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Abstract

We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the
kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine
this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic
composition. Such a model required the development of a novel algebraic method that couples differential equations for
slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches
based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-
consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential
equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or
indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as
overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show
examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental
measurements gathered by different groups in many different cellular systems.
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Introduction

Distribution of charges within biological molecules is crucial,

not only for reactivity and catalysis, but also as it determines their

solubility, their particular folding, and dictates the spatio-temporal

sequence of their interactions. In this context, the pH of the

solution bathing these biological molecules is a key parameter,

since its value determines the protonation of the acid-base groups

that are especially abundant in macromolecular assemblies.

Furthermore, as many enzymes and cellular regulators exhibit a

strong pH dependency, the modification of the protonation of key

residues can deeply impact their function. For these reasons,

genomes necessarily contain pH-dependency information, which is

expressed in the proteome [1]. The complete information for

intracellular pH determination is a convoluted interplay between

the abundance and the distribution of protonable groups in

biological molecules, their pKa values and the expression, stability,

kinetic and affinity parameters of the pH regulating systems.

Accordingly, providing a fully tractable model for intracellular pH

regulation is a challenging problem, and several studies have been

aimed at building essentially heuristic models [2–5] for intracel-

lular pH regulation.

The past decades have witnessed the detailed molecular

characterization of the protagonists that regulate the concentra-

tions of cellular acid-base equivalents, in term of both their kinetics

and the affinities for their substrates [6,7]. Significant efforts have

also been invested to describe intracellular buffering mechanisms

and proton diffusion in cells adequately [8,9].

Based on this, we develop here a different, bottom-up approach

at the interface between biology, physics, chemistry and mathe-

matics. We construct a model that encompasses the individual

molecular mechanisms for these regulators defined by their own

kinetics and by their experimentally measured microscopic

parameters. This requires the inclusion of the chemical reactions

between the involved reactive species. This non-empirical process

guarantees the construction of a physically coherent, fully

integrated and tractable model (i) for cellular proton dynamics

and (ii) for steady-state pH regulation.

In the present study, we choose to keep the system simple and

modular by assuming that the cell surface and volume are fixed to

their average values and by using the ubiquitous Naz=Hz

exchanger NHE{1 and Cl{=HCO{
3 exchanger AE2 as the

main transmembrane acid-base transporters. We also include the

electrical gradient generated by the Na/K-ATPase across the

membrane and the permeabilities associated to Naz, Kz and

Cl{ background currents measured in non-excitable cells.

Therefore, our model computes the distribution of the other

cationic and anionic species and their variations as a function of

proton concentration.
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These pumps and transporters show a very high sequence

conservation within different mammalian species and possess very

similar constants for their substrates. Based on this, we built our

model using widely accepted values from the literature even if they

had been measured from different mammalian species. We will

further see that this is validated by our results, which show that pH

regulation is very resilient against variations of those thermody-

namic constants.

It is demonstrated that our model gives (i) a robust, experiment

based prediction of the temporal evolution of the pH, (ii) a simple

analytical value for its steady state, (iii) all the other ionic

concentrations related to the proton regulation, (iv) and a reduced

differential equation for describing the full pH balance.

This enables the testing of biologically-relevant situations whilst

discriminating between critical parameters and rate limiting steps

versus those factors that can be widely changed with virtually no

effect on cellular homeostasis.

Methods

Datasets used for the Model
We report most of thermodynamical data, the common ionic

environments, and the justification of the kinetic equations in the

Datasets in File S1. In the following, we illustrate the specific

behavior of the involved physical, chemical or biological

components.

Ionic Flows and Potential through the Membrane
Let us depict the cellular model represented in Figure 1

mathematically. We assume that the cell geometry is fixed by

neglecting that water flows through the membrane. The charge

balance is controlled by passive, electroneutral, electrogenic flows

and capacitive currents that are described as follows.

