

Received 27 March 2015 Accepted 14 April 2015

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; antiviral; WIN derivative; isoxazole; oxadiazole

CCDC reference: 1059505

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 5-{3-[2,6-dimethyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl}-*N*-(11-hydroxyundecyl)isoxazole-3-carboxamide hemihydrate

K. Salorinne and T. Lahtinen*

Department of Chemistry, Nanoscience Center, University of Jyväskylä, PO Box 35, 40014 JYU, Finland. *Correspondence e-mail: tanja.m.lahtinen@jyu.fi

The title compound, $C_{29}H_{42}N_4O_5 \cdot 0.5H_2O$, comprises four structural units. A flexible propyloxy unit in a *gauche* conformation, with a $-C(H_2)-C(H_2)-C(H_2)-C(H_2)-O$ torsion angle of -64.32 (18)°, connects an isoxazole ring and an approximately planar phenyloxadiazole ring system [with a maximum devation of 0.061 (2) Å], which are oriented almost parallel to one another with a dihedral angle of 10.75 (7)°. Furthermore, a C_{11} -alkyl chain with a terminal hydroxy group links to the 3-position of the isoxazole ring *via* an amide bond. In the crystal, a half-occupancy solvent water molecule connects to a neighbouring molecule *via* an intermolecular $O-H \cdots O(water)$ hydrogen bond to the C_{11} -alkyl chain hydroxy group.

1. Chemical context

An antiviral drug family of the so-called 'WIN compounds' was developed against various human illnesses caused by enteroviruses including common respiratory infections, rash or mild fever and serious or life-threatening infections, such as meningitis, myocarditis, encephalitis and paralytic poliomyelitis (De Palma et al., 2008; Diana, 2003). The WIN compounds were particularly designed to target the early events (attachment, entry and uncoating) of viral replication and they have been shown to bind specifically into the interior hydrophobic pocket located at the VP1 protein of the enterovirus capsid and replacing the naturally occurring myristic acid (Reisdorph et al., 2003; Giranda et al., 1995; Zhang et al., 2004; Thibaut et al., 2012). The antiviral drug candidate development finally led to the WIN 63843 analogue, better known as Pleconaril, which showed a drastic decrease in the metabolic degradation of the molecule and a broad range of antiviral activity against enteroviruses (Pevear et al., 1999; Wildenbeest et al., 2012). The design of the title compound is based on the chemical structure of the WIN 61893 analogue (Diana et al., 1995), to which an additional C₁₁-alkyl linker arm having a hydroxy end group was attached at the 3-position of the isoxazole ring via an amide bond.

C11-alkyl chain

WIN framework

Figure 1

The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The structure contains three essentially planar heterocyclic or aromatic rings, *i.e.* isoxazole (atoms C19–C21/N22/O23), benzene (C7–C12) and oxadiazole (C2/O3/N4/C5/N6), of which the latter two are directly connected *via* atoms C7 and C5. The three heterocyclic rings are approximately coplanar to one another, having dihedral angles between the rings of 11.57 (8) (C19–C21/N22/O23 and C7–C12), 10.68 (9) (C19–C21/N22/O23 and C2/O3/N4/C5/N6) and 4.81 (9)° (C7–C12 and C2/O3/N4/C5/N6), maintaining the WIN framework in a linear conformation. The dihedral angle between the isoxazole ring (C19–C21/N22/O23) and the approximately planar phenyloxadiazole ring system [C7–C12/C2/O3/N4/C5/N6, with a maximum devation of 0.061 (2)Å for atom C12] is

 $10.75 (7)^{\circ}$. The isoxazole and phenyloxadiazole ring systems are connected by a propyloxy unit (O15-C18), which is in a gauche conformation, with a C18-C17-C16-O15 torsion angle of $-64.32 (18)^\circ$. The amide group (N26-C24) at the 3position of the isoxazole ring which joins the C₁₁-alkyl chain (C27-O38) and the WIN framework is likewise almost coplanar with the isoxazole ring, with a dihedral angle of $10.92 (9)^{\circ}$ between the amide (H26/N26/C24/O25) and isoxazole planes. The amide hydrogen (H26) and the acidic isoxazole hydrogen (H20) are on opposite sides, with a torsion angle (N26-C24-C21-C20) of 172.31 (15)°. The C₁₁-alkyl chain (C27-C37) is in an all-anti conformation, with an average torsion angle of 178.80°. The WIN framework and the C_{11} -linker arm structural units are aligned roughly in a 160° angle and the total length of the title molecule measures up to 3.4 nm.

Figure 2

A view along the c axis of the crystal packing of the title compound. Intermolecular interactions formed between neighbouring molecules highlighting the solvent water mediated hydrogen bonding network (motif 1, orange box) and the two coordination loops between the heterocyclic isoxazole and phenyl-oxadiazole units (motif 2, blue box).

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C28-H28A\cdots O3^{i}$	0.99	2.64	3.2567 (19)	120
$C20-H20\cdots O38^{ii}$	0.95	2.56	3.505 (2)	175
$C13-H13B\cdots O23^{i}$	0.98	2.51	3.416 (2)	154
$C1 - H1B \cdots N6$	0.98	2.65	3.622 (2)	174
$O100-H10B\cdots O25^{iii}$	0.84(1)	1.87(1)	2.710 (3)	180 (6)
O38-H38···O100	0.82(1)	1.90(1)	2.695 (4)	164 (2)

Symmetry codes: (i) -x + 3, -y + 1, -z + 1; (ii) x + 2, y + 1, z + 1; (iii) x - 2, y - 1, z - 1.

