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Abstract: Sometimes it is difficult, or even impossible, to acquire real data from sensors and machines
that must be used in research. Such examples are the modern industrial platforms that frequently
are reticent to share data. In such situations, the only option is to work with synthetic data obtained
by simulation. Regarding simulated data, a limitation could consist in the fact that the data are not
appropriate for research, based on poor quality or limited quantity. In such cases, the design of
algorithms that are tested on that data does not give credible results. For avoiding such situations,
we consider that mathematically grounded data-quality assessments should be designed according
to the specific type of problem that must be solved. In this paper, we approach a multivariate type
of prediction whose results finally can be used for binary classification. We propose the use of a
mathematically grounded data-quality assessment, which includes, among other things, the analysis
of predictive power of independent variables used for prediction. We present the assumptions that
should be passed by the synthetic data. Different threshold values are established by a human
assessor. In the case of research data, if all the assumptions pass, then we can consider that the data
are appropriate for research and can be applied by even using other methods for solving the same
type of problem. The applied method finally delivers a classification table on which can be applied
any indicators of performed classification quality, such as sensitivity, specificity, accuracy, F1 score,
area under curve (AUC), receiver operating characteristics (ROC), true skill statistics (TSS) and Kappa
coefficient. These indicators’ values offer the possibility of comparison of the results obtained by
applying the considered method with results of any other method applied for solving the same type
of problem. For evaluation and validation purposes, we performed an experimental case study on a
novel synthetic dataset provided by the well-known UCI data repository.

Keywords: smart sensor; sensor data; smart factory; Industry 4.0; data-quality assessment; prediction
problem; predictive power; model fit; classification problem; machine learning; statistical modeling;
explainable artificial intelligence

1. Introduction

The properties of the data (data distribution, etc.), data quality (missing values, outliers,
etc.) and quantity are of utmost importance for the efficient functioning of modern data-
driven artificial-intelligence applications that are, most of the time, based on machine
learning. Based on the available data, we should chose the most appropriate corresponding
analyzing methods. Methods that are not chosen based on data property, quality and
quantity could lead to the wrong conclusions. This is why it is so important, as a preliminary
step, to analyze the data by using appropriate techniques. This is a step that is skipped
frequently in research, leading to the application of less appropriate methods, even when
more appropriate methods are available.

Often, it is difficult, or even impossible, to obtain real-life data provided by sensors
that should be used for evaluation and testing of algorithms/methods. In such a situation,
the feasible option is to work with synthetic data obtained by physical systems or the
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software simulation of real physical systems. Such an illustrative field, in this sense, is the
industry, with recent developments related to Industry 4.0 and smart factories. Motivations
of the difficulties to obtain real data provided by sensors for research consists of aspects
such as confidentiality of data and industry reticence to share data based on considerations
such as industrial secrets and industrial competition. Research performed on synthetic
data has advantages versus real data, as such research is cheap and can be generated in the
necessary quantity and diversity. One of the limitations of synthetic data consists in the fact
that we cannot replicate totally real data based on those applied algorithms, as they could
give different results than those applied to real data. Based on this respect, we consider
that synthetic data should pass data-quality assessments.

In this paper, we present a mathematical modeling for a data-quality assessment for a
specific prediction type of problem-solving. The method is called binary logistic regression
(BLR), which is alternatively known as bivariate logistic regression, for the evaluation of
predictive power of some predictor (independent) variables, which can be by nominal,
ordinal or ratio type on a predicted (dependent) dichotomous variable. The result of the
prediction admits a binary classification. For the BLR method, we present the assumptions
that must be passed preliminarily for the further applicability of the method. We present
an interpretation of the results in a case where all the necessary assumptions are passed,
being identified the useful predictor variables and their predicting power. The measure
of the predictive power, at the same time, is an indicator of the model fit. It is indicated
that the predictive power should belong to at least a minimal class of predicting power that
must be established by a human assessor (HA) who has an important central role in the
data-quality assessment. Appropriate predictive power indicates that further methods can
even be applied.

Based on the predicted probability finally is performed a binary classification whose
results are retained in a classification table. Based on the values from the classification
table, we can apply any indicators of performed classification quality, such as sensitivity,
specificity, accuracy, F1 score, area under curve (AUC), receiver operating characteristics
(ROCs), true skill statistics (TSS) and Kappa coefficient. These evaluation results offer
the possibility of comparison of the results obtained by applying the BLR with results of
any other method that can be applied for performing a binary classification based on the
same data.

If the required assumptions fail or the prediction power is low, we can analyze the ne-
cessity of the introduction of new predictor variables or the exclusion of redundant predictor
variables. It can even be that the available data are not appropriate for research purposes.

BLR is mostly known to be applicable in healthcare research. We would like to
notice that frequently is not applied correctly by omitting the verification of the necessary
assumptions that should pass to be applicable. In this paper, we treat in-depth the subject
of correct application and correct interpretation of the results. Based on this fact this paper
represents at the same time a guideline for the correct application of BLR in research to
avoid misinterpretations of research data.

For evaluation purposes of the data quality assessment, we have performed an ex-
perimental evaluation case study using a recently provided synthetic dataset available on
the UCI data repository [1]. We have presented and discussed all the performed steps and
interpretation of the results.

The upcoming part of the paper is organized as follows: Section 2 presents a survey
on the state-of-the-art data quality assessment methods and presented applications of BLR.
In Section 3 the assumptions that must be passed by the BLR method are presented, being
treated the interpretation of the results. Section 4 presents an experimental data quality
assessment evaluation using a synthetic dataset. Finally, the conclusions are formulated.