Passive flows. If X represents a chemical species in Figure 1,

with an inner concentration ½X� and an outer concentration ½X�out,

then it flows out of the cell through the membrane surface S due to

a permeability PX(fm). Here, fm~FEm=(RT) represents the

reduced electric potential where F is the Faraday constant, R is

the molar gas constant, T is the absolute temperature, and Em is

the electric potential difference between the cytosol and the outer

medium. The Goldman-Hodgkin-Katz flux equation [10] pro-

vides the outward molar flux jX as

jX~{PX(fm)Y zXfmð Þ ½X�out{½X�ezXfm
� �

ð1Þ

with Y(u)~u eu{1ð Þ{1
and zX is the algebraic charge of X. The

associated passive outward electric flux is JX~zXF jX and the

whole cell passive outward electric current is IX~SJX. We can

simply convert the flux into an intake molar rate for a given cell

volume V as

Lt½X�
passive

~{
S
V jX~lX(fm,zX,½X�out,½X�): ð2Þ

For the cellular system used in the electrophysiological measure-

ments we recorded significant currents only for Kz, Naz and

Cl{ (CCL39 cells, see Figure S1 in File S1). This allows the

determination of the corresponding permeabilities. Any other

species can be taken into account if other cells are considered, and

if values are available or measurable.

Electroneutral transports. The electroneutral AE2 ex-

changer keeps Cl{ ion concentration above its Nernst potential

[11], and thus is assumed to work in the forward direction. AE2 is

then operating with a Hill mechanism [12], inducing a whole cell

exchange rate

Lt½Cl{�
AE

~{Lt½HCO{
3 �AE

:rAE ð3Þ

with rAE~VAE½HCO{
3 �

c=(K
c
AEz½HCO{

3 �
c) and where VAE is

the cellular maximal HCO{
3 =Cl{ exchange rate, and where KAE

is the bicarbonate affinity. Unless indicated, we will use a

Michaelis-Menten behavior, namely c~1, and KAE is about

10 mM.

We use the established mechanism [13] of the NHE{1
exchanger that results in the whole cell exchange rate

Lt½Naz�
NHE

~{Lt½Hz�
NHE

:rNHE ð4Þ

with rNHE~VNHEsNHE ½Hz�=Krð Þ and where VNHE is the

cellular maximum Hz=Naz exchange rate, Kr is about

1:8:10{8 M and

sNHE(x)~
x(1zx)zL0Cx(1zCx)

L0(1zCx)2z(1zx)2
:

with C~Kr=Kt, Kt^3:6:10{6 M and L0^103.

Any other electroneutral transporter could be similarly

described and therefore inserted into the model.

Electrogenic currents. We restrict ourselves to the sodium-

potassium pump that exchanges three inner Naz with two outer

Kz according to

1

2
Lt½Kz�

DNaK
~{

1

3
Lt½Naz�

DNaK
:rNaK(fm), ð5Þ

where rNaK(fm)~VNaKsNaK(fm,½Naz�). VNaK is the cellular

maximum Naz=Kz exchange rate, and we combined the

experimental data found in published studies [14,15] to estimate

(see Datasets in File S1)

sNaK(fm,½Naz�)~ 1z tanh (0:39fmz1:28)½ �
2

½Naz�
KNaKz½Naz� ,

with KNaK&10{15 mM.

Electric potential evolution. The cytosol and the outer

medium must remain globally electroneutral. Conversely, charge

accumulation polarizes the membrane due to its surface capac-

itance Cm^1 mF:cm{2 (see Materials and Methods in File S1).

The total capacitance of cell membrane is C~SCm.

We take into account both the passive and electrogenic actors,

respectively defined by equations (1) and (5), which are involved in

the electric potential regulation. This results in

CLtEmz
X

X

IX(Em)zINaK(Em)~0, ð6Þ

with the electric conversion INaK~FVrNaK.

Chemical Physiology
So far in our modeling, the species passing through the

membrane are Hz, HCO{
3 , Cl{, Kz and Naz. Obviously, the

A Tractable Model for Intracellular pH
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first two of them are directly involved in the set of protic reactions

that govern the pH. Since the physiological range of pH lies

around 7, we must monitor in our analysis the self-ionization of

water

H2O'HzzHO{, Kw~½Hz�½HO{�: ð7Þ

Then, we include the three components of the carbonated

system. The partial pressure PCO2
of carbon dioxyde equilibrates

with aqueous CO2 (according to the Henry law), which undergoes

two consecutive dissociations. Those reactions and their equilib-

rium constants are summarized below:

CO2gas'CO2aq, KH~PCO2
=½CO2� ð8Þ

CO2aq'HzzHCO{
3 , K1~½Hz�½HCO{

3 �=½CO2� ð9Þ

'Hz zCO2{
3

2
z�½CO2{

3 �=½HCO
{
3

Since the dissolved CO2 is very unstable in water, and especially

in presence of physiological carbonic anhydrase [16], we shall

directly merge the equilibria (8) and (9) to get rid of CO2aq and

obtain an equivalent equilibrium:

CO2gas'HzzHCO{
3 ,K 01~K1=KH~½Hz�½HCO{

3 �=PCO2
: ð11Þ

Finally, we model the protic behavior of all the other species

within the cytosol by a single equivalent buffer that we name Y,

acting as

HY'HzzY{, KY~½Hz�½Y{�=½HY� ð12Þ

with Y0~½HY�z½Y�&50{70 mM (see [8] for details). Addi-

tionally, we do not consider the diffusive effects within the cell, by

assuming homogeneous ionic concentrations. Similarly, the outer

Figure 1. Cell model. The cell membrane acts as a capacitance, which is submitted to the membrane potential Em . Three blocks exchange ions
between the cytosol and the outer medium: they induce electroneutral transports (with the AE2 and NHE{1 exchangers), electrogenic currents via
the Na/K-ATPase, and passive ion channels (for Naz, Kz, and Cl{ ). The chemical reactions are assumed to take place within an homogenous
cytosol.
doi:10.1371/journal.pone.0085449.g001
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media is considered as an infinite bulk with constant physiological

concentrations of the different entities under consideration.

Results

General Theoretical Results
Self-consistency and modularity. To be self-consistent, our

model must ensure that each ion and the membrane potential are

sufficiently maintained by physico-chemical processes (enzymatic

transport or chemical reaction) in order to avoid some non-

physical accumulation or discrepancy such as negative concentra-

tion. Accordingly, we propose a model for a generic cell, restricted

to the previous components (transporters, ionic permeabilities and

chemical reactions) which fulfills these criteria. Noticeably, any

other effector that acts redundantly for pH regulation or is

expressed in specialized cells can be implemented, provided that

the above self-consistency is preserved. As an example, we will

show further how to handle the lactate/Hz production and

transport. The same methodology applies to other mechanisms

(such as Hz-ATPase or Naz-coupled-bicarbonate transporters)

and any additional chemical reaction.

Full formal system dynamics. For any reaction indexed by

k, we will note xk its associated rate, which is the derivative of its

chemical extent with respect to time. For each chemical species,

the concentration temporal derivative is the appropriate summa-

tion of the chemical molar rates, the exchanger transport rates and

the passive intake molar rates. The full system is straightforwardly

CLtEm ~ FV lKzzlNaz{lCl{{rNaKð Þ
Lt½Kz� ~ lKzz2rNaK

Lt½Naz� ~ lNaz{3rNaKzrNHE

Lt½Cl{� ~ lCl{zrAE

Lt½HO{� ~ xw

Lt½CO2{
3 � ~ x2

Lt½HY� ~ {xY

Lt½Y{� ~ xY

Lt½HCO{
3 � ~ {rAEzx01{x2

Lt½Hz� ~ {rNHEzxwzx01zx2zxY

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð13Þ

where xw, x01, x2, and xY are respectively the molar rate of the

water ionization (7), the direct formation of HCO{
3 (11), the

dissociation of HCO{
3 (10), and the deprotonation of the

equivalent buffer (12). The first equation of the above system is

rewritten from relation (6).

The main characteristic of protic reactions in water is that they

have very short relaxation times, from a few microseconds for

water [17] to a few milliseconds for CO2 with carbonic anhydrase

[16] or without carbonic anhydrase [18]. Since the transmem-

brane exchanges of protic species (through NHE{1 or AE2) are

expected to have characteristic times much larger, we can

consequently make the assumption that each protic equilibrium

is in fact a fast pre-equilibrium. It follows that each involved

reaction quotient always matches its corresponding thermody-

namical reaction constant: this can be seen as a set of constraints

applied to the chemical composition of the aqueous solution.

