
Palmisano et al. BMC Systems Biology (2015) 9:95
DOI 10.1186/s12918-015-0237-0

SOFTWARE Open Access

JigCell Run Manager (JC-RM): a tool for
managing large sets of biochemical model
parametrizations
Alida Palmisano1,2* , Stefan Hoops3, Layne T. Watson1,4, Thomas C. Jones Jr1, John J. Tyson2

and Clifford A. Shaffer1

Abstract

Background: Most biomolecular reaction modeling tools allow users to build models with a single list of parameter
values. However, a common scenario involves different parameterizations of the model to account for the results of
related experiments, for example, to define the phenotypes for a variety of mutations (gene knockout, over
expression, etc.) of a specific biochemical network. This scenario is not well supported by existing model editors,
forcing the user to manually generate, store, and maintain many variations of the same model.

Results: We developed an extension to our modeling editor called the JigCell Run Manager (JC-RM). JC-RM allows
the modeler to define a hierarchy of parameter values, simulations, and plot settings, and to save them together with
the initial model. JC-RM supports generation of simulation plots, as well as export to COPASI and SBML (L3V1) for
further analysis.

Conclusions: Developing a model with its initial list of parameter values is just the first step in modeling a biological
system. Models are often parameterized in many different ways to account for mutations of the organism and/or for
sets of related experiments performed on the organism. JC-RM offers two critical features: it supports the everyday
management of a large model, complete with its parameterizations, and it facilitates sharing this information before
and after publication. JC-RM allows the modeler to define a hierarchy of parameter values, simulation, and plot
settings, and to maintain a relationship between this hierarchy and the initial model. JC-RM is implemented in Java
and uses the COPASI API. JC-RM runs on all major operating systems, with minimal system requirements. Installers,
source code, user manual, and examples can be found at the COPASI website (http://www.copasi.org/Projects).

Keywords: Systems biology, Biological networks, Mathematical modeling, Chemical reaction systems, COPASI, SBML,
Software, Model editor, Parameter hierarchy, Mutants

Background
Developing a model with its initial list of parameter val-
ues to reproduce a specific behavior is just the first step
in the process of modeling biochemical systems. Often a
model must be parameterized in many different ways to
account for a set of related experiments carried out on
an organism, and the results simulated and plotted for

*Correspondence: alida.palmisano@gmail.com
1Department of Computer Science, Virginia Tech, 2202 Kraft Drive, Blacksburg,
VA 24060, USA
2Department of Biological Sciences, Virginia Tech, 1405 Perry Street,
Blacksburg, VA 24061, USA
Full list of author information is available at the end of the article

every situation. For example, a budding yeast cell cycle
model [1] accounts for more than 120 different mutants,
which are listed as changes of specific parameter values
on the model website [http://mpf.biol.vt.edu/research/
budding_yeast_model/pp/]. The published model is avail-
able on Biomodels [2] as a single SBML file, parame-
terized for simulating wild-type cells [https://www.ebi.ac.
uk/biomodels-main/BIOMD0000000056]. Each mutation
can be simulated by manually changing specific param-
eters and saving the model to a new SBML file. This
approach creates a large collection of files that is hard to
maintain, use, and almost impossible to share. Any sci-
entist interested in reproducing the results of the original

© 2015 Palmisano et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12918-015-0237-0-x&domain=pdf
http://orcid.org/0000-0002-1859-3719
http://www.copasi.org/Projects
mailto: alida.palmisano@gmail.com
http://mpf.biol.vt.edu/research/budding_yeast_model/pp/
http://mpf.biol.vt.edu/research/budding_yeast_model/pp/
https://www.ebi.ac.uk/biomodels-main/BIOMD0000000056
https://www.ebi.ac.uk/biomodels-main/BIOMD0000000056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 2 of 10

paper must dedicate a significant amount of time to
recreate each variant of the model, starting from the
initial model file. This process is both time-consuming
and error-prone, because each file is an independent and
separate entity. Discovering amistake in any file may com-
promise the entire batch of files, since it is very likely that
different files were created by a copy-paste approach that
spreads the error.
An important observation is that for many modeling