3. Supramolecular features

The title compound packs in the crystal lattice in layers, in which the molecules are held together by solvent-mediated $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (motif 1), as well as $C-H\cdots N$ and $C-H\cdots O$ intermolecular interactions between the heterocyclic isoxazole and phenyloxadiazole units of neighbouring molecules (motif 2) (Table 1). In the solvent-mediated assembly, an intermolecular hydrogenbonded network of the type $R_3^3(9)$ is formed between the C₁₁alkyl chain hydroxy $[O-H \cdots O = 1.90 (1) \text{ Å}]$, solvent water $[O-H \cdots O = 1.87 (1) \text{ Å}]$, amide carbonyl and isoxazole hydrogen (C-H···O = 2.56 Å) groups of two parallel neighbouring molecules (Fig. 2). In a similar manner, two pairs of $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds connect three opposite-facing neighbouring molecules via $R_2^{(2)}(8)$ and $R_2^{(2)}(16)$ loops between the isoxazole $(C-H \cdots O = 2.51 \text{ Å})$ and phenyloxadiazole (C-H···O = 2.64 Å and C-H···N = 2.65 Å) groups (Fig. 2).

4. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.36, November 2014; Groom & Allen, 2014) revealed the presence of nine structures (CSD refcode VOGDAY contains two independent molecules; Salorinne et al., 2014) with the substructure 3-{3,5-dimethyl-4-[3-(3-methylisoxazol-5-yl)propoxy]phenyl}-5-methyl-1,2,4-oxadiazole. These nine structures belong to three similar compounds of 5-{3-[2,6dimethyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl}isoxazole-3-carboxylic acid (Salorinne et al., 2014), ethyl 5-{3-[2,6dimethyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl}isoxazole-3-carboxylate (Salorinne et al., 2014) and 3-{3,5-dimethyl-4-[3-(3-methylisoxazol-5-yl)propoxy]phenyl}-5-trifluoromethyl-1,2,4-oxadiazole (Coste et al., 2004). In six of the nine structures (CSD refcodes VOGCOL01, VOGDAY, HAJYUN, HAJYUN01, HAJYUN02 and HAJYUN03; Salorinne et al., 2014; Coste et al., 2004), the isoxazole and phenyloxadiazole heterocyclic rings of the WIN framework are almost coplanar, similar to the title compound. However, in two of the structures (CSD refcodes VOGCOL and VOGDEL; Salorinne et al., 2014), the heterocyclic ring systems are tilted slightly with angles of 34-38° between the ring planes, whereas in one of the structures (CSD refcode VOGCOL; Salorinne et al., 2014), the heterocyclic ring systems are closer to a perpendicular

Table 2 Experimental details.	
Crystal data	
Chemical formula	$2C_{29}H_{42}N_4O_5\cdot H_2O$
$M_{\rm r}$	1071.34
Crystal system, space group	Triclinic, P1
Temperature (K)	170
a, b, c (Å)	6.7137 (3), 14.0263 (5), 16.6757 (8)
α, β, γ (°)	113.889 (4), 94.515 (4), 90.976 (4)
$V(\dot{A}^3)$	1429.29 (12)
Z	1
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.42 \times 0.15 \times 0.09$
Data collection	
Diffractometer	Agilent SuperNova, Single source at offset, Eos
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]
T_{\min}, T_{\max}	0.990, 0.998
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13976, 7670, 5463
R _{int}	0.016
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.716
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.148, 1.05
No. of reflections	7670
No. of parameters	364
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}}$, $\Delta \rho_{\text{min}}$ (e Å ⁻³)	0.360.26

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

orientation, with an angle of ca 60.8°. In all of the structures, the propyloxy unit is in a *gauche* conformation, with torsion angles in the range 62.4–69.2°.

5. Synthesis and crystallization

An amide coupling reaction of 5-{3-[2,6-dimethyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl}isoxazole-3-carboxylic acid (0.17 mmol, Salorinne *et al.*, 2014) with 11-amino-1-undecanol (0.18 mmol) in dichloromethane (20 ml) in the presence of N-[3-(dimethylamino)propyl]-N-ethylcarbodi-imide (0.19 mmol) and a catalytic amount of 1-hydroxy-benzotriazole at 273 K gave the title compound in 68% yield after subsequent chromatographic purification in silica with a dichloromethane–methanol mixture (95:5 v/v). Needle-like crystals of the title compound were obtained from an ethanol solution by vapor diffusion with water.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.95-0.99 Å, and with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $1.2U_{eq}(C)$ for other H atoms, and N-H = 0.88 Å and $U_{iso}(H) = 1.2U_{eq}(N)$. The positions of the O-bound H atoms were located in a difference Fourier map and refined as riding atoms with $U_{iso}(H) = 1.5U_{eq}(O)$. The O-H distance of the half-occupied water molecule was restrained to 0.84 (1) Å.