2. State-of-the-Art Data Quality Assessment

In this section, we present the state-of-the-art regarding the quality assessment of data.
Moreover, we present state-of-the-art applications of BLR.
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2.1. Mathematical Modeling of Data Quality Assessment

The research-data (this is the case among others of synthetic data) property, as well
as some other characterizing information, if available, has a significant influence on the
appropriateness of the application of specific algorithms. This sometimes could require
specific preliminary data analysis and use of available information, hereafter, requiring
data-quality assessment. Just to mention a very simple example, for instance, in the case
of a search problem in a set of numbers, any times can be applied to the sequential search
algorithm. If it is known that the numbers are ordered (the ordering property can be
algorithmically verified), then we can apply the binary search algorithm. If it is available,
the additional information that the ordered set of numbers will be frequently updated the
application in the following of binary search is not appropriate. The motivation consists in
the fact that each operation (modification, deletion and adding) should be performed in
such a way that the numbers maintain the ordering property, which gives computational
complexity if they are frequently executed.

Recently a large effort has been made regarding the development of explainable
artificial intelligence (EAI). Applications of EAI include the forecast of climate-change con-
sequences [2] and learning the mental-health impact of COVID-19 in the United States [3].
Matzka [4] presented research performed regarding explainable artificial intelligence ap-
plied for predictive maintenance applications on a specific recent dataset available on the
UCI data repository [1]. The principal contribution consisted of the design of an explainable
model and an explanatory interface. The applied training was performed by using the
UCI dataset [1]. Finally, the explanatory performance was evaluated and used for making
comparisons. In our research presented in this paper, we used the same dataset [1].

There are diverse approaches in the scientific literature specialized in the quality
assessment of different types of data. Wu et al. [5] studied the subject of deraining quality
assessment in evaluating some types of images. Ben-Dor et al. [6] performed a quality
assessment for several methods, using synthetic imaging spectroscopy data. Dell’Amore
et al. [7] assessed the image quality of synthetic aperture radar. Friedrich et al. [8] studied
the subjects of data creation and data-quality assessment for databases that are usually
used in airports. Papacharalampopoulos et al. [9] performed a deep quality assessment
for a solar reflector that was built on synthetic data. Masoum et. al. [10] performed a
data-quality assessment of different saffron samples, employing data by second-order
spectrophotometric-type, applying methods based on three-way chemometry. Fernández
et al. [11] presented an estimation performed online of the electric arc furnace tap temperature.

Some mathematical modeling strategies of data-quality assessment are based on binary
classification. DiFilippo [12] presented an assessment method that can be applied on SPECT
and PET phantom images utilizing binary classification. Hoeijmakers [13] proposed an
accuracy assessment of thermoacoustic instability models that involved binary classification.

Recent advances in neuroimaging research have begun to focus on the study of the
interactions held at the level of brain regions. Garg et al. [14] proposed a causality analysis
that is appropriate for fMRI data. The analysis, also called Granger causality, provides an
efficient method for modeling the interactions treated at the spatiotemporal level that are
held among the brain regions. The mentioned method applies to full-brain fMRI data.

Wang [15] proposes the use of Cohen’s Kappa, which is frequently applied in research
as a quality measure for data annotations for binary classification tasks.

Saad et al. [16] performed research on improving the prediction power of the so-
called chemometric models. This is realized through the exploitation of the supplied
spectrophotometric data. The research also included a comprehensive bibliographic study.
They mainly studied the outcome of data manipulation in the initial data-preprocessing
step continuing with the application of chemometric models. Finally, the prediction power
of the diverse models was matched by using a validation set consisting of eight mixtures.
The statistical comparison was performed by using a two-factor Analysis of Variance. For
additional comparison of the predictability of different built models, the prediction based
on root-mean-squares error was compared.
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2.2. State-of-the-Art Applications of Binary Logistic Regression

Applications of logistic regression are diverse, including processing of tomogra-
phy [17], detection of rice seed purity [18], classification of scenes [19], spectral and spatial-
based classification [20], prediction of axillary lymph node metastases [21], active smoking
and associated behavioral risk factors before and during pregnancy [22]. BLR belongs to
the class of logistic regression.

In the following, we present examples that illustrate the wide diversity of applications
of BLR individually or in combination with other methods.

The applications in healthcare basically can be classified into two classes [23–25],
namely prognostic prediction and diagnostic prediction. Prognostic prediction consists
of the estimation of forming a particular disease throughout a specific period. Diagnostic
prediction consists of the estimation of the probability of the presence of a considered
disease. In the case of healthcare applications, we must also analyze the very important
legal aspects. Reference [26] presents a valuable interdisciplinary study of the actual
technical and legal challenges of data quality in the context of European medical law.

Saha et al. [27] treated the problem of predicting deforestation at the Gumani River
Basin located in India. Cui et al. [28] presented research on driving forces of the urban
hot spots. Barnieh et al. [29] studied the causal drivers of vegetation occurrence situated
in West Africa. Ozen [30] presented research on damage gravity intensity assessment
of pedestrian accidents. Sanchez-Varela et al. [31] presented research on the performing
prediction of damage of status by applying procedures called active arranging training.
Manoharan et al. [32] treated the problem of smart-grid checking by applying wireless
devices. Lopez and Rodriguez [33] treated the problem of forecasting flash floods in Sao
Paulo city. Gonzalez-Betancor and Dorta-Gonzalez [34] treated the subject of the danger of
disruption of doctoral research and the problem of mental health in doctoral students.

Tesema et al. [35] presented performed research on trends of infant mortality in
Ethiopia. The mathematical modeling was based on BLR with mixed-effect combined with
analysis based on multivariate decomposition.

Ferencek and Borstnar [36] presented data-quality-assessment models applied for
product failure prediction. The authors studied the failure prediction problem during
the product warranty period. They proposed a machine-learning method that is able to
decrease in time the error of prediction. From the initial 33 attributes, they detected seven
with effective predicting power. One of the conclusions of the research was that the number
of collected data was small associated with its cost.

Choi et al. [37] studied the problem of improving predictions efficiency by applying
a method based on an artificial neural network resulting in a data-quality-assessment
procedure. In the framework of a performed case study, the application to local scour across
bridge piers was reported. The motivation of the performed research was based on the
assumption of the authors that some methods based on artificial intelligence do not predict
field-scale local scour with the necessary accuracy. The research included multivariate
(methods applied: Euclidean distance and Mahalanobis distance) and univariate methods,
and, finally, the obtained results are compared. The paper gives quantitative descriptions
about the degree to how much the data-quality assessment improves predictions.