scenarios, parameter changes between different mutants
are minimal and often connected to each other. A sin-
gle gene knockout mutant, for example, may just set the
values of a few kinetic rate constants to zero. A double
mutant, where both gene A and B have been knocked
out, might contain the union of changes made in the sin-
gle gene knockout mutant A and single gene knockout
mutant B. While describing these mutants using natural
language is straightforward, encoding them in formal lan-
guages (like SBML) is hard, due to the lack of tools that
deal with more than one model/parameterization at the
same time.
The need for better tools and approaches to tackle

higher-order modeling issues in systems biology and sys-
tems medicine has been recognized by Wolkenhauer,
et al. [3], who identified a need to develop “workflows
for modeling, including computational tools that sup-
port data management, model construction and analysis”
and “dedicated modeling workflows for the integration
of data and models”. To address this need to develop
a model in synergy with its parameterizations, we cre-
ated a new version of the JigCell Run Manager tool [4]
that allows modelers to organize, maintain, simulate, plot,
and export hierarchical parameterizations of biochemical
models.

Related work
The importance of linking a model with its param-
eterizations is acknowledged by the SBML commu-
nity through the ongoing effort of the Simulation
Experiment Description Markup Language (SED-ML)
[5]. Instructions for simulation, analysis, and visualiza-
tion can be encoded in SED-ML and stored together
with the model definition. However SED-ML does
not provide means to hierarchically encode modifi-
cations nor it provides ways to detect/resolve con-
flicts that may arise when a parameterization inher-
its its values from multiple sources (see Section
‘Detecting and resolving conflicts’).
Currently there are many tools that can create, edit,

and simulate SBML biochemical reaction models (e.g.,
COPASI [6], CellDesigner [7], Virtual Cell [8]). None of
these collect hierarchical groups of parameterizations for
a single model.

COPASI defines a “parameter sets” option to col-
lect different parameter values together with the model.
Unfortunately, each configuration is independent of the
others, and parameterizations are not related to simula-
tion or plotting configurations. These limitations make
it cumbersome to work with parameterizations, since
some mutants have special simulation or plotting require-
ments that need to be changed manually each time
that particular mutant is to be simulated. Moreover,
the lack of hierarchical relations among parameter sets
makes it hard to see the relationships among simula-
tions, such as simulations of single, double and triple
mutants.
Snoopy [9], a Petri net editing and simulation tool, has

limited support for parameter sets, similar to COPASI.
Snoopy can store multiple configurations for a model,
but parameter value inheritance between configurations
is not supported. This approach offers little help in sit-
uations where the number of simulations is large (e.g.,
hundreds of mutants), because each configuration has to
be manipulated independently.
The present work is based on a previous version of

a run-manager tool [4]. Major additions and changes
have been implemented, including a flexible way to
inherit parameter values, conflict detection, the use of the
COPASI API to seamlessly provide import/export capa-
bilities, and integration with COPASI simulation tools.
Additionally, JC-RM’s hierarchical visualization of experi-
ments simplifies the management of collections of model
parameterizations by enabling the modeler to visualize
and simulate only the relevant parts of configuration
ensembles.

Results and discussion
JC-RM is an extension to ourmodeling editor (MSMB) [10]
that allows the modeler to define hierarchies for parame-
ter values, simulations, and plot settings, and to save them
together with the initial model.
Key features of this tool include the following.

• Visual representation of configuration
hierarchies: JC-RM guides the user in creating a
hierarchy of parameter configurations for a model.
These configurations are displayed as a directed
acyclic graph (DAG). Use of a DAG is motivated by
the notion of inheriting a small number of changes
from an existing configuration. For each node, the
values of chosen parameters can be changed to new
numerical values or to algebraic expressions
involving values from ancestors. This makes it easy to
define and maintain big collections of parameter
configurations. New values can be assigned to global
quantities, initial amounts of species and

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 3 of 10

compartment sizes. JC-RM supports separate DAGs
for a model’s parameter values, for the associated
simulation settings, and for multiple plot settings for
various output requirements.

• Algebraic expressions involving ancestors’ values:
Any node in the hierarchy can refer to values of
ancestor nodes to determine its local values. For
example, the user can assign the parameter k1 in one
node as two times the same parameter in the parent
plus four times the same parameter in the
grandparent (k1 = 2*k1@parent +
4*k2@grandparent). In this way if a change is
made to the value of k1 in the parent or grandparent,
this would be carried out seamlessly through the
descendant nodes, simplifying the management of
large, complex hierarchical structures.