References

- Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Coste, S., Schneider, J. M., Petit, M. N. & Coquerel, G. (2004). Cryst. Growth Des. 4, 1237–1244.
- De Palma, A. M., Vliegen, I., Clercq, E. D. & Neyts, I. (2008). Med. Res. Rev. 28, 823–884.
- Diana, G. D. (2003). Curr. Med. Chem. 2, 1-12.
- Diana, G. D., Rudewicz, P., Pevear, D. C., Nitz, T. J., Aldous, S. C., Aldous, D. J., Robinson, D. T., Draper, T., Dutko, F. J., Aldi, C., Gendron, G., Oglesby, R. C., Volkots, D. L., Reuman, M., Bailey, T. R., Czerniak, R., Block, T., Roland, R. & Opperman, J. (1995). J. Med. Chem. 38, 1355–1371.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Giranda, V. L., Russo, G. R., Felock, P. J., Bailey, T. R., Draper, T., Aldous, D. J., Guiles, J., Dutko, F. J., Diana, G. D., Pevear, D. C. & McMillan, M. (1995). *Acta Cryst.* D51, 496–503.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Pevear, D. C., Tull, T. M., Seipel, M. E. & Groarke, J. M. (1999). Antimicrob. Agents Chemother. 43, 2109–2115.
- Reisdorph, N., Thomas, J. J., Katpally, U., Chase, E., Harris, K., Siuzdak, G. & Smith, T. J. (2003). Virology, **314**, 34–44.
- Salorinne, K., Lahtinen, T., Marjomäki, V. & Häkkinen, H. (2014). *CrystEngComm*, **16**, 9001–9009.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thibaut, H. J., De Palma, A. M. & Neyts, J. (2012). Biochem. Pharmacol. 83, 185–192.
- Wildenbeest, J. G., van den Broek, P. J., Benschop, K. S. M., Koen, G., Wierenga, P. C., Vossen, A. C. T. M., Kuijpers, T. W. & Wolthers, K. C. (2012). Antiviral Ther. 17, 459–466.
- Zhang, Y., Simpson, A. A., Ledford, R. M., Bator, C. M., Chakravarty, S., Skochko, G. A., Demenczuk, T. M., Watanyar, A., Pevear, D. C. & Rossmann, M. G. (2004). J. Virol. 78, 11061–11069.

supporting information

Acta Cryst. (2015). E71, 505-508 [doi:10.1107/S2056989015007367]

Crystal structure of 5-{3-[2,6-dimethyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl}-*N*-(11-hydroxyundecyl)isoxazole-3-carboxamide hemihydrate

K. Salorinne and T. Lahtinen

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

5-{3-[2,6-Dimethyl-4-(5-methyl-1,2,4-oxadiazol-3-yl)phenoxy]propyl}-*N*-(11-hydroxyundecyl)isoxazole-3-carboxamide hemihydrate

Crystal data	
$2C_{29}H_{42}N_4O_5 \cdot H_2O$ $M_r = 1071.34$ Triclinic, <i>P</i> 1 a = 6.7137 (3) Å b = 14.0263 (5) Å c = 16.6757 (8) Å a = 113.889 (4)° $\beta = 94.515$ (4)° $\gamma = 90.976$ (4)°	Z = 1 F(000) = 578 $D_x = 1.245 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5261 reflections $\theta = 2.5-30.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 170 K Needle, clear colourless
$V = 1429.29 (12) A^3$	$0.42 \times 0.15 \times 0.09 \text{ mm}$
Data collection	
Agilent SuperNova, Single source at offset, Eos diffractometer Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 16.0107 pixels mm ⁻¹ ω scans Absorption correction: analytical [<i>CrysAlis PRO</i> (Agilent, 2013), based on expressions derived by Clark & Reid (1995)]	$T_{\min} = 0.990, T_{\max} = 0.998$ 13976 measured reflections 7670 independent reflections 5463 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.016$ $\theta_{\text{max}} = 30.6^{\circ}, \theta_{\text{min}} = 2.5^{\circ}$ $h = -8 \rightarrow 9$ $k = -19 \rightarrow 20$ $l = -23 \rightarrow 23$
Refinement	
Refinement on F^2	7670 reflections

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.148$ S = 1.05

364 parameters3 restraintsPrimary atom site location: structure-invariant direct methods

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 0.3588P]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.26$ e Å ⁻³