Consequently, if we want to impose a perturbation of this

composition then those pre-equilibria shall instantaneously pro-

duce the mandatory chemical extents which ensure that the final

composition respects the chemical constraints. Accordingly, the

thermodynamical knowledge of the equilibria (7) to (12) is

sufficient to solve the kinetic equations (13) in this particular

biological context.

In the following, we detail the treatment of the protic reactions

rates within the equations (13). We show (see Methods in File S1)

how to derive a set of reduced differential equations for the 5

dynamic variables Em, ½Kz�, ½Naz�, ½Cl{� and ½Hz�, within this

pre-equilibria approximation.

Steady state characterization. The steady-state values,

which we note withan asterix, are obtained by setting to zero

the temporal evolution in the differential system (13) leading to

0 ~ l?
Kzzl?

Naz{l?Cl{{r?NaK

0 ~ l?
Kzz2r?NaK

0 ~ l?Naz{3r?NaKzr?NHE

0 ~ l?Cl{zr?AE

0 ~ r?NHE{r?AE:

8>>>>>><
>>>>>>:

ð14Þ

This system is under-determined since the sum of the first

equation and of the last two ones minus the second and the third

one is zero: this is expected since the evolution of Em is the exact

conservation of the global electric charge. In our model, the latter

decomposes into an intrinsic charge Q of all the considered

components and an excess charge Qxs of all the other ‘‘spectator’’

species (proteins, other ions…), leading to CEm~DQzDQxs,

where D means the difference between the cytosol and the outer

medium values. It is the integrated form of equation (6). As a

consequence, the initial condition of the differential system (13)

gives DQxs.

In order to determine steady-state values, we first obtain the

electric equation 0~
3

2
l?Kzzl?Naz{l?Cl{ which is here equivalent

to

f?m~ ln

3

2
P?

Kz ½Kz�outzP?
Naz ½Naz�outzP?

Cl{ ½Cl{�
3

2
P?

Kz ½Kz�zP?
Naz ½Naz�zP?

Cl{ ½Cl{�out

0
B@

1
CA ð15Þ

since we only deal with monovalent ions. The relation (15) is the

Goldman-Hodgkin-Katz potential equation with voltage-depen-

dent permeabilities and a potential explicitly regulated by Na/K-

ATPase.

With VAE=NHE~VAE=VNHE (see equations (3) and (4)) and

L0&1, the last equation of the system (14) can be expressed as a

function of h? and it reduces to a simple polynomial

KAEKr

K 01PCO2

h?

Kr

� �2

z 1{
VAE=NHE

1z
1

CL0

0
BB@

1
CCA h?

Kr

� �
{

1

C

VAE=NHE

1z
1

CL0

~0:ð16Þ

This analytical relation yields the steady-state pH as a function

of PCO2
and VAE=VNHE, since h? is the positive root of equation

(16). The Figure 2 shows how the exact pH? evolves when those

parameters are changed and where the acceptable physiological

limits stand. In particular, for an intracellular pH~7:2 and

PCO2
~40 mmHg our model predicts VAE=VNHE^0:057: this

transport ratio matches well the experimental maximal rates of this

transporters in different systems [19–21]. An interesting feature of

A Tractable Model for Intracellular pH
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our model is the prediction of missing parameters (kinetic and/or

thermodynamic) based on the knowledge of steady-state physio-

logical values (see Results in File S1). For instance, a unique ½Hz�?
is computed from a given VAE, VNHE and PCO2

. Conversely, the

ratio VAE=VNHE can be read on Figure 2 from the experimental

measure of ½Hz�? and PCO2
.

Asymptotic Kinetics Framework
General philosophy. The set of differential equations (13)

defines a multiple-scale system (in both time and in concentra-

tions), since it combines slow chemical rates with fast relaxing

protic reactions. In either muliple-scale analysis [22] and normal

forms in central manifolds [23], the slow dynamics are assessed

around a stationary point. However, in the case used herein, the

slow dynamics evolve on manifolds generated by the laws of mass

action (corresponding to each protic pre-equilibrium established at

its thermodynamical constant) and represent the only valid

compositions of the system. To the the best of our knowledge,

this is the first time that a way to compute the constrained

evolution of the all the involved concentrations has been exposed.