• Conflict detection: Defining a configuration as a
child of multiple parent nodes might result in
conflicts if parents redefine a parameter to different
values. JC-RM detects and communicates these
conflicts to the modeler, who can resolve them either
by assigning a new local value to the parameter or by
choosing the value from one specific parent. Graphs
with conflicts can be stored in the JC-RM internal
format; however, the conflicts must be resolved
before the graphs can be used for simulation or
exported.

• Preset graph layouts and other visual
customizations: JC-RM offers many automatic graph
layout options. The look of the graph can be
manually customized by moving the nodes on the
screen and by assigning different colors to nodes and
edges, with the resulting layout stored. Multiple views
can be saved internally and/or exported to JPEG for
publication purposes.

• Running simulations internally or export to
COPASI: Once the settings for model parameter
values, simulation conditions, and plotting
instructions are consistent (i.e., without conflicting
definitions), JC-RM allows the user to run simulations
and see the results (e.g., time series or phase planes).
Alternatively, the hierarchy of parameter values
coupled with the basal simulation and plotting
settings can be exported to COPASI and SBML
(L3V1) for further analysis.

JC-RM primary features
In this section we outline how JC-RM can be used in
the everyday task of managing a model of a complex
biochemical system. As a working example, we use a
published model of the budding yeast cell cycle [1], avail-
able in SBML format in the Biomodel database (model
56, [2]). The SBML version in the Biomodel database is
parameterized for simulation of the cell division cycle

in wild-type budding yeast cells. However, the published
model accounts formore than 100 differentmutant strains
of budding yeast. The collection of the parameter varia-
tions needed to model these different strains is listed at
http://mpf.biol.vt.edu/research/budding_yeast_model/pp/.
The code for this example is available for download from

the JC-RM website. For our example, we show how to start
from the initial SBML model and add mutant parame-
terizations, along with simulation and plotting configu-
rations. Repeating the same steps for each mutant will
generate the final file available for download in the soft-
ware package (depicted in Fig. 1). This file contains the
131 mutant configurations of the budding yeast cell cycle
model by Chen, et al. [1].

The parameters graph
The following steps are used to create the Parameter Lists
graph.

1. The SBML model file (from https://www.ebi.ac.uk/
biomodels-main/BIOMD0000000056) is loaded into
the JC-MSMB editor, where the Reactions, Species,
etc. that compose the original model are displayed.
This is the base model used to build the hierarchy of
parameterizations.

2. Opening JC-RM displays the main window. It
contains independent but connected graphs, each
representing a different aspect of the model
parameterization (Model values, Time course,
Plotting, ...). The first time the window is opened,
each tab will be empty. Once graphs have been added
to the model, the user can save the model with the
parameterization through the “Save to .msmb"
option. At any future time, the user can open the
saved .msmb file and continue working on either the
model or its parameterization.

3. To create the first node of the DAG, from the
“Parameter lists” tab the user clicks the “Create
mutant from current model values” button. JC-RM
will ask to give this configuration a name. Since the
current model holds the parameters for the wild type
in glucose, in our example we call the node
WT_glucose. The newly created node will appear
both in the graph view and in the alphabetically
ordered list of defined configurations (in the left
portion of the window). As imported from
Biomodels, the model already contains the right
numerical values for modeling the wild type in
glucose, we don’t need to customize the content for
this node. So we can move to defining new nodes in
the Parameter list graph.

4. A new mutant can be defined as a child of any node
in the graph. This allows the child configuration to
inherit all the values of the parent (or parents),

http://mpf.biol.vt.edu/research/budding_yeast_model/pp/
https://www.ebi.ac.uk/biomodels-main/BIOMD0000000056
https://www.ebi.ac.uk/biomodels-main/BIOMD0000000056

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 4 of 10

Fig. 1 a The collection of parameter values is displayed in a DAG and in a list in the left portion of the main window. Edges in the graph point from
children to parents. Green, orange, blue nodes are wild type, single mutant, double mutant configurations, respectively. b The content for one
parameter value configuration. The origin of the value is presented in the Notes column (i.e., some values belong to the Base set, some are inherited
from ancestor nodes denoted with @ancestorName, while others are local redefinitions). c Time series plots generated and presented by JC-RM. As
shown in the context menu, many options are available to customize the look of a plot

possibly redefining some specific values in the local
configuration. More complete examples where
multiple parents are used for the mutant definition
(and any resulting conflicts are detected) are
presented in section ‘Detecting and resolving
conflicts’. To create a child configuration, select the
root node in the graph (WT_glucose) and then click
the “Create child configuration” button. The user will
be asked to give this new configuration a name (the
name must be unique within the graph). We will call
the new node WT_galactose. The newly created
node will appear both in the graph view (as a node
connected to its parent) and in the list of all defined
lists.