Special details

Experimental. Absorption correction: [CrysAlisPro (Agilent, 2013). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N26	0.4579 (2)	0.58797 (10)	0.29818 (9)	0.0368 (3)	
H26	0.5168	0.5282	0.2794	0.044*	
015	1.50948 (17)	0.80964 (8)	0.69521 (7)	0.0345 (3)	
O23	0.98187 (18)	0.57258 (8)	0.43787 (8)	0.0419 (3)	
C33	-0.5511 (2)	0.30398 (12)	-0.11261 (10)	0.0345 (4)	
H33A	-0.6504	0.3164	-0.0691	0.041*	
H33B	-0.5519	0.3632	-0.1305	0.041*	
C28	0.1978 (2)	0.49429 (12)	0.17862 (10)	0.0333 (3)	
H28A	0.2024	0.4347	0.1960	0.040*	
H28B	0.2944	0.4832	0.1342	0.040*	
C27	0.2593 (2)	0.59363 (13)	0.25821 (10)	0.0367 (4)	
H27A	0.2598	0.6531	0.2406	0.044*	
H27B	0.1607	0.6061	0.3021	0.044*	
C35	-0.8237 (3)	0.20232 (12)	-0.23541 (10)	0.0364 (4)	
H35A	-0.8320	0.2614	-0.2534	0.044*	
H35B	-0.9211	0.2122	-0.1915	0.044*	
O25	0.4853 (2)	0.75915 (9)	0.38872 (8)	0.0472 (3)	
C31	-0.2796 (2)	0.40101 (12)	0.01197 (10)	0.0333 (3)	
H31A	-0.3782	0.4129	0.0558	0.040*	
H31B	-0.2810	0.4607	-0.0053	0.040*	
C7	2.0845 (2)	0.78185 (12)	0.79254 (10)	0.0327 (3)	
C30	-0.0726 (2)	0.39840 (12)	0.05502 (10)	0.0337 (3)	
H30A	0.0267	0.3889	0.0119	0.040*	
H30B	-0.0698	0.3374	0.0707	0.040*	
O3	2.54720 (19)	0.71434 (9)	0.87183 (8)	0.0418 (3)	
C32	-0.3442 (2)	0.30171 (12)	-0.06881 (10)	0.0348 (4)	
H32A	-0.3433	0.2421	-0.0514	0.042*	
H32B	-0.2450	0.2897	-0.1124	0.042*	
C12	2.0006 (3)	0.87875 (12)	0.82186 (10)	0.0365 (4)	
H12	2.0747	0.9378	0.8653	0.044*	
N6	2.3818 (2)	0.85718 (11)	0.90254 (9)	0.0388 (3)	
N4	2.3705 (2)	0.68521 (11)	0.81288 (9)	0.0389 (3)	

C29	-0.0119 (2)	0.49672 (12)	0.13743 (10)	0.0339 (3)
H29A	-0.1090	0.5053	0.1813	0.041*
H29B	-0.0178	0.5580	0.1222	0.041*
C10	1.7059 (2)	0.80337 (12)	0.72431 (10)	0.0311 (3)
C34	-0.6142 (2)	0.20383 (12)	-0.19294 (10)	0.0357 (4)
H34A	-0.5177	0.1933	-0.2374	0.043*
H34B	-0.6067	0.1444	-0.1754	0.043*
C8	1.9776 (2)	0.69561 (12)	0.72722 (10)	0.0323 (3)
H8	2.0353	0.6295	0.7065	0.039*
N22	0.7992 (2)	0.55954 (11)	0.38631 (9)	0.0413 (4)
С9	1.7885 (2)	0.70490 (12)	0.69204 (10)	0.0314 (3)
C24	0.5515 (2)	0.67201 (12)	0.36269 (10)	0.0331 (3)
C36	-0.8799 (3)	0.10077 (13)	-0.31550 (11)	0.0409 (4)
H36A	-0.7808	0.0904	-0.3588	0.049*
H36B	-0.8732	0.0420	-0.2971	0.049*
C18	1.2226 (2)	0.70293 (12)	0.53997 (10)	0.0337 (3)
H18A	1.3308	0.6702	0.5025	0.040*
H18B	1.2189	0.6737	0.5849	0.040*
C20	0.8824 (2)	0.73138 (12)	0.46614 (10)	0.0313 (3)
H20	0.8742	0.8051	0.4895	0.038*
C5	2.2806 (2)	0.77262 (12)	0.83423 (10)	0.0329 (3)
C21	0.7448 (2)	0.65460 (12)	0.40427 (10)	0.0309 (3)
C11	1.8104 (3)	0.89102 (12)	0.78886 (10)	0.0354 (4)
C37	-1.0859 (3)	0.09851 (13)	-0.35931 (10)	0.0387 (4)
H37A	-1.1872	0.1026	-0.3181	0.046*
H37B	-1.0970	0.1597	-0.3744	0.046*
C17	1.2696 (3)	0.82027 (12)	0.58603 (11)	0.0380 (4)
H17A	1.2454	0.8517	0.5428	0.046*
H17B	1.1780	0.8511	0.6326	0.046*
C19	1.0283 (2)	0.67627 (12)	0.48446 (10)	0.0314 (3)
C16	1.4831 (3)	0.84709 (13)	0.62690 (11)	0.0380 (4)
H16A	1.5766	0.8139	0.5817	0.046*
H16B	1.5111	0.9236	0.6519	0.046*
C2	2.5404 (3)	0.81666 (13)	0.92158 (11)	0.0374 (4)
C13	1.6694 (3)	0.61197 (12)	0.62341 (11)	0.0401 (4)
H13A	1.5376	0.6064	0.6431	0.060*
H13B	1.7401	0.5484	0.6146	0.060*
H13C	1.6528	0.6205	0.5678	0.060*
C1	2.7090 (3)	0.86781 (15)	0.98960 (12)	0.0469 (4)
H1A	2.7096	0.8402	1.0350	0.070*
H1B	2.6934	0.9433	1.0165	0.070*
H1C	2.8354	0.8537	0.9623	0.070*
C14	1.7185 (3)	0.99591 (13)	0.82549 (12)	0.0475 (5)
H14A	1.7798	1.0371	0.8854	0.071*
H14B	1.5742	0.9857	0.8268	0.071*
H14C	1.7419	1.0330	0.7880	0.071*
O100	-1.4973 (6)	-0.0308 (2)	-0.5193 (2)	0.0642 (9)
H10A	-1.586 (8)	0.012 (4)	-0.504 (4)	0.096*