Chemical system description. If we assume that we have

N chemical reactions coupling M species X1,...,M , then the

relevant reactions may be written in a generic form, employing the

algebraic stoichiometric coefficients v :

Vi [1::N,
X

j[1::M

vi, jXj~0, Ki~Pj[1::M ½X�
vi, j
j ð17Þ

where Ki is the equilibrium constant of the ith reaction. We also

assume that Ki is temporally dependent, so as to reflect the

possible variations of the external conditions (such as imposed

changes in partial pressures).

Fast pre-equilibria consequences. We now assume that

those N reactions represent fast pre-equilibria. In other words, we

suppose that the relaxation time of each reaction is infinitely small.

Accordingly, we define the vector ~CC by its coordinates ~CCi such that

Vi [1::N, ~CCi~Ki P
vi, jv0

½X{ni, j
j { P

vi, jw0
½X�ni, j

j ~0: ð18Þ

Thus, the only permissible evolutions must be satisfied at

particular time t and for any set of concentrations ½X!� through the

relationships:

~00 ~ ~CC(t, X
!h i

)

~00 ~ Lt
~CCzWLt X

!h i
8><
>: ð19Þ

where W is the Jacobian matrix of ~CC with respect to X
!h i

.

Response to perturbations. If we perform a small modifi-

cation d X
!h i

during dt on this system, all the reactions evolve to

preserve ~CC~~00. The resulting individual chemical extents ji of

each reaction form the vector ~jj. We then obtain a modified

perturbation

d X
! 0h i

~d X
!h i

zvT~jj ð20Þ

and this in turn must obey

~00~dtLt
~CCzWd X

! 0h i
: ð21Þ

The instantaneous chemical extent is readily computed by

~jj~{ WvT
� �{1

dtLt
~CCzWd X

!h i� �
: ð22Þ

We can show that the N|N matrix WvT is invertible for any

admissible set of concentrations. This purely algebraic property

results from the convexity of the free enthalpies of reactions from

which the expressions of ~CC and W are derived, but this purely

mathematical demonstration is far beyond the scope of this article.
Generic asymptotic kinetics. Finally, noting that Lt X

!h i
slow

contains global information regarding the ‘‘slow’’-changing

variations of all the chemical species, the overall chemical

evolution of the system is deduced from (22) by setting

d X
!h i

~dtLt X
!h i

slow
. Thus, asymptotic kinetics can be written as

Lt X
!h i

~Lt X
!h i

slow
{vT WvT

� �{1
WLt X
!h i

slow
zLt

~CC
� �

ð23Þ

thereby illustrating how the fast chemical reactions are damping

the slow variations.
Numerical integration. A modular C++ program (available

upon request) was designed and exactly encodes the biological

effectors, the membrane potential and the chemistry into a system

of algebraically coupled numerical differential equations. The

integration step was performed by an adaptive Dormand-Prince

method with a fractional tolerance of 10{7.

Reduced Model for pH Dynamics
Evaluation. If it is assumed that all the protic reactions are

rapid pre-equilibria (see above), then we can derive the proton

generation rate by using the previous mathematical formalism.

This formalism provides an algebraic manner to decouple all the

protic reactions from the catalytic ones explicitly. Implicitly

however, all protic dynamics may be deduced from the evolution

of ½Hz� which has unfortunately no simple expression.
Simplified pH dynamics. For a given cell in physiological

conditions (for which the internal steady pH is around 7.2) we can

neglect the presence of CO2{
3 and obtain a slightly simplified rate

(see Methods in File S1):

Lt½Hz� &H(½Hz�,Y0) rAE{rNHEð Þz K 01
½Hz� LtPCO2

� �

H ~
½Hz�2

½Hz�2zKwzK 01PCO2

1

1zbYY0

8>>>>><
>>>>>:

ð24Þ

with a numerically derived value bY^6:55 M{1, and for a total

buffer concentration Y0. Here, rAE and rNHE depend only on the

pH and on PCO2
, so that one can simulate the pH with only one

differential equation.