5. To make some parameter values for WT_galactose
different fromWT_glucose, the new configuration

needs to be changed (Fig. 2). To do so, the user can
edit the node s/he wants to change by either double
clicking on the node or by clicking the “Edit mutant
configuration” button. This will open a pop-up
window in which the various tables defining the
models are shown. The WT_galactose configuration
differs from the WT_glucose in the value of the
“mdt" global quantity (150 instead of 80). The user
can find the mdt element in the proper tab, double
click on the “Initial Value” cell of mdt and assign the
new value. Once the change has been made, the fact
that the value coming from the parent has been
overwritten by the new value is visually identified by
the color of mdt’s row, as well as through a new label
shown in the “Notes” column (i.e., “Local change").
This label helps the user to keep track of the changes.

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 5 of 10

Fig. 2 Steps to create a parameter list graph from an initial model file. a The SBML model is loaded in the editor and all its component are displayed
in the tables. b The JC-RM interface contains two nodes representing mutant configurations of the initial model setup. For details on how to create
those nodes, refer to the text. To edit specific parameter values, the modeler can use the filtering capabilities of the editor. A new value can be
assigned in 3 different ways: more details on this can be found in the text. c A more complex DAG connects different parameter configurations. d Of
particular interest, the node called ‘GAL_CLB2_Cdh1’: it inherits from two parents and the specific values inherited from each parent are clearly
marked in the tabular view

The “Notes” column can be used as a filter with the
search/filter box.

6. Repeating these steps, the user can add all mutant
configurations. To define a “double mutant"
configuration, the user selects multiple nodes from
which the child configuration will inherit, and then
clicks the “Create new configuration" button. This
new mutant will contain the union of the changes of
all the parents. (See ‘Detecting and resolving conflicts’
for a discussion on resolving any conflicts that might
result).

In all graphs, newly created nodes are automatically
positioned on the screen. Users can reposition nodes

manually with the mouse, or they can use one of the
alternative automatic graph layout options provided.
Node and edge colors can be changed to suit the needs
of the modeler. Colors may be useful to visually group
mutants of similar nature, or to quickly identify configu-
rations of interest that are incomplete or need attention.
Any node in the hierarchy can be deleted and a warning

is displayed to the user before the action is completed. The
warning displays the names of all the nodes that may be
affected by this deletion (i.e., the descendants that inherit
values from the deleted node). The recommended practice
is to take note of this list and make sure that no unde-
sired effect is propagated. There are different possible
scenarios:

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 6 of 10

1. The child inherits the parameter values of ancestor
nodes without local changes. If one of the ancestors
is removed, the parameter values of the child will be
determined by either other ancestors node still
connected, or by the “base set”, which is the
parameter value of the initial model from the
JC-MSMB interface.

2. The child overwrites the value of a parameter, making
explicit reference to the deleted parent. In this case a
“inconsistency” warning is displayed for the node,
and the user won’t be allowed to run simulations of
this set until the inconsistency is resolved.

Deletion of single parameters within a node configuration
is not currently supported in JC-RM because this repre-
sents a structural change in the model which may have
hard to handle consequences in terms of model manage-
ment (e.g., leaving dangling references in rate laws, assign-
ments, etc.). The effect of deleting a parameter, however,
can be easily achieved by setting its value to zero. This cor-
responds to knocking out a specific pathway or reaction,
without disrupting the structure of the entire hierarchy of
parameter configurations.