3. The Method Proposed for Data Quality Assessment

Approaches based on statistics are used for many real-life problem-solving situa-
tions [38–41]. Ref. [39] presented research focused on the study of the phytoremediation
potential of crop plants. Regression analysis [42] is a statistical technique for estimating
the strength of relationships among variables. Regression analysis includes the logistic
regression that most frequently is applied in healthcare [43]. For instance, diverse medical
scales for assessing the severity of a patient’s illness have been developed by using logistic
regression [44–47].

Research regarding logistic regression involves one or more predictor (independent)
variables and one predicted (dependent) variable. The logistic regression where the depen-
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dent variable is dichotomous (take two values) is called binary logistic regression (BLR),
sometimes called binomial logistic regression. In our study, we consider the application
of BLR. The BLR can be used with the purpose to check whether cases can be correctly
predicted in two classes denoted as ClassA and ClassB. ClassA signifies the event occurring,
for instance, an engine in a smart factory failed. ClassB signifies the event not occurring, for
instance, an engine in a smart factory NOT failed. BLR calculates/estimates the probability
of a case belonging to the specific ClassA. Let us denote with P the estimated probability of
the event occurring. HA must establish a cut value denoted CutV that could take values in
the interval [0, 1]. In most cases, the recommended CutV value is 0.5. If p ≥ CutV, the event
is classified as occurring, and ClassA is chosen; elsewhere, if p < CutV, the event is classified
as not occurring, and ClassB is chosen. BLR can predict whether cases can be accurately
predicted/classified from the predictor variables.

Regarding the decision of choosing BLR alternatively with other methods, we must
mention the decision that must be followed: When all predictors (can be one or more) are
continuous, then a discriminant function analysis can be applied. When all the predictors
(can be one or more) are categorical, a logit analysis can be applied. Logistic regression is
appropriate even in the case when the predictor variables include both continuous and
categorical types.

In the following subsections, we present assumptions that must be verified by using
diverse statistical tests to be correctly applicable to the BLR. Moreover, we present the
interpretations of the obtained results.

Logistic regression, in contrast to many statistic tests, makes no assumptions about the
distributions of the independent variables. If it is useful for interpretation, a verification of
normality assumption passing by the independent variables by scale type can be performed.
For the verification of the passing of normality assumption for small sample size (3 to 50),
we recommend the Shapiro–Wilk test (SW test) [48,49]. SW tests also have the advantage of
having the highest statistical power and working well with few data [50]. For a large sample
size, we recommend the Lilliefors test [51], which represents an adaptation of Kolmogorov–
Smirnov test. Even though both tests can be applied at different significance levels (e.g.,
0.01), we recommend the choosing, in most of the cases, the significance level αnorm = 0.05,
considering that it is the most appropriate. In the case of both tests, we also recommend
the additional visual interpretation of normality by using the Quantile–Quantile plot (QQ
plot) scatterplot [52]. In the case of normally distributed data, the points should fall
approximately along this reference line. The greater the departure from the reference line,
the greater the evidence is for the conclusion that the data fail the normality assumption.

3.1. Basic Assumptions

In this subsection, we present the basic assumptions denoted Basic Assumption 1
(BAss1), Basic Assumption 2 (BAss2), Basic Assumption 3 (BAss3) and Basic Assumption 4
(BAss4), which should pass before the application of BLR.

Basic Assumption 1. BAss1

The predicted (dependent) variable should be measured on a dichotomous scale. For
instance, in the case of a machine or sensor used in the industry, it could indicate the
apparition or not of a failure. “C” could indicate correct functioning and “F” could indicate
the apparition of failure.

Basic Assumption 2. BAss2

The predictor (independent) variables (one or more) can take continuous or categorical
values. Continuous values can be by interval or ratio type. Categorical values can be
ordinal or nominal. The revision time of a machine or a sensor measured in time is an
example of a continuous variable.

Ordinal variables can take, for instance, values on the Likert scale [53] by 3 points.
For example, the defect of an engine or sensor is by a “small degree” (it can function even
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in the following), “noticeable” (it must be repaired) or “significant failure” (it is a very
grave defect).

As examples of nominal variable values can be mentioned the quality of an engine
or sensor that can be “Low” (low quality), “Moderate” (moderate quality), “High” (high
quality) or “Excellent” (excellent quality).

In the following, we use the following notations: np denotes the number of predictor
variables, and n denotes the total number of cases (data points). In an analysis, the number
of valid cases can be smaller than the total number of cases, resulting from the elimination
of invalid cases.

Basic Assumption 3. BAss3

The predicted variable should have categories that are mutually exclusive and exhaustive.

Basic Assumption 4. BAss4

This assumption states that should be verified for each continuous independent
variable the existence of a linear relationship with the logit transformation of the dependent
variable. The existence of the linearity can be made, for instance, using the Box–Tidwell
method [54].

In the literature, there are proposed also some alternatives to the Box–Tidwell family of
transformations to increase its generality. Reference [55] introduces fractional polynomials
for Box–Tidwell transformations that have simple rational powers. Reference [56] presents
another work on fractional polynomials.

Basic Assumption 5. BAss5

Sample size estimation for BLR. An important factor for obtaining robust prediction
performance is that the size of the dataset should be established relative to the number of
predictors [57–61]. In the case of logistic regression, usually, the sample size is established
as cases (events) per predictor variable in terms of events per variable (EPV). Low EPV
values lead to poor predictive performance [58,60,62–65]. EPV is defined by the ratio of
the number of events. EPV is calculated as the ratio of the number of events relative to the
number of predictors.