0.5 0.5

supporting information

H10B	-1.503 (9)	-0.0960 (10)	-0.548 (3)	0.096*	0.5
O38	-1.1236 (2)	0.00445 (10)	-0.43770 (9)	0.0517 (4)	
H38	-1.238 (2)	0.006 (2)	-0.4585 (15)	0.077*	

Atomic displacement parameters $(Å^2)$

1	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C	0.0317 (8)	0.0351 (7)	0.0377 (7)	0.0030 (6)	-0.0097 (6)	0.0109 (6)
C	0.0290 (6)	0.0373 (6)	0.0372 (6)	0.0034 (5)	-0.0018 (5)	0.0159 (5)
C	0.0362 (7)	0.0310 (6)	0.0464 (7)	0.0040 (5)	-0.0147 (5)	0.0066 (5)
C	0.0279 (8)	0.0327 (8)	0.0349 (8)	0.0021 (6)	-0.0032 (6)	0.0067 (6)
C	0.0285 (8)	0.0344 (8)	0.0335 (8)	0.0024 (6)	-0.0040 (6)	0.0114 (6)
C	0.0296 (9)	0.0393 (9)	0.0353 (8)	0.0039 (7)	-0.0063 (7)	0.0109 (7)
C	0.0291 (8)	0.0341 (8)	0.0362 (8)	0.0043 (7)	-0.0038 (7)	0.0055 (6)
C	0.0417 (7)	0.0386 (6)	0.0514 (7)	0.0096 (6)	-0.0092 (6)	0.0104 (5)
C	0.0280 (8)	0.0327 (8)	0.0331 (8)	0.0018 (6)	-0.0032 (6)	0.0084 (6)
C	0.0304 (8)	0.0343 (8)	0.0336 (8)	0.0039 (6)	0.0003 (6)	0.0145 (6)
C	0.0291 (8)	0.0341 (8)	0.0335 (8)	0.0019 (6)	-0.0024 (6)	0.0102 (6)
C	0.0372 (7)	0.0394 (6)	0.0455 (7)	0.0085 (5)	-0.0034 (5)	0.0150 (5)
C	0.0298 (9)	0.0353 (8)	0.0314 (8)	0.0017 (7)	-0.0030 (6)	0.0064 (6)
C	0.0367 (9)	0.0308 (8)	0.0366 (8)	0.0010 (7)	-0.0048 (7)	0.0098 (6)
C	0.0373 (8)	0.0369 (7)	0.0375 (7)	0.0054 (6)	-0.0039 (6)	0.0114 (6)
C	0.0345 (8)	0.0379 (7)	0.0417 (7)	0.0047 (6)	-0.0034 (6)	0.0147 (6)
C	0.0281 (8)	0.0343 (8)	0.0329 (8)	0.0011 (6)	-0.0047 (6)	0.0086 (6)
C	0.0285 (8)	0.0327 (8)	0.0316 (7)	0.0034 (6)	-0.0004 (6)	0.0133 (6)
C	0.0293 (8)	0.0344 (8)	0.0328 (8)	0.0055 (7)	-0.0035 (6)	0.0038 (6)
C	0.0329 (9)	0.0300 (7)	0.0334 (8)	0.0051 (6)	0.0029 (6)	0.0120 (6)
0	0.0348 (8)	0.0352 (7)	0.0421 (8)	0.0040 (6)	-0.0131 (6)	0.0067 (6)
C	0.0326 (9)	0.0304 (7)	0.0302 (7)	0.0017 (6)	0.0009 (6)	0.0116 (6)
C	0.0301 (8)	0.0370 (8)	0.0314 (7)	0.0006 (7)	-0.0029 (6)	0.0141 (6)
C	0.0328 (9)	0.0357 (8)	0.0389 (9)	0.0042 (7)	-0.0078 (7)	0.0013 (7)
C	0.0278 (8)	0.0345 (8)	0.0339 (8)	0.0029 (6)	-0.0032 (6)	0.0099 (6)
C	0.0287 (8)	0.0297 (7)	0.0320 (7)	0.0015 (6)	-0.0006 (6)	0.0095 (6)
C	0.0321 (9)	0.0341 (8)	0.0334 (8)	0.0039 (7)	0.0025 (6)	0.0147 (6)
C	0.0277 (8)	0.0329 (8)	0.0294 (7)	0.0026 (6)	-0.0012 (6)	0.0106 (6)
C	0.0355 (9)	0.0298 (7)	0.0373 (8)	0.0041 (7)	-0.0022 (7)	0.0110 (6)
C	0.0308 (9)	0.0386 (9)	0.0355 (8)	0.0003 (7)	-0.0039 (7)	0.0049 (7)
C	0.0330 (9)	0.0354 (8)	0.0414 (9)	0.0001 (7)	-0.0076 (7)	0.0134 (7)
C	0.0292 (8)	0.0302 (7)	0.0302 (7)	0.0025 (6)	-0.0008 (6)	0.0082 (6)
C	0.0351 (9)	0.0383 (8)	0.0413 (9)	-0.0027 (7)	-0.0082 (7)	0.0192 (7)
C	0.0366 (9)	0.0378 (8)	0.0367 (8)	0.0060 (7)	0.0005 (7)	0.0143 (7)
C	0.0367 (10)	0.0320 (8)	0.0429 (9)	0.0028 (7)	-0.0029 (7)	0.0076 (7)
C	0.0397 (10)	0.0508 (10)	0.0451 (10)	0.0044 (8)	-0.0072 (8)	0.0164 (8)
C	0.0488 (12)	0.0321 (8)	0.0512 (10)	0.0087 (8)	-0.0088 (9)	0.0085 (7)
C	0.0418 (18)	0.0401 (18)	0.085 (3)	-0.0014 (17)	-0.0171 (18)	0.0032 (16)
C	0.0355 (7)	0.0480 (7)	0.0479 (7)	-0.0014 (6)	-0.0147 (6)	-0.0013 (6)
	0.0367 (10) 0.0397 (10) 0.0488 (12) 0.0418 (18) 0.0355 (7)	0.0320 (8) 0.0508 (10) 0.0321 (8) 0.0401 (18) 0.0480 (7)	0.0429 (9) 0.0451 (10) 0.0512 (10) 0.085 (3) 0.0479 (7)	0.0028 (7) 0.0044 (8) 0.0087 (8) -0.0014 (17) -0.0014 (6)	-0.0029 (7) -0.0072 (8) -0.0088 (9) -0.0171 (18) -0.0147 (6)	0.0076 0.0164 0.0085 0.0032 -0.001