The time course settings graph
The idea of defining changes in a hierarchical way can be
applied not just to model parameters but also to simula-
tion settings. A given mutant might need to be simulated
with runtime parameters different from the others. For
example, the budding yeast cell cycle model has mutants
that represent the organism when grown in different
media. This is modeled by slowing the cell cycle machin-
ery. Hence in a fixed time period, fewer complete cycles
can be observed. The modeler might therefore wish to set
a different total time period in the simulation settings for
these slow mutants, so that the overall number of cycles is
comparable to the fast mutants, without slowing down the
entire process by increasing the simulation time for all of
themutants. In principle, this process is similar to describ-
ing changes in model parameters, because again only one
element in the simulation settings (the end time in this
case) needs to change.
JC-RM allows the user to define a DAG for simula-

tion settings under the “Time course” tab. The layout of
the tab and the process for building the graph is similar
to the “Parameter lists” tab. When editing a simulation
graph node, the user sees a window that shows relevant

Fig. 3 Initializing time course settings. (left) A graph containing two Time course nodes (called short and long). The node called ‘long’ inherits the
settings from its parent, redefining some quantities with new values (local changes). (right top) ‘Short’ simulation configuration details. Duration and
interval size are changed with respect to the basic default configuration determined by JC-RM. Other values, like the kind of simulation engine with
its internal parameters, are left unchanged. (right bottom) ‘Long’ simulation configuration details. Duration and interval size are changed with
respect to the inherited values. Since the two nodes are connected, the descendant values can be expressed in terms of any ascendant parameter,
making the expression of the duration in this node highly flexible. Each Time Course node applies to a specific list of ‘Parameter sets’ as shown in the
left portion of each window: in this case the short configuration is applied to both WT and WT_galactose while the long configuration is applied
only to the WT_galactose node

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 7 of 10

information that a simulation may need to customize.
Each defined simulation configuration can be applied to
specific mutants defined in the Parameter Lists tab.
In Fig. 3, two simulation settings are shown. One

is called “short” (with duration parameter of 500) and
another “long” (with duration parameter 1000). In the
example, the long configuration is applied only to the
WT_galactose node, while the short one is applied to
both.

The plot settings graph
The user might wish to present specific mutants in plots
with different criteria. For example, in a mutant where
the gene for the Cdh1 protein has been knocked out, the
time course of the protein Cdh1 could be omitted (since
it should be constantly zero). Of course, the collection of
mutants that need a specific configuration for plot set-
tings is not necessarily related to the hierarchy defined for
parameter settings or simulation settings. So JC-RM pro-
vides the “Plotting” tab for specifying the relationships
between various plotting configurations. This tab follows
the same process for defining relationships as is used for
model parameters and simulation settings. Double click-
ing on a node in the plot settings graph opens a pop-up
window where the user can select specific values for the
current plotting settings. The user will choose any of the
model variables (or time) as the X axis, and one or more of
the other variables for the Y axis. It is also possible to cus-
tomize the appearance for each line in the plot (i.e., color,
thickness, symbol and plotting interval), and customize
other general layout options for the XY plot (e.g., font and
color of the title, x/y labels, plot background color, etc.).
While JC-RM offers the opportunity to define hierar-

chies for simulation and plot settings, it is not mandatory
to do so. The default is to have a single group of settings
for all mutants.

Detecting and resolving conflicts
The hierarchical representation for values in graph nodes
allows for setting a mutant’s parameter values to numer-
ical values or to algebraic expressions involving values
from ancestor nodes. Defining a configuration as a child
of multiple parent nodes may result in conflicts, if multi-
ple parents redefine a given parameter to different values.
JC-RM detects and communicates these conflicts to the
modeler, who is expected to resolve the conflict either
by assigning a new local value to the parameter, or by
choosing the value from one specific parent. Graphs with
conflicts cannot be used to initiate simulations, nor can
they be exported to COPASI or SBML. They may, how-
ever, be stored in JC-RM’s internal format so that the user
does not lose work.
A scenario with conflicts is depicted in Fig. 4, where

two separate configurations are defined (WT1 andWT2).

Each has a local assignment for parameter k1, with values
2 and 4, respectively. When creating a third configuration
named “M” as the child of WT1 and WT2, JC-RM detects
a conflict in the value of k1. This issue is presented to the
user through the use of dashed edges. Double clicking on
the node displaying the conflict (M) will show to the user
the specific parameter for which the conflict exists. At this
point, the user must decide how to resolve the conflict.
Three options are available.