Role of the buffer. The steady-state pH? is readily recovered

from equation (24). The factor H emphasizes the preponderant

role of the chemical couplings pertaining to the evolution of the

intracellular pH. Indeed, we always have Hv½Hz�2=(K 01PCO2
),

so that for the steady state of a ‘‘normal’’ cell (pH~7:2,

A Tractable Model for Intracellular pH
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PCO2
~40 mmHg), we estimate H?

v5:10{6. The protons

dynamics (hence of all the protic species) are sharply damped by

those chemical couplings. As expected, the buffer causes these

dynamics to be even further reduced through the term 1zbYY0

in the H denominator, up to 30% for a 60 mM buffer

concentration.

Natural overshoot. Interestingly, our calculations predict

that a vanishing physiological protic perturbation will systemati-

cally produce a pH overshoot around its steady state. Such

phenomena are well known experimentally [24,25]. The exact

mathematical demonstration of this phenomenon (see Methods in

File S1), is valid for acidification or alkalinization, and can be

applied to model other overshoots observed in different physio-

logical regulations.

To explain this in a non-mathematical way, we may perform

the following thought experiment. Let us assume that a weak

protonated base HB enters the cell at its steady state. The excess of

protons produced by the dissociation HB'HzzB{ is contin-

uously pumped out of the cell by the regulating enzymes. As a

consequence, if the cell removes HB from its cytosol, then some

protons will not neutralize the remaining B{. Accordingly, the

initial pH is reached earlier than expected: the further removal of

B{ straightforwardly creates an unexpected depletion of protons

(basic environment) before returning to the initial situation. This

describes an overshoot mechanism.

Steady-state pH: Role of Enzymatic Constants
We have investigated the changes in the steady-state pH

resulting from covalent or non-covalent modification of the

transporters through intracellular signaling cascades, and the

effects of allosteric activators or inhibitors or mutations that affect

the transporters parameters. Unless stated, we model these effects

assuming that a modification is specific and affects only one

thermodynamical enzymatic constant without changing the others,

while we keep the kinetic ratio VAE=VNHE and PCO2
to their usual

levels.

For NHE{1, it has been shown that within the Monod-

Wyman-Changeux framework [26], the allosteric constant L0 is

modified by various stimuli such as growth factor stimulation or

changes in membrane composition and tension [13,21]. This

raises the question whether NHE{1 cooperativity for proton is

intrinsically important for pH regulation itself and other cellular

functions. Accordingly, Figure 3 depicts the results of our

computations of the resulting pH following a modification of L0.

Interestingly, it has been shown widely that the activation of

NHE{1 by the above-mentioned stimuli [27] decreases L0 by

one order of magnitude [13], and results in a pH increase of 0.2 to

0.3 units. Our model yields a pH increase of about 0.3 units for

L0,stim=L0~0:1, which is in very good agreement with the actual

experimental data. We are also able to hypothesize that in some

cases NHE{1 might be regulated by altering its microscopic

affinities for protons. To investigate this, we changed the Kr and

Kt constants of NHE{1 and kept the Kr=Kt ratio constant, as

these two affinities correspond to the same site in different

conformations. Our model predicts that any important change in

these microscopic affinities would produce a large pH shift, as

shown on Figure 3.

For AE2, we investigated either the effect of a variation in the

affinity KAE or in the Hill exponent (see Figure 3). We observe a

less drastic change than those resulting from a NHE{1
modification. This makes sense from a physiological point of

view: due to membrane potential and metabolic activity, cells

constantly have to compensate for intracellular acidification rather

than for alkalinization.

To summarize, we show that pH regulation is robust for two

main reasons. Firstly, changes in the thermodynamic constants of

Figure 2. Three dimensional representation of steady-state pH. pH is drawn as a function of the two controlling parameters PCO2
and

VAE=VNHE. The flattest area of this surface stretches over +0:5 units around physiological pH (7.2, in black). This corresponds to values that can be
reached by cellular systems (red boundaries).
doi:10.1371/journal.pone.0085449.g002
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pH regulation systems, that in vivo could arise from mutations or

from interspecific variations, induce minute modifications of the

steady-state pH. Secondly, pH can relax back to its physiological

value, because changes in constants are very easily overcome by

slight modifications of the maximal rates of the transporters, i.e. the

amount of transporters expressed at the plasma membrane. This a

posteriori validate the hypotheses and choices described in the

introduction.