In medical research, the rule of lower limit by EPV ≥ 10 is frequently used [66]. This
criterion has a relatively general acceptance [24,67,68]. Some research [69–71] proved
that this rule does not perform well in studies that involve large-scale simulation. Refer-
ences [63,65] proved that, when stepwise strategies for choosing predictor variables are
applied, the criterion of EPV ≥ 10 is not appropriate. In such situations, it is necessary
to apply the EPV ≥ 50 rule [63]. For the estimation of the predictive performance, the
paper [72] considers the total sample size, the number of predictors and the events fraction.

3.2. Assumptions That Must Be Passed by the BLR

In this subsection, we present the assumptions, which should be verified by using
statistical tests, whose results must pass the threshold values established by HA. If at least
one of these assumptions fail, then the application of the BLR is not correct. There are
also presented some other statistical tests that must be applied and whose results must
be interpreted.

3.2.1. Test for Variables in the Equation Considering the Intercept Only Model

Table 1 presents the study performed for the variables in the equation considering
the intercept-only (constant) model. With this purpose is applied Wald’s Chi-Square test.
Essential aspects regarding Wald’s test in References [73,74] are presented. In Table 1, we
use the following notations: ValWald represents the obtained value of Wald’s test statistics;
Valβ represents the value of the obtained β; ValSe represents the value of the standard
error; ValSigVE represents the p-value of the Wald’s test; and Exp(β) represents the odds
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ratio predicted by the model, [Exp(β)] represents the predicted odds of deciding on ClassA,
[Exp(β)] = ValExpβ.

Table 1. Variables in the equation considering the intercept-only model.

β SE WaldStat Sigve Exp(β)

Constant Valβ ValSe ValWald ValSigVE ValExpB

In the case of the assumption of Wald’s test, as applied for variables in the equation, it
should pass. This means that we must obtain a result for Sigve that is statistically significant.
Moreover, αve denotes the significance level of Wald’s test. We recommend that the αve
value be 0.05. For the Sigve value, Sigve < αve indicates significance.

Based on Table 1 the intercept-only model can be formulated as (1)

ln(odds) = Valβ, (1)

3.2.2. Omnibus Test of Model Coefficients

When checking the fact that the model is an improvement over the baseline model,
we must apply the Omnibus Test of Model Coefficients (OT). It is considered the model
with included explanatory variables. OT applies Chi-Square tests for the verification if is
a considerable difference between the Log-likelihoods (-2LLs) of the new model and the
baseline model. If the model has a significantly increased -2LL comparatively with the
baseline, this shows that the new model is explaining more of the variance in the predicted
variable, thus indicating the obtainment of an improvement. Moreover, αo denotes the
applied significance level of the OT that must be set by HA. The recommended value for
αo is 0.01 in most of the cases.

Assumption 1 (Ass1). Result of Omnibus Test of Model Coefficients.

By applying the OT, we should obtain a statistically significant Chi-Square value. Sigot
denotes the obtained p-value of the OT. An Sigot < αo indicates the appropriateness of the
application of BLR.

There are three different versions of OT, namely Model, Step and Block. For the
comparison of the new model (full model) to the baseline (no model), we should use the
version, called Model. The null hypothesis (H0) states that the full model and the baseline
model are not statistically significantly different. The rejection of H0 leads to acceptance
of alternative hypothesis H1 that allows the formulation of the conclusion that the full
model and the baseline model are statistically significantly different. If we apply a stepwise
procedure of adding explanatory variables to the model hierarchically, then we should be
using the Step and Block.

3.2.3. Hosmer–Lemeshow Test

Hosmer and Lemeshow [75] proposed a goodness-of-fit-test called the Hosmer–
Lemeshow (HL) test that is an assumption test for logistic regression models. HL statistic is
a reliability indicator of model fit for BLR. This test admits determining whether the model
adequately describes the data, and αhl denotes the applied significance level of the HL test
that should be set by HA. The recommended value for αhl is 0.05 in most of the situations.
Sighl indicates the significance level obtained by applying the HL.

Assumption (Ass2). Hosmer–Lemeshow test result.

For the BLR to correct applicability, it should verify the criterion of non-significance
of the Hosmer–Lemeshow test, Sighl > αhl. The non-significance is an indicator of a good
model fit. A significance value, Sighl, lower than 0.05 indicates poor fit and indicates the
non-appropriateness of the application of BLR.
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3.2.4. The Variance Explained in the Dependent Variable

In this subsection, we address the subject of testing how much variance in the predicted
variable can be explained by using the model. More concretely, we present the statistics
that can be performed and the interpretation of the results. We also address Assumption 3
(Ass3), which should be verified and passed.

The coefficient of determination in multiple regression analysis is denoted by R2. R2

takes values in the interval [0, 1] and determines the amount of variance in the dependent
variable that can be explained by the predictor variables.

In the case of BLR, we should evaluate the pseudo-R2 [76]. As an observation, we
would like to mention that the pseudo-R2 values usually have lower values than R2 values
in multiple regression. There are different methods proposed in the scientific literature
for calculating the pseudo-R2 [76], without having a unanimous agreement on which of
them is the most appropriate. In the case of each of them, we can consider advantages
and disadvantages. With this purpose, to obtain the explained variance, we can use the
likelihood ratio R2 proposed by the Cohen [76], Cox and Snell R2 [77,78], McFadden R2 [78],
Tjur R2 [78], and Nagelkerke R2 [76] tests. Tjur R2 is relatively new.

Reference [78] presents a limitation of the Cox and Snell R2. Cox and Snell R2 cannot
reach the value 1. The Nagelkerke R2 test provides a correction of the Cox and Snell R2.
Among others, the correction includes the elimination of the weakness of not reaching
the value 1. The different calculus performed by these two tests provides different results.
Reference [78] proposes the use of McFadden R2 instead of Cox and Snell R2. This is based
on the different scaling of the tests. In the following, we suggest for interpretation the
Nagelkerke R2 value. An obtained NrS value of pseudo-R2 indicates that around NrS% of
variance in the dependent variable can be explained by the predictor variables.

Assumption 3 (Ass3). Minimal variance in the dependent variable that should be explained.