1. Pick a value from a specific parent, selected using a
drop down menu.

2. Pick the value from the original base set.
3. Assign a new value, which can be either a number or

an algebraic expression that involves values from the
parents. Such an expression will use the syntax
“parameter_name@parent_name”. In the example
from Fig. 4(c), M the sum of the value for k1 in WT1
and k1 in WT2.

Once the conflict has been resolved, the corresponding
graph will display the edge between the node and its
parents as a regular line.

Running a simulation and visualizing the results
Once the settings for model parameter values, simulation
conditions, and plotting options are consistent (i.e.,
without conflicting definitions), JC-RM allows the user to
run simulations and see the results (e.g., time series or
phase planes). When simulations are run within JC-RM,
the user can choose which mutant(s) to simulate. Alterna-
tively, the model can be exported to COPASI and SBML
(L3V1) for further analysis. Note that while SBML Level
3 supports multiple parameter sets (so all of the various
mutants can be represented), SBML only supports a sin-
gle specification for simulation and plot settings. The user
can select which to export.
If the simulations are run within JC-RM, the results

can be viewed, as in Fig. 5. Each plot can be separately
customized, using options accessible from the right-click
menu (zoom, change line colors, save it as an image,
add/remove variables, etc.). The plots are embedded in
the main window, but for easy comparison, the option
“Open plots to separate windows” is available. This causes
each plot to be displayed in a separate window that can
be repositioned or maximized on the user screen. Clos-
ing each plot window will cause that plot to go back to its
embedded state. The “Window" menu helps the user to
bring to the front a selected plot.

Conclusions
Developing a model with its initial list of parameter values
is just the first step in modeling a biological system. Mod-
els are often parameterized in many different ways to
account for mutations of the organism or sets of related

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 8 of 10

Fig. 4 Conflict detection and resolution. (top) two nodes are created to generate a conflict. The two nodes locally assign a different value to the
same parameter k1. (bottom left) Once the third node M is created as child of both WT1 and WT2 JC-RM detects the conflict in assigning a value to
k1 in M and displays the problem as dashed connecting arrows in the graph. (bottom right) Checking the content of the M node, the conflict in the
specific value of k1 is clearly marked. Three options are presented for resolving the conflict: a pick a value from a specific parent, b pick the value
from the base set or c assign a new value from a typed expression. The algebraic expression can contain references to ancestor nodes

experiments performed on the organism. During the life
cycle of a modeling project, the model may need frequent
changes, values need to be updated, specific mutants
need adjustment, etc. If these operations must be per-
formed in a context where each parameterization is a sep-
arate and independent file, the modeling process becomes
difficult, cumbersome and error-prone. Since modeling
efforts are typically carried out by a team of researchers,
coordinating the exchange and updates of hundreds of
model files among team members is even more chaotic. If
the research team follows the traditional practice of shar-
ing only one model file when the work is finalized and
published, then any scientist interested in the model must
start almost from scratch and expend considerable effort
to reproduce the simulations in the publication.
By allowing modelers to define a hierarchy of parame-

ter values, simulation settings, and plot settings, and to
couple these hierarchies with the initial model, JC-RM
enables computational modeling in two critical ways:

1. By supporting everyday management of a large
model, complete with its parameterizations.

2. By facilitating the sharing of this information before
and after publication.

Future developments for JC-RM include the addition of
analysis tools for data other than time course simulations
(e.g., parameter estimation tasks) that require different
experimental data to be associated with different lists of
parameter values. Another valuable future addition would
be the implementation of direct export capabilities to
SED-ML [5]. SED-ML is a language developed by the
SBML community to standardize the coupling of model
parameterization and simulation settings. Its purpose is
to support exchange of models with reproducible results.
The current SED-ML specification includes elements like
“List of Models”, “Changes” and “Simulations” that quite
nicely map to concepts implemented in JC-RM. While the
concepts are similar, they are not used in the same way

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 9 of 10

Fig. 5 Running a simulation and visualizing the results. (left) When the user decides to run the simulation within JC-RM, a popup provides the
modeler the choice to run specific nodes (shown as alphabetically sorted root nodes in the tree structure) or specific mutant configurations within
each configuration. This option is useful when some mutants require longer simulation time and the modeler wants to check the behaviour of
specific mutants. Colors identify nodes where all the mutant configurations are selected (green), some are omitted (cyan) or none is selected (white
background, not shown). (right) Time course plots are displayed in the Results tab. Each plot is the result of running a selected Time Course node,
with a specific parameter set configuration and the X/Y plot created according to the specification in the Plot graph. Each plot can be further
customized, printed and saved using a contextual menu

in our software, so investigating the direct import/export
capabilities is beyond the scope of this work and it has
been deferred for a follow-up version of JC-RM. As active
members of the SBML community, we hope to contribute
to further developments of this standard.