Geometric parameters (Å, °)

N26—H26	0.8800	С10—С9	1.406 (2)
N26—C27	1.4614 (19)	C10—C11	1.394 (2)
N26—C24	1.3352 (19)	C34—H34A	0.9900
O15—C10	1.3854 (18)	C34—H34B	0.9900
O15—C16	1.4356 (19)	C8—H8	0.9500
O23—N22	1.4056 (17)	C8—C9	1.387 (2)
O23—C19	1.3591 (18)	N22—C21	1.308 (2)
С33—Н33А	0.9900	C9—C13	1.504 (2)
С33—Н33В	0.9900	C24—C21	1.494 (2)
C33—C32	1.525 (2)	C36—H36A	0.9900
C33—C34	1.521 (2)	C36—H36B	0.9900
C28—H28A	0.9900	C36—C37	1.506 (2)
C28—H28B	0.9900	C18—H18A	0.9900
C28—C27	1.507 (2)	C18—H18B	0.9900
C28—C29	1.524 (2)	C18—C17	1.523 (2)
С27—Н27А	0.9900	C18—C19	1.487 (2)
С27—Н27В	0.9900	C20—H20	0.9500
С35—Н35А	0.9900	C20—C21	1.412 (2)
С35—Н35В	0.9900	C20—C19	1.349 (2)
C35—C34	1.520 (2)	C11—C14	1.510 (2)
C35—C36	1.522 (2)	С37—Н37А	0.9900
O25—C24	1.2242 (19)	С37—Н37В	0.9900
C31—H31A	0.9900	C37—O38	1.4329 (19)
C31—H31B	0.9900	C17—H17A	0.9900
C31—C30	1.521 (2)	C17—H17B	0.9900
C31—C32	1.520 (2)	C17—C16	1.510 (2)
C7—C12	1.391 (2)	C16—H16A	0.9900
С7—С8	1.394 (2)	C16—H16B	0.9900
С7—С5	1.473 (2)	C2—C1	1.481 (2)
С30—Н30А	0.9900	C13—H13A	0.9800
С30—Н30В	0.9900	C13—H13B	0.9800
C30—C29	1.521 (2)	C13—H13C	0.9800
O3—N4	1.4194 (18)	C1—H1A	0.9800
O3—C2	1.339 (2)	C1—H1B	0.9800
С32—Н32А	0.9900	C1—H1C	0.9800
С32—Н32В	0.9900	C14—H14A	0.9800
С12—Н12	0.9500	C14—H14B	0.9800
C12—C11	1.392 (2)	C14—H14C	0.9800
N6—C5	1.387 (2)	O100—O100 ⁱ	0.847 (5)
N6-C2	1.293 (2)	O100—H10A	0.834 (10)
N4—C5	1.304 (2)	O100—H10B	0.841 (10)
С29—Н29А	0.9900	O38—H38	0.819 (10)
С29—Н29В	0.9900		
	110 5		110 41 (14)
$C_2/-N_20-H_20$	119.5	$C_{8} = C_{9} = C_{10}$	118.41 (14)
C24—N20—H20	119.5	08-09-013	121.32 (14)