In the case of an experimental evaluation, HA could establish classes of prediction
power as follows: “unsatisfactory”, “week”, “appropriate”, “good” and “very good”.
Table 2 presents such a proposed classification that could be applied in most of the cases.
HA must establish the minimal class to which should be expectable to belong the prediction
power of the variables. For instance, HA could establish that it is expectable to belong to at
least the class of “good” prediction power.

Table 2. Prediction power classification established by HA.

Name of the Class Interval

“unsatisfactory” prediction power <10%
“week” prediction power (10%, 20%)

“appropriate” prediction power (20%, 30%)
“good” prediction power (30%, 40%)

“very good” prediction power ≥40%

Assumption 4 (Ass4). Measuring how poor is the prediction power.

Additionally, we can calculate the so-called -2 Log-likelihood statistic [79], which
represents a measure of how poor the prediction power is. A smaller value of the statistic
indicates a better model. The value considered by itself does not provide a clear interpreta-
tion. It is useful when more models are compared based on the value of the Log-likelihood.
This can be used, for instance, when testing the predicting power of different sets of
predictor variables.

3.2.5. Evaluation of Obtained Classification

The results obtained by applying the BLR can be used for making a binary classifi-
cation. In the following, we consider the assessment of the effectiveness of the predicted
classification. It is necessary to assess the effectiveness of the known (correct) classification
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against the predicted classification. For this, we suggest as a first step the construction of
a so-called classification table (CT). Table 3 presents the structure of a CT, consisting of
the observed and predicted binary classification. As an example of applicability can be
mentioned the machine failure (MF) prediction (a machine fails or not).

Table 3. Structure of classification table for machine-failure prediction.

Predicted

Machine Failure
Percentage Correct

NO YES

K
no w
n NO Val1(TN) Val2(FP) ValSPEC%

YES Val3(FN) Val4(TP) ValSENS%
Accuracy ValTot%

In the following is presented the calculus of some indicators that admit the comparison
of classification results of BLR with the results of other methods used with the same
classification purposes. TN denotes the true negatives: negatives that were correctly
classified, TN = Val1. TP denotes the true positives: positives that were correctly classified,
TP = Val4. FP denotes the false positives: values that are classified as YES (positives) but
are NO (negatives), FP = Val2. FN denotes the false negative: values that are classified as
NO (negatives) but are YES (positives), FN = Val3.

Based on the values retained in Table 3, we recommend the calculus of the principal
indicators that we consider: sensitivity, specificity and accuracy.

Sensitivity, denoted as ValSENS% in the table, represents the percentage of the cases
that had the observed characteristic (“YES” for machine failure); the cases were correctly
predicted by the model.

ValSENS% = 100 × (TP/(TP + FN)) = 100 × (Val4/(Val4 + Val3));
Specificity, denoted as ValSPEC% in the table, represents the percentage of cases that

did not have the observed characteristic (“NO” for machine failure); these cases were
correctly predicted as not having the observed characteristic.

ValSPEC% = 100 × (TN/(TN + FP)) = 100 × (Val1/(Val1 + Val2));
Accuracy represents the percent of correctly predicted positives and negatives. ValTot%

from Table 2 denotes the accuracy.
ValTot% = 100 × ((TN + TP)/(TN + TP + FN + FP)) = 100 × ((Val1 + Val4)/(Val1 + Val4

+ Val2 + Val3));

Assumption 5 (Ass5). Classification results evaluation.

Performing the classification and considering the specificity of the research, we should
obtain at least a threshold minimal admitted value for one of the following:

• The accuracy indicator;
• All the indicators accuracy, sensitivity and specificity.

This must be established by the human assessor.
Comparing the obtained indicator value(s) with the required one, we can establish

the threshold values determined by HA if the classification is in accordance with the
expectations. These indicator values admit the comparison with results of other models,
based on the fact that HA can choose the most appropriate one. If necessary, HA can choose
some other well-known indicators, such as the F1 score [80], AUC [81], ROC [82], TSS [83]
and Kappa coefficient [84].

3.2.6. Variables in the Equation with Predictor Variables Included

As a following step, it is applied the Wald Chi-Square test [73,74]. Wald’s test is used
for testing the individual contribution of each predictor variable (one or more predictors).
Each predictor variable is analyzed in the context of all other predictor variables whose
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values are kept constant. This procedure has the advantage of being able to eliminate the
overlaps between the predictor variables. In the case of a predictor variable, we must verify
if it is a statistically significant predictor. It must be applied for each predictor variable at
the αSig significance level, which must be set by HA. The significance level, αSig, could take
different values, such as 0.05, 0.01 and 0.001. We consider that, in many cases, the most
appropriate value is 0.05. In the case of each of the included predictor variables, a value
where Sigve < αSig indicates that the variable is a significant predictor. Elsewhere, if in case
of a predictor variable, Sigve ≥ αSig indicates that the variable is NOT a significant predictor.

Table 4 presents the variables in the equation with the predictor variables included.
The columns in Table 4 have the same labeling as those in Table 1. In Table 1, we use the
following notations: β denotes regression weight in the model, SE denotes the standard
error, WaldStat denotes the Wald’s test statistics (Wald’s Z value) and EXP(β) denotes the
odds ratio (OR). The power of the association between two events can be measured by
using the OR.

Table 4. Variables in the equation with predictor variables included.

β SE WaldStat Sigve Exp(β)
CI of EXP(β)

LowExpβ UppExpβ

Var1(CatA) 0.78 0.072 114.079 0.01 22.65 11.879 22.495
Var2 −0.75 0.096 59.442 0.03 0.476 0.394 0.575
Var3 0.02 0.001 473.247 0.83 1.012 1.011 1.013

Constant −37.7 14.641 6.278 0.012 0

For explanatory purposes, we present fictitious data in Table 4 as results regarding
the predictor variables in the regression equation. Var1(CatA), Var2 and Var3 denote the
predictor variables, where Var1 is a categorical variable, with CatA considered as reference
category. Var2 and Var3 take continuous values. The regression coefficients denoted β gives
the predicted amount of change in the dependent. Exp(β) is the odds ratio (OR) predicted
by the model. OR is calculated by raising the base of the natural Log to the sth power,
s denotes the slope that results from the logistic regression equation and CI of EXP(β)
denotes the confidence interval of EXP(β) that must be set by HA. It is recommended to
choose the 95% confidence level. LowExpβ represents the lower limit of the confidence
interval, and UppExpβ represents the upper limit of the confidence interval.