Characteristic Time Scales in pH Regulation
In order to investigate the dynamics, we integrated the

differential system (13) as described previously. We choose to

approximate the average fibroblaste shape using a prolate

spheroid model of length 25mm and a diameter of 10 mm, leading

to a surface S~653 mm2 and a volume V~1309 mm3.

We found an anionic charge excess of DQxs^{30 mM for this

configuration, which mainly corresponds (i) to the excess of

negative charges found on the surface of intracellular proteins and

(ii) to the bulk of negative charges provided by the first dissociation

of phosphate groups [8].

Relaxation times around the steady-state values. We

performed the linear stability analysis of the differential system (13)

which also provides the relaxation constants of the independent

variables. We deduced the raw and typical relaxation time

constants for our cell model by setting the equivalent buffer

concentration to zero. Firstly, we obtain a 3 ms characteristic time

that predominantly corresponds to the relaxation of Em: obviously

the membrane potential adjusts itself very quickly to a change in

the ionic composition, but since it does not produce chemical

species per se, it does not influence the chemical rates.

Secondly, we have two similar time constants representing the

relaxation of a perturbation of all the ions within 8 and 15

minutes.

Finally, for a fixed PCO2
, the perturbed concentration d½Hz�

dynamics obeys to

Ltd½Hz�~{d½Hz�=th ð25Þ

with 1=th~ H
L(rNHE{rAE)

L½Hz�

� 	?
. Since the relation (24) provides

H?&5:10{6, the proton relaxation time th reaches about 5
minutes, which is consistent with the experimental observations

from a plethora or reports [24,28,29].

Illustration on Pathophysiological Situations
Forced acidosis: PCO2

and intracellular buffer. We

simulated an artificial increase of PCO2
of 20% during 1 minute

(from 40 mmHg to 48 mmHg) followed by a return to the normal

within 5 minutes. The resulting pH dynamics with and without the

equivalent buffer HY=Y{ are presented in Figure 4A. As shown

in Figure 4B, the HCO{
3 excess increases the Cl{ intake, and the

acidification increases the Naz intake, while the Kz level is

remarkly stable as expected. The net ionic currents produce a

concurrent tiny 2 mV depolarization. We note that, via the

chemical couplings, the aprotic species dynamics are also

dampened by the presence of the buffer. As expected, the different

timescales are also respected once the perturbation is over and all

the concentrations are relaxing towards their steady-state value:

the pH needs only a few minutes to recover its physiological level,

while the other ions rather require tens of minutes to reach their

final balance. The numerical simulation also points out the

predicted overshoot with and without buffering.

If PCO2
is held to at its maximum increase, then the pH

converges to a new value that can be deduced from Figure 2. In

such a case, the pH curve is similar to Figure 4A except that it

converges monotonously towards almost 7.18 after the initial

decrease, and no overshoot occurs. At the same time, the other

Figure 3. pH modification by changes in biochemical constants. The reference values are L0~103 , Kr~1:8:10{8 M, Kt~3:6:10{6 M,
KAE~10 mM and c~1. For Kr and Kt modification, the ratio Kr=Kt is held constant (see text for the explanation).
doi:10.1371/journal.pone.0085449.g003
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ions find a different balance. The results of this specific PCO2
jump

are shown on Figure S2A&B in File S1.

High-flow lactic ischemia. Here we show how to expand

the model in order to probe the consequences of a slight hypoxia

without ATP depletion. We model it with a lactic acid production,

while we hold the enzymatic constants and PCO2
to their normal

values. Since our model is modular, we first consider the

dissociation of the lactic acid LaH, namely LaH'La{zHz

with Ka~10{3:86. The cell removes lactates and their accompa-

nying protons (1:1) through monocarboxylate transporters (MCT)

[30,31]. The latters follow a Michaelian law defined by

Km^30 mM and by an observed maximum rate

a{^1 mM=min [32]. The global lactic acid production is around

az^1 mM=min in an hypoxic skeletal muscle [33]. Consequent-

ly we simply have (i) to append

Lt½LaH� ~ {xazra

Lt½La{� ~ zxa



ð26Þ

where xa is the molar rate of the lactic acid dissociation and (ii) to

include xa to Lt½Hz� within the differential system (13). Here we

impose

ra~az if 0vtvTa

ra~{a{½La{�=(Kmz½La{�) if t§Ta



ð27Þ

where Ta is the ischemia duration. The resulting pH is shown in

Figure 5A.

