝑠𝑏 (𝑉)𝑇𝐴𝑠−1𝑒) . (B.6)

Definition B.1. For an 𝑠-stage method with the stability
function 𝑅(𝑉, 𝑧), the region in the (𝑉, 𝑧) plane

R𝑠 = {(𝑉, 𝑧) | |𝑅 (𝑉, 𝑧)| ≤ 1} (B.7)

is called the stability region of the method.

Figure 12 presents the stability regions of RK4 (left) and
expRK4, respectively.

Definition B.2. For an 𝑠-stage expRK method (5) with the
stability function 𝑅(𝑉, 𝑧), the quantity

Dist (𝐻) = 𝐻 − ln𝑅 (𝑉, 𝑧) , 𝐻 = 𝑉 + 𝑧 (B.8)

is called the distortion (or rate error) of the method. If
Dist(𝐻) = O(𝐻𝑘+1) as 𝐻 → 0, then the method is called
distortive of order 𝑘. If Dist(𝐻) = 0, then the method is called
zero-distortive.

The distortion of RK4 method is

Dist (𝐻) = 1120𝐻5 − 1144𝐻6 + O (𝐻7) , 𝐻 󳨀→ 0. (B.9)

On the other hand, if we denote the ratio 𝑟 = 𝜀/Ω = 𝑧/𝑉, then𝑉 = (1/(1 + 𝑟))𝐻 and 𝑧 = (𝑟/(1 + 𝑟))𝐻 and the distortion of
the expRK4 method is

Dist (𝐻) = 𝑟5120 (1 + 𝑟)5𝐻5 − 𝑟6144 (1 + 𝑟)6𝐻6+ O (𝐻7) , 𝐻 󳨀→ 0. (B.10)

It can be seen from (B.9) and (B.10) that RK4 and expRK4
are both distortive of order four. However, if an estimate 𝜀
of the true rate Ω is accurate enough, that is, |𝑟| ≪ 1, then
the coefficient of the leading term of the distortion Dist(𝐻)
for the expRK4 method is much smaller than that for the RK
method. Moreover, if the frequency can be estimated exactly
(𝑟 = 1), then all the expRK methods are zero-distortive.

It has been observed that most genetic regulatory systems
have oscillatory solutions. Therefore it is of importance to
measure to what extent a numerical method can preserve the
oscillation. In order to compare the accuracy RK methods
and that of expRK methods in preserving the oscillatory
properties of the exact solution, we assume thatΩ and 𝜀 in the
test equation (B.1) are purely imaginary; that is, Ω = 𝑖𝜆, 𝜀 =𝑖𝜇, 𝑖2 = −1.
Definition B.3. For a method with stability function 𝑅(𝑉, 𝑧),
denote the real and imaginary parts of the stability function𝑅(𝑉, 𝑧) by𝑈(𝑉, 𝑧) and𝑄(𝑉, 𝑧), respectively, where 𝜉 = ℎ𝜆 and𝜂 = ℎ𝜇. The quantities

Disp (𝜃) = 𝜃 − arccos
𝑄 (𝜉, 𝜂)√𝑈2 (𝜉, 𝜂) + 𝑄2 (𝜉, 𝜂) ,

Dis (𝜃) = 1 − √𝑈2 (𝜉, 𝜂) + 𝑄2 (𝜉, 𝜂), 𝜃 = 𝜉 + 𝜂, (B.11)

are called the dispersion (or phase lag) and dissipation (or
amplification factor error) of the method, respectively. If
Disp(𝜃) = O(𝜃𝑞+1) and Dis(𝜃) = O(𝜃𝑙+1) as 𝜃 → 0, then the
method is called dispersive of order 𝑞 and dissipative of order 𝑙,
respectively. If Disp(𝜃) = 0 and Dis(𝜃) = 0, then the method
is called zero-dispersive and zero-dissipative, respectively.

For both RK4 and RK3/8, the dispersion and dissipation
satisfy

Disp (𝜃) = − 𝜃5120 + O (𝜃7) ,
Dis (𝜃) = 𝜃6144 + O (𝜃8) . (B.12)

Therefore, RK4 and RK3/8 both are dispersive of order four
and dissipative of order five.
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Figure 12: (a) Stability region of RK4; (b) stability region of expRK4.

Let 𝑟 = 𝜇/𝜆. Then the dispersion and dissipation for both
expRK4 and expRK3/8 are

Disp (𝜃) = −𝑟5 (1 + 3𝑟 + 𝑟2)120 (1 + 𝑟)6 𝜃6 + O (𝜃8) ,
Dis (𝜃) = 𝑟6144 (1 + 𝑟)6 𝜃6 + O (𝜃8) , 𝜃 󳨀→ 0.

(B.13)

Therefore, expRK4 and expRK3/8 both are dispersive of order
five and dissipative of order five. Then expRK4 (expRK3/8)
has dispersion of one order higher than RK4 (RK3/8). If |𝑟| ≪1, then the coefficient of the leading term of the dissipation
Diss(𝜃) for the expRK4 (expRK3/8) method is much smaller
than that for RK4 (RK3/8). Furthermore, if 𝑟 = 1, then all the
expRK methods are zero-dispersive and zero-dissipative.

The above analysis explains why, when the rate Ω of
the problem is estimated accurately enough, an expRK
method is more accurate than its prototype RK method in
preserving the distortion, dispersion, and dissipation of the
exact solution.
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