In the following, for illustrative purposes, we interpret the fictitious data from Table 4.
Considering Var1, based on the fact that Sigve < αSig (0.01 < 0.05), we can conclude that Var1
is a significant predictor. Considering Var2, based on the fact that Sigve < αSig (0.03 < 0.05),
we can conclude that Var2 is a significant predictor. Considering Var3, based on the fact
that Sigve > αSig (0.83 > 0.05), we can conclude that Var3 it is NOT a significant predictor.

Exp(β) of Table 4 includes the information for predicting the probability of an event
occurring when all other predictor variables are kept constant. For example, in the case of
Var1, the table shows that the odds for the “Yes” category are 22.65 times greater for CatA
as opposed to CatB.

The Sigve value in the case of each predictor variable gives an answer if the variable is
a significant predictor or not. If there are variables that are not significant predictors, this
can be reported in the formulated conclusions. If decided, they can be removed, and the
analysis can be repeated.

The variables in the equation output obtained for the fictitious data give us the
following regression equation, Equation (2):

ln(odds) = −37.7 + 0.78 × Var1 − 0.75 × Var2 + 0.02 × Var3, (2)

The obtained model can be used to predict the odds, based on Equation (3).

odds = e(−37.7 + 0.78 × Var1 − 0.75 × Var2 + 0.02 × Var3), (3)
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Conversion to probabilities should be realized as follows (4):

P =
odds

1 + odds
. (4)

If decided, we can apply an approach whereby each predictor variable is eliminated
step-by-step from the model and is compared to the −2 Log-likelihood statistic of the
reduced model with the full model to establish if the reduction is appropriate. Let us
consider n to be the number of predictor variables. The previously mentioned approach
requires testing of n + 1 models.

3.3. Interpretation of the Binary Logistic Regression Results

An iterative maximum likelihood procedure constructs the model. It starts with values
of the regression coefficients generated arbitrarily based on that the construction of an
initial model that predicts the observed data. After this, the errors are evaluated and, based
on this, the regression coefficients change. This is performed in such a way as to make
the observed data likelihood superior for the novel model. This procedure is repeated
recursively until the convergence of the model is reached.

In Sections 3.1 and 3.2, we present all the assumptions that must be passed for the
application of BLR to be correct. In this section, we present the interpretation of the obtained
results in case of passing all the mandatory assumptions.

In Section 3.2.4, we present the calculus of the pseudo-R2, whose result is denoted
NrS. HA considering the specificity of the research must create the interval classes for the
value of pseudo-R2 that must be labeled, for instance, in Table 2: “unsatisfactory”, “week”,
“appropriate”, “good” and “very good”.

Section 3.2.5 presents the performed classification results in the form of a classification
table. Moreover, there are recommended indicators accuracy, sensitivity and specificity. HA
considering the specific of the research must establish the thresholds (threshold, minimal
acceptance values) for the indicators values that are considered in the interpretation of
the results.

4. Experimental Data-Quality-Assessment Evaluation
4.1. The Synthetic Dataset Used in the Evaluation

UCI is a valuable repository of datasets that can be used for research purposes [85].
Reference [1] provides a synthetic dataset created with the intent to mimic real industrial
predictive maintenance data. In this section, we briefly present the description of the UCI
dataset that we used in the experimental data-quality-assessment evaluation. Reference [4]
presents the dataset’s details. Table 5 presents a snapshot of the data with included three
cases (numbered with 1, 2 and 78). The whole dataset includes 10,000 rows (cases) of
data characterized by six features/variables, organized on separate columns in the table,
in the case of real-life data provided by different sensors (e.g., intelligent sensor camera,
thermistors, etc.). The features, independent (predictor) variables, are as follows: V1, the
product ID; V2, the air temperature (K); V3, the process temperature (K); V4, the rotational
speed (rpm); V5, the torque (Nm); and V6, the tool wear (min). Where K denotes the Kelvin
temperature scale where zero reflects the complete absence of thermal energy, rpm denotes
rotations per minute; Nm denotes the Newton-meter that is a unit of torque in the SI system
and min denotes the minutes.
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Table 5. Snapshot of the data used in the research.

UDI Product ID V1 V2 V3 V4 V5 V6 VF

1 M14860 M 298.1 308.6 1551 42.8 0 0

2 L47181 L 298.2 308.7 1408 46.3 3 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

78 L47257 L 298.8 308.9 1455 41.3 208 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

V1 values are labeled with the letters “L”, “M” and “H” based on the quality of the
product. “L” denotes low-quality products, which consist of 50% of all products. “M”
denotes medium quality products, which consist of 30% of all products. “H” denotes
high-quality products, which consist of 20% of all products.

Karl Pearson first defined the term “random walk” [86]. Data retained in V2 were gen-
erated by utilizing a random-walk process that is later normalized to a standard deviation
of 2K around 300K. Data retained in V3 were generated by utilizing a random-walk process
that was normalized to a standard deviation of 1K, added to the air temperature plus 10K.
Data retained in V4 were calculated from a power of 2860 W, which was overlaid with noise
that was normally distributed. Data retained in V5 consisted of the torque values that are
normally distributed around 40 Nm with a standard distribution of σ = 10 Nm (note that
there are no negative values). Data retained in V6 represent the quality variants H/M/L
add 5/3/2 minutes of tool wear to the used tool in the process.

The dependent variable VF is labeled “machine failure”. The retained values indicate
whether the machine has failed in a different particular data point. The value 0 indicates
no failure. The value 1 indicates the apparition of a failure.