Availability and requirements
1. Project name: JC-RM
2. Project home page: http://www.copasi.org/Projects

3. Operating system(s): Platform independent
4. Programming language: Java
5. Other requirements: Java 6.0 or higher
6. License: Artistic License 2.0

Implementation
JC-RM is implemented in Java and uses the COPASI API
[6]. JC-RM runs on all major operating systems, with min-
imal system requirements. Installer, source code, user

http://www.copasi.org/Projects

Palmisano et al. BMC Systems Biology (2015) 9:95 Page 10 of 10

manual, and examples can be found at the COPASI web-
site (http://copasi.org/Projects/).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AP implemented the software and drafted the manuscript. CAS, LTW, SH, TCJ,
and JJT participated in extensive discussions to iteratively define the software
functionality. JJT initiated and coordinated the project. All authors participated
in and approved the final manuscript’s preparation.

Acknowledgments
We would like to thank Dr. Kathy Chen for important feedback on the tool and
Dr. Frank T. Bergmann for supportive feedback in dealing with the COPASI API.
Research reported in this publication was supported by the National Institute
of General Medical Sciences of the National Institutes of Health under Award
Number R01GM078989 and and R01GM080219. The content is the sole
responsibility of the authors and does not necessarily represent the views of
the National Institutes of Health.

Author details
1Department of Computer Science, Virginia Tech, 2202 Kraft Drive, Blacksburg,
VA 24060, USA. 2Department of Biological Sciences, Virginia Tech, 1405 Perry
Street, Blacksburg, VA 24061, USA. 3Virginia Bioinformatics Institute, 1015 Life
Science Circle, Blacksburg, VA 24061, USA. 4Department of Mathematics,
Virginia Tech, 225 Stanger Street, Blacksburg, VA 24061, USA.

Received: 1 June 2015 Accepted: 26 November 2015

References
1. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ.

Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell.
2004;15(8):3841–62.

2. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, et al.
BioModels Database: An enhanced, curated and annotated resource for
published quantitative kinetic models. BMC Syst Biol. 2010;4:92.

3. Wolkenhauer O, Auffray C, Brass O, Clairambault J, Deutsch A, Drasdo D,
et al. Enabling multiscale modeling in systems medicine. Genome Med.
2014;6:21.

4. Vass M, Allen N, Shaffer CA, Ramakrishnan N, Watson LT, Tyson JJ. The
JigCell model builder and run manager. Bioinformatics. 2004;20(18):
3680–1.

5. Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK,
et al. Reproducible computational biology experiments with SED-ML-the
simulation experiment description markup language. BMC Syst Biol.
2011;5(1):198.

6. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI – a
COmplex PAthway SImulator. Bioinformatics. 2006;22:3067–74.

7. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H.
Celldesigner 3.5: A versatile modeling tool for biochemical networks. Proc
IEEE. 2008;96(8):1254–65.

8. Moraru II, Schaff JC, Slepchenko BM, Blinov M, Morgan F,
Lakshminarayana A, et al. Virtual cell modelling and simulation software
environment. Syst Biol IET. 2008;2(5):352–62.

9. Rohr C, Marwan W, Heiner M. Snoopy–a unifying Petri net framework to
investigate biomolecular networks. Bioinformatics. 2010;26(7):974–5.

10. Palmisano A, Hoops S, Watson LT, Jones Jr TC, Tyson JJ, Shaffer CA.
Multistate Model Builder (MSMB): a flexible editor for compact
biochemical models. BMC Syst Biol. 2014;8(1):42.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://copasi.org/Projects/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work

	Results and discussion
	JC-RM primary features
	The parameters graph
	The time course settings graph
	The plot settings graph
	Detecting and resolving conflicts
	Running a simulation and visualizing the results

	Conclusions
	Availability and requirements
	Implementation
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