C24—N26—C27	121.03 (13)	N26—C24—C21	116.22 (14)
C10-015-C16	115.72 (13)	O25—C24—N26	123.45 (15)
C19—O23—N22	109.09 (11)	O25—C24—C21	120.32 (14)
H33A—C33—H33B	107.7	С35—С36—Н36А	108.9
С32—С33—Н33А	108.9	С35—С36—Н36В	108.9
С32—С33—Н33В	108.9	H36A—C36—H36B	107.7
С34—С33—Н33А	108.9	C37—C36—C35	113.23 (14)
C34—C33—H33B	108.9	С37—С36—Н36А	108.9
C34—C33—C32	113.38 (13)	C37—C36—H36B	108.9
H28A—C28—H28B	107.9	H18A—C18—H18B	107.8
C27—C28—H28A	109.1	C17—C18—H18A	109.1
C27—C28—H28B	109.1	C17 - C18 - H18B	109.1
C_{27} C_{28} C_{29}	112 36 (13)	C19-C18-H18A	109.1
C_{29} C_{28} H_{28A}	109.1	C19 $C18$ $H18B$	109.1
C_{29} C_{28} H_{28B}	109.1	$C_{19} - C_{18} - C_{17}$	112 46 (13)
N26-C27-C28	111 29 (13)	C_{21} C_{20} H_{20}	12.40 (13)
$N_{20} = C_{27} = C_{28}$	100 /	$C_{21} = C_{20} = H_{20}$	127.9
$N_{20} = C_2 / = M_2 / A$ N26 C27 H27P	109.4	$C_{19} = C_{20} = C_{120}$	127.9 104.27(13)
$n_{20} = c_2 / = n_2 / B$	109.4	19 - 20 - 21	104.27(13)
C_{28} C_{27} H_{27B}	109.4	N0 - C5 - C7	121.00(14)
$C_{20} = C_{27} = H_{27} = H_{27}$	109.4	N4 = C5 = C7	125.71(14)
$H_2/A = C_2/=H_2/B$	108.0	N4 - C3 - N0	114.37(14)
H35A-C35-H35B	107.8	$N_{22} = C_{21} = C_{24}$	120.05 (14)
C34—C35—H35A	109.1	$N_{22} = C_{21} = C_{20}$	112.71 (14)
C34—C35—H35B	109.1	$C_{20} = C_{21} = C_{24}$	127.21 (14)
C34—C35—C36	112.48 (13)	C12—C11—C10	118.13 (14)
С36—С35—Н35А	109.1	C12—C11—C14	120.24 (15)
С36—С35—Н35В	109.1	C10—C11—C14	121.58 (15)
H31A—C31—H31B	107.7	С36—С37—Н37А	109.6
C30—C31—H31A	108.8	С36—С37—Н37В	109.6
С30—С31—Н31В	108.8	Н37А—С37—Н37В	108.1
C32—C31—H31A	108.8	O38—C37—C36	110.40 (13)
C32—C31—H31B	108.8	O38—C37—H37A	109.6
C32—C31—C30	113.69 (13)	O38—C37—H37B	109.6
C12—C7—C8	119.31 (15)	C18—C17—H17A	109.1
C12—C7—C5	118.79 (14)	C18—C17—H17B	109.1
C8—C7—C5	121.86 (14)	H17A—C17—H17B	107.8
С31—С30—Н30А	108.9	C16—C17—C18	112.46 (14)
C31—C30—H30B	108.9	С16—С17—Н17А	109.1
C31—C30—C29	113.32 (13)	C16—C17—H17B	109.1
H30A-C30-H30B	107.7	O23—C19—C18	115.49 (13)
С29—С30—Н30А	108.9	C20—C19—O23	109.31 (13)
С29—С30—Н30В	108.9	C20—C19—C18	135.17 (14)
C2—O3—N4	106.40 (12)	O15—C16—C17	108.21 (14)
C33—C32—H32A	108.8	O15—C16—H16A	110.1
C33—C32—H32B	108.8	O15—C16—H16B	110.1
C31—C32—C33	113.98 (13)	C17—C16—H16A	110.1
C31—C32—H32A	108.8	C17—C16—H16B	110.1
С31—С32—Н32В	108.8	H16A—C16—H16B	108.4