4.2. Experimental Evaluation Results

For the variables V2 (air temperature), V3 (process temperature), V4 (rotational speed),
V5 (torque) and V6 (tool wear), based on the large sample size, we applied the Lill test
with the significance level αnorm = 0.05 (Table 6) and created the QQ plots (Figures 1–5) for
visual interpretation. The degrees of freedom of each variable is 10,000.

Table 6. Results of the data normality verification.

V2 V3 V4 V5 V6

Statistic 0.067 0.49 0.104 0.009 0.06

p-value 0 0 0 0.64 0

QQ plot Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Normality assumption
passing

(p-value > αnorm)
No No No Yes No
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Figure 1. QQ plot for V2.
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Figure 4. QQ plot for V5.

Figure 5. QQ plot for V6.

We performed a BLR on the data presented in Section 4.1. All the cases, 100%, were
included in the study, since they were valid (do not contains missing data and outliers). In
the experimental evaluation study, we used the following predictor variables: V2 (air tem-
perature), V3 (process temperature), V4 (rotational speed), V5 (torque) and V6 (tool wear).

For the interpretation of the results, we must mention that, in the following, the
predicted probability is for the membership for 1 that denotes failure.

Step 1. Verification of passing all the basic assumptions.

All the basic assumptions, BAss1, BAss2, BAss3, BAss4 and BAss5, received verifica-
tion that they passed the HA.

Step 2. Performing the test for the variables in the equation considering the intercept-
only model.

Table 7 presents the Wald test results regarding the variables in the equation consider-
ing the intercept-only model. The significance level, αve, was set to the value 0.05 by HA.
The predicted odds of deciding to continue the research are odds [Exp(B)] = 0.035, which is
relatively low. However, the criterion of the significance of variables in the equation passed,
Sigve ~ 0, Sigve < αve, indicating a significant result.
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Table 7. Variables in the equation considering the intercept-only model.

β SE Wald Sigve Exp(β)

Constant −3.35 0.055 3675.133 ~0 0.035

Step 3. Performing the Omnibus Test of Model Coefficients

In the following, we applied the Omnibus Test of Model Coefficients. The value of
significance level αot was set to 0.01 by HA. Table 8 presents the results of the OT. According
to the previous explanations, it should be interpreted just the line labeled “Model” with
the Chi-Square value 1038.064 and Sigot = ~0. The obtained result, Sigot, where Sigot < αot,
indicates significant result. However, Assumption Ass1 passed.

Table 8. Result of the Omnibus Test of Model Coefficients.

Chi-Square Sigot

Step 1038.064 ~0

Block 1038.064 ~0

Model 1038.064 ~0

Step 4. Performing the Hosmer–Lemeshow Test

We performed the Hosmer–Lemeshow test. The significance level of the HL, the αhl
value, was set to 0.05 by HA. Table 9 presents the results of the HL. Since the p-value of the
HL is Sighl > αhl, we can conclude that the criterion of non-significance of HL is satisfied, as
is the requirement for the correct application of BLR. Henceforth, we show the good fit of
the model. However, assumption Ass2 passed.

Table 9. Result of the Hosmer–Lemeshow test.

Chi-Square SigHL

13.39 0.099

Step 5: The variance explained in the dependent variable

Regarding the value of pseudo-R2 based on the specific of the research, HA makes
the classification that was presented in Table 1. At this step, we calculated the pseudo-R2

by using two methods. Table 10 presents the obtained results of the Cox and Snell R2 and
Nagelkerke R2 values. Cox and Snell R2 = 0.099, and Nagelkerke R2 = 0.385.

Table 10. Obtained pseudo-R2 values.

−2 Log-Likelihood Cox and Snell R2 Nagelkerke R2

1922.894 0.099 0.385

For the interpretation, we used the Nagelkerke R2 = 0.385 based on motivations
previously explained. This obtained value indicates that almost 39% of the variance in the
predicted variable can be explained by the predictor variables V2, V3, V4, V5 and V6. The
classification results presented in Table 10 indicate a prediction power, which is classified
as “good” according to Table 1, 39% ∈ (30%, 40%). However, Ass3 passed. The value
of −2 Log-likelihood, Ass4, can be used with comparative purposes to decide which of
predictor variables should be maintain, considering their predictive power.
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Step 6. Performing the classification by using the binary logistic regression.

HA established that the classification accuracy must belong to the interval (95%, 100%).
Table 11 presents the results of classification obtained by applying BLR.

Table 11. Performed classification results, with the cut value set to 0.5.

Known

Predicted

Machine Failure
Percentage Correct

NO Failure (0) Failure (1)

NO Failure (0) 9635 26 99.7%

Failure (1) 271 68 20.1%

Accuracy 97.0%

The results presented in Table 11 indicate the classification accuracy by 97%, 97%∈[95%,
100%], which, based on the threshold established by HA, fits the expectation. However,
Ass5 passed. It should be mentioned that, in the classification, we used the cut value 0.5.
The value of the additionally calculated specificity is ValSPEC% = 99.7%. The value of the
additional calculated sensitivity is ValSENS% = 20.1%.

Step 7. Performing the Wald’s test for the variables in equation with the predictor vari-
ables included.

We performed the Wald’s test for the variables in the equation. Table 12 presents
the results of Wald’s test, as performed on the variables V2 (air temperature), V3 (process
temperature), V4 (rotational speed), V5 (torque) and V6 (tool wear). HA establishes the
significance level as αSig = 0.05.

Table 12. Variables in the equation with the predictor variables included.

β SE WaldStat Sigve Exp(β) CI of EXP(β)
LowExpβ UppExpβ

V2 0.772 0.072 114.079 ~0 2.165 1.879 2.495
V3 −0.743 0.096 59.442 ~0 0.476 0.394 0.575
V4 0.012 0.001 473.247 ~0 1.012 1.011 1.013
V5 0.281 0.011 599.492 ~0 1.324 1.295 1.354
V6 0.013 0.001 138.315 ~0 1.013 1.011 1.016

Constant −36.69 14.641 6.278 0.012 0

For each of the predictor variables, namely V2, V3, V4, V5 and V6, the Wald’s test
result Sigve < αSig indicates that the variable is a significant predictor. It is considered the
confidence interval, [LowExpβ, UppExpβ] of EXP(β) at the CI = 95% confidence level.