Consequently, an extra term appears in the overall protonic

rate:

Figure 4. Forced acidosis by a simulated PCO2
spike. The rise and the decrease of PCO2

are highlighted by blue areas. (A) The expected pH
overshoot takes place with or without the presence of a 60 mM physiological buffer (dashed lines). (B) The ionic ratios relative to the initial values are
reported as well.
doi:10.1371/journal.pone.0085449.g004
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Lt½Hz�!(Kaz½Hz�) rNHE{rAEð ÞzKara: ð28Þ

The acidification of the cytosol produces a massive Naz

overload (see Figure 5B), which is experimentally observed [28]

and corresponds to a stimulated action of NHE{1. For a fixed

PCO2
, the fall of ½HCO{

3 � during the lactate production decreases

the chloride intake, as shown in Figure 5B. The net ionic currents

induce a small 200 mV hyperpolarization over the simulation. As

demonstrated in the Methods of File S1, the structure of equation

(28) leads to an expected pH overshoot, which occurs after

twTa~15 minutes. The fast regulating couple formed by

NHE{1 and AE2 allows the pH to follow the rate limiting

lactate expulsion.

Discussion

Adequacy with Experimental Data
As previously stated, the main purpose of this study was to build

a mathematical depiction of intracellular pH regulation and

investigate whether it had analytical solutions and produced

biologically relevant simulations. This last section intends to

further challenge our study by confronting real experimental data.

To avoid potential biases, we decided against the use of our own

data and instead to choose one of the pioneer experiments within

the large body of published intracellular pH measurements

generated by independent groups in the last four decades.

Namely, we use here experimental recordings performed in one

of the chief studies on intracellular pH regulation published by

Roos and Boron in 1981 [24]. In this study (figure 5A of the

original article), a Helix neuron was submitted to a 10 minutes 5%

Figure 5. Simulated ischemia. Lactate production occurs with a constant PCO2
, a 60 mM buffer, and with transporters working at their nominal

level. The lactate accumulation is highlighted by a green area. (A) The predicted pH overshoot takes place during the lactate removal by the
monocarboxylate transporters. (B) The corresponding ionic ratios relative to the initial values.
doi:10.1371/journal.pone.0085449.g005
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CO2 pulse. Its pH dropped from 7.35 to 6.85 and returned to

normal after the pulse, with a noticeable overshoot. Details of the

calculation and graphical results produced by our simulation are

given in Materials and Figure S3A in File S1. Taken together, they

show that only very minimal modifications of the constants of the

system, well within differences found between different cell lines

such as fibroblasts and neurons, have to be applied to converge to

the resting intracellular pH measured in experimental conditions

and that very satisfactory matches are obtained between calculated

and experimental values for PCO2
and intracellular pH.

Main Outcome
This study describes the first fully coupled and self-consistent

mathematical system for intracellular pH regulation. For this, we

constructed a minimal system that is uniquely based on the kinetic,

electric and chemical equations describing the molecular processes

pertaining to intracellular pH. This strategy is very different from

classical heuristic methods used to model biological processes, that

are mostly built on phenomenological equations deduced from

fitted curves. It also avoids the introduction of ad hoc fluxes and/or

constants to ensure the convergence of the numerical simulations

with experimental data. Importantly, the present approach allows

analytical processing. It shows, for the first time, that the dynamics

of pH can be described by a reduced differential equation, and

that steady-state intracellular pH values are in fact analytical

solutions. Besides, despite the formal complexity provided by the

large body of equations used here, the calculated numerical values

of pH, ionic concentrations and membrane potential converge

towards physiological values, with time evolutions that are very

reminiscent of experimental behaviors. The last remarkable

finding is the demonstration that any additional phenomenon

that directly or indirectly impacts pH can be mathematically

included without violating our model, provided that its equation is

not ill defined. At this step, it is important to notice that here, we

focused on the construction of a model restricted to intracellular

conditions in a single, isolated and homogenous cell. Because our

system is fully modular it will enable future refinements. In

particular, future developments will include cell shape and

mechanics, extracellular physical and chemical parameters as well

as diffusive transport.
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