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Abstract

Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are
used. Without stability, some metabolites may accumulate or deplete leading to the irrevers-
ible loss of the desired operating point. Even if initial enzyme amounts achieve a stable
steady state, changes in enzyme amount due to stochastic variations or environmental
changes may move the system to the unstable region and lose the steady-state or quasi-
steady-state flux. This situation is distinct from the phenomenon characterized by typical
sensitivity analysis, which focuses on the smooth change before loss of stability. Here we
show that metabolic networks differ significantly in their intrinsic ability to attain stability due
to the network structure and kinetic forms, and that after achieving stability, some enzymes
are prone to cause instability upon changes in enzyme amounts. We use Ensemble Model-
ling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems
when enzyme amounts are changed. Loss of stability in continuous systems can lead to
lower production even when the system is tested experimentally in batch experiments. The
predictions of instability by EMRA are supported by the lower productivity in batch experi-
mental tests. The EMRA method incorporates properties of network structure, including
stoichiometry and kinetic form, but does not require specific parameter values of the
enzymes.

Author Summary

A method of metabolic simulation called ensemble modelling for robustness analysis is
used to predict the behavior intrinsic to the network structure (stoichiometry and kinetic
form) of four enzymatic systems. Some network structures are shown to be prone to insta-
bility. Starting from a stable system, instability is also predicted to be caused by increasing
amounts of certain enzymes. EMRA is a valuable tool for pathway design, particularly syn-
thetic pathways which are uncontrolled and not stabilized through evolution.
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Introduction

Metabolic systems typically operate either under a stable steady state or an oscillatory mode. A
non-oscillatory unstable system may result in multiple problems, including depletion of metab-
olites essential for growth, accumulation of toxic intermediates, or depletion of cofactors in the
pathway—all ultimately leading to loss of production or cell death. While systems with stable
steady states or sustained oscillation have been studied extensively [1-6], to our knowledge
metabolic systems prone to instability have not been investigated as much. Both stable (Fig 1A)
or unstable (Fig 1B) system have a mathematical steady state (or fixed point), but the unstable
steady state is not realizable in the physical world because any deviations from the steady state
are amplified. Therefore, through evolution the unstable systems are selected against or stabi-
lized by various levels of controls. However, the issue of stability is particularly important when
engineering a novel pathway or altering an existing one.

Furthermore, even starting from a stable steady state system, increasing an enzyme activity
beyond a specific level may result in system failure (see Fig 1C) because the system enters an
unstable region, resulting in loss of a productive steady state. The likelihood of losing stability
is characterized by bifurcational robustness using Ensemble Modeling for Robustness analysis
(EMRA) [7]. Instability caused by enzyme perturbation has been predicted in proposed syn-
thetic pathways and natural pathways in previous analyses[7,8]. One means of stability loss,
among other possibilities, is a kinetic trap (Fig 1D), resulting from a metabolic branch point
within a cyclic pathway. Upon perturbation, a kinetic trap may cause a sudden, unexpected,
and qualitative change in dynamic behavior (Fig 1C). Since cyclic pathways are common in
metabolism, particularly when cofactor recycling are involved, such examples are copious. The
bifurcational robustness is a measure of how far an enzyme amount must be perturbed before
bifurcation occurs (Fig 1C). Sudden system failure due to entering an unstable regime differs
from the gradual deterioration of performance characterized by local sensitivity analysis. Sensi-
tivity analysis, Biochemical Systems Theory [9-13], or metabolic control analysis (MCA) [14]
is concerned with identifying the sensitivity coefficient (Fig 1C), which is the derivative of
steady state production flux with respect to enzyme amount. In this work, we further examine
the tendency for a metabolic system to be unstable based on their intrinsic network structure,
which is determined by the network stoichiometry and kinetic rate laws. One way that this
work builds on global sensitivity analysis is in that it focuses heavily on what we term the bifur-
cational robustness (Fig 1C), rather than the value of the sensitivity coefficient.

In previous uses of EMRA, unstable parameter sets found while constructing ensembles
were discarded [7,8]. Here, we examine the intrinsic probability for a system to be unstable.
This is fundamentally distinct from the tendency to bifurcate upon change from a stable steady
state. In addition, previous EMRA simulations were applied to continuous processes. However,
production experiments using enzymatic systems—whether in vitro or in vivo—are often car-
ried out as a batch system due to practical considerations. Thus, it is unclear how simulations
from a continuous mode can inform experimental strategies for new metabolic pathways
which are investigated in batch or cell free experiments. Using four metabolic systems, we
showed that the instability problem discussed above is indeed an issue, even with batch experi-
ments. Interestingly, this type of abrupt change is observed in common biological systems,
including glycolysis. The results suggest that the stability issues may be more prevalent than
previously appreciated.

Systems description

We use the following enzymatic systems as examples for our investigation. Three of these sys-
tems have been described previously and some experimental data are available to validate our
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Fig 1. Schematic figure showing how instability can occur and how it can cause lower production in batch experiments. a-b) In a one-dimensional
dynamical system, the sign of dx/dx determines stability of a fixed point (x = 0). If the sign of dx/dx is negative (a), the system is stable to stochastic
perturbations from the fixed point. In contrast, if dx/dx positive (b), the fixed point is unstable. In a multivariate system, the analogous value is the maximum of
the real parts of the eigenvalues of the Jacobian matrix. (i.e. if max(Re(Eig(Jac)))) is greater than O (the jacobian is singular), the fixed point will be unstable, if
it is less than zero the fixed point will be stable unstable). ¢) Traditional global sensitivity analysis calculates the sensitivity coefficient which represents the
derivative of steady state production with respect to enzyme amount. However, sensitivity analysis doesn’t investigate the likelihood