Moreover, we must note the following:
For V2, Exp(β ) > 1 and LowExpβ > 1, UppExpβ > 1.
For V3, Exp(β) < 1 and LowExpβ < 1, UppExpβ < 1.
For V4, Exp(β) > 1 and LowExpβ > 1, UppExpβ > 1.
For V5, Exp(β) > 1 and LowExpβ > 1, UppExpβ > 1.
For V6, Exp(β) > 1 and LowExpβ > 1, UppExpβ > 1.
The regression equation can be formulated based on the results presented in Table 11

as follows (5):

ln(odds)= −36.69 + 0.772 × V2 − 0.743 × V3 + 0.012 × V4 + 0.281 × V5 + 0.013 × V6, (5)

The obtained model can be used to predict the odds, based on Equation (6).

odds = e−36.69 + 0.772 × V2 − 0.743 × V3 + 0.012 × V4 + 0.281 × V5 + 0.013 × V6 , (6)
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Conversion to probabilities should be realized as follows (7):

P =
odds

1 + odds
(7)

Step 8. Improving the classification by adjusting the cut value.

Regarding the classification choosing the cut value 0.4, the obtained results are pre-
sented in Table 13. The accuracy is 97.1% (97% for the cut value 0.5). The value of
specificity is ValSPEC% = 99.5% (99.7%, for cut the value 0.5). The value of sensitivity is
ValSENS% = 28.3% (20.1% for the cut value 0.5). The obtained results for the cut value
0.4 are better than those obtained for the cut value 0.5.

Table 13. Performed classification results from using the method with the cut value 0.4.

Known Machine Failure
Predicted

Machine Failure Percentage Correct
0 1

NO Failure 0 9609 52 99.5%
Failure 1 243 96 28.3%

Accuracy 97.1%

5. Discussion

Initially, we included in the model the predictor variable V1, along with V2, V3, V4,
V5 and V6. The −2 Log-likelihood obtained was 1913.929. Wald’s test for the variables in
the equation with Sig = 0.69 indicated the fact that V1 is not a significant predictor. Based
on this fact, V1 was removed from the second experimental setup presented in Section 4.2.
When verifying the results of the classification table, we observed that we obtained better
results with V1 removed. The necessity of a new model was motivated also by the result of
the HL test that indicated non-significance.

Briefly, the obtained results presented in the previous section can be interpreted as
follows. For the studied synthetic data-quality assessment [1], we applied a BLR. In the
case of BLR, we verified the passing of all the necessary assumptions for its applicabil-
ity. The obtained results indicate the fact that the synthetic data passed the data-quality
assessment, indicating that the predicting power is enough to be applicable to binary
prediction/classification algorithms. Finally, we presented the classification results based
on the applied model, with the cut value 0.4 presented in the form of a classification table,
which admits the clear comparison of the results with the prospective results of other
methods that can be applied. Based on the value from the classification table, we calculated
the accuracy, sensitivity and specificity, but we can use any other indicators, if necessary,
such as the F1 score [80], ROC [82], area under the ROC curve (AUC) [81], TSS [83] and
Kappa coefficient [84].

The errors that could appear at a classification are the false positives and false negatives.
It must be noticed that, in the classification tests, ROC and AUC present how an adjustable
threshold causes changes in two types of errors. However, the ROC curve and AUC
are only partially meaningful when used with unbalanced data. To avoid this problem,
Reference [87] introduced a new concordant partial AUC and a new partial c statistic
for ROC.

Regarding the interpretation of the research results, we can say that a BLR was per-
formed to ascertain the effects of V2 (air temperature), V3 (process temperature), V4 (rota-
tional speed), V5 (torque) and V6 (tool wear) on the likelihood of the machine failure. All
the assumptions necessary for the application of BLR passed. The applied model explained
38.5% (chosen the Nagelkerke pseudo-R2) of the variance in machine failure. The model
correctly classified 97.1% of the cases (with the chosen cut 0.4). Increasing V2 was associated
with an increased likelihood of machine failure. Similarly, increasing V4, V5 and V6 were
associated with an increased likelihood of machine failure, but the likelihood of failure is
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smaller than for V2. On the other hand, increasing V3 was associated with a reduction in
the likelihood of exhibiting machine failure.

6. Conclusions

In Industry 4.0 and smart factories, there are many challenging binary prediction
and classification types of problems that should be solved. Frequently obtaining real
industrial data is difficult or even impossible. Based on this fact, very often we should
use synthetic data obtained as a result of real or software simulations. In the case of such
data, a fundamental subject that should be treated is making a data-quality assessment. We
consider that one of the most important aspects of data-quality assessment that should be
evaluated is the predictive power. The passing of the data of all the indicated assumptions
is an indication for researchers that, on the data, can be applied even other algorithms for
binary prediction (classification), offering, at the same time, a comparison measure that is
possible to be passed by other algorithms.

The data-quality-assessment fundament was the first objective of the research. For
this data-quality-assessment verification, we indicated that a BLR should be performed. By
applying this method is obtained the response to the model fits the data. On the obtained
classification table, which practically consists of the confusion matrix, we applied the
indicators accuracy, sensitivity and specificity. Some others are also recommended to be
used when considered appropriate.

BLR is frequently applied in research for solving a binary classification problem
and the prediction of the membership to a specific class with a certain probability. Its
applicability is best known in medical research. In the case of its application, frequent
mistakes result from the fact that the assumptions that should pass to correct its application
are not verified. Such mistakes could lead to formulating erroneous conclusions of the
research. The second objective of the paper was in making the mathematical grounding of
the assumptions that should be verified at the application of the binary logistic regression.
These assumptions make it possible for the researchers to apply BLR correctly and correctly
interpret the obtained results.
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