	1077	02 02 01	117.70(1.5)
H32A—C32—H32B	10/./	03-02-01	117.70(15)
C7—C12—H12	119.3	N6—C2—O3	113.45 (15)
C7—C12—C11	121.41 (15)	N6—C2—C1	128.85 (16)
C11—C12—H12	119.3	C9—C13—H13A	109.5
C2—N6—C5	102.68 (13)	C9—C13—H13B	109.5
C5—N4—O3	103.10 (12)	С9—С13—Н13С	109.5
С28—С29—Н29А	109.0	H13A—C13—H13B	109.5
C28—C29—H29B	109.0	H13A—C13—H13C	109.5
$C_{30} - C_{29} - C_{28}$	112.80(13)	H13B—C13—H13C	109 5
C_{30} C_{29} H_{29A}	109.0	$C_2 - C_1 - H_1 A$	109.5
C_{30} C_{29} H_{29R}	109.0	$C_2 C_1 H_1 B_1$	109.5
	107.8	$C_2 = C_1 = H_1 C_2$	109.5
$H_2 = H_2 $	107.0		109.5
015-010-09	117.88 (13)	HIA-CI-HIB	109.5
015-010-011	120.18 (14)	HIA—CI—HIC	109.5
C11—C10—C9	121.74 (14)	H1B—C1—H1C	109.5
С33—С34—Н34А	108.7	C11—C14—H14A	109.5
C33—C34—H34B	108.7	C11—C14—H14B	109.5
C35—C34—C33	114.39 (13)	C11—C14—H14C	109.5
C35—C34—H34A	108.7	H14A—C14—H14B	109.5
C35—C34—H34B	108.7	H14A—C14—H14C	109.5
H34A—C34—H34B	107.6	H14B—C14—H14C	109.5
С7—С8—Н8	119.5	O100 ⁱ —O100—H10A	45 (5)
C9-C8-C7	120.98 (14)	0100^{i} 0100 H10B	166 (4)
C9 - C8 - H8	119.5	H10A - 0100 - H10B	132 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104.61 (12)	C_{27} O_{28} H_{28}	107 (0)
$C_2 I = N_{22} = O_{23}$	104.01(12) 120.02(14)	038-1138	107.1 (18)
C10-C9-C13	120.03 (14)		
		~	
N26—C24—C21—N22	-9.9 (2)	C34—C33—C32—C31	-179.60 (14)
N26—C24—C21—C20	172.31 (15)	C34—C35—C36—C37	-179.10 (15)
O15—C10—C9—C8	-173.62 (14)	C8—C7—C12—C11	1.5 (3)
O15—C10—C9—C13	4.2 (2)	C8—C7—C5—N6	-176.35 (15)
O15—C10—C11—C12	174.16 (14)	C8—C7—C5—N4	1.3 (3)
O15—C10—C11—C14	-3.2 (3)	N22-O23-C19-C18	-177.78 (14)
O23—N22—C21—C24	-178.41 (14)	N22—O23—C19—C20	0.63 (18)
O23—N22—C21—C20	-0.32(19)	C9-C10-C11-C12	-0.6(2)
C27—N26—C24—O25	-4.6 (3)	C9—C10—C11—C14	-177.98 (16)
C27—N26—C24—C21	174.35 (14)	C24—N26—C27—C28	171.58 (14)
C_{27} C_{28} C_{29} C_{30}	177 88 (14)	$C_{36} - C_{35} - C_{34} - C_{33}$	179.91 (15)
C_{25} C_{20} C_{25} C_{30}	175 68 (15)	C18 - C17 - C16 - O15	-64.32(18)
025 026 027 021 027	160 10 (16)	$C_{10} = C_{17} = C_{10} = C_{13}$	-175.07(15)
025 - 024 - 021 - 022	109.10 (10) 9.7 (2)	$C_{5} = C_{7} = C_{12} = C_{11}$	175.97(15)
023 - 024 - 021 - 020	-0.7(3)	$C_{3} - C_{7} - C_{8} - C_{9}$	170.38 (13)
$C_{31} = C_{30} = C_{29} = C_{28}$	-1/8.56(14)	C_{5} N6 C_{2} C_{3}	-0.4(2)
	-0.8 (3)	C5—N6—C2—C1	1/9.90 (18)
C/C12C11C14	1/6.62 (17)	C21—C20—C19—O23	-0.78 (18)
C7—C8—C9—C10	-0.5 (2)	C21—C20—C19—C18	177.18 (18)
C7—C8—C9—C13	-178.27 (15)	C11—C10—C9—C8	1.2 (2)
C30—C31—C32—C33	-179.69 (14)	C11—C10—C9—C13	179.01 (15)

supporting information

O3—N4—C5—N6	-0.30 (19)	C17—C18—C19—C20	-1.1 (3)
C32—C33—C34—C35	177.44 (14)	C19—O23—N22—C21	-0.18 (18)
C32—C31—C30—C29	-178.21 (14)	C19—C18—C17—C16	-168.20 (14)
C12—C7—C8—C9	-0.8 (2)	C19—C20—C21—N22	0.69 (19)
C12—C7—C5—N6	1.1 (2)	C19—C20—C21—C24	178.63 (16)
C12—C7—C5—N4	178.67 (16)	C16—O15—C10—C9	-100.42 (16)
N4—O3—C2—N6	0.2 (2)	C16—O15—C10—C11	84.64 (18)
N4—O3—C2—C1	179.98 (15)	C2—O3—N4—C5	0.04 (17)
C29—C28—C27—N26	178.10 (14)	C2—N6—C5—C7	178.26 (15)
C10-015-C16-C17	164.12 (13)	C2—N6—C5—N4	0.4 (2)

Symmetry code: (i) -x-3, -y, -z-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C28—H28A····O3 ⁱⁱ	0.99	2.64	3.2567 (19)	120
C20—H20…O38 ⁱⁱⁱ	0.95	2.56	3.505 (2)	175
C13—H13 <i>B</i> ···O23 ⁱⁱ	0.98	2.51	3.416 (2)	154
C1—H1 <i>B</i> ···N6	0.98	2.65	3.622 (2)	174
O100—H10 <i>B</i> ····O25 ^{iv}	0.84 (1)	1.87 (1)	2.710 (3)	180 (6)
O38—H38…O100	0.82 (1)	1.90 (1)	2.695 (4)	164 (2)

Symmetry codes: (ii) -*x*+3, -*y*+1, -*z*+1; (iii) *x*+2, *y*+1, *z*+1; (iv) *x*-2, *y*-1, *z*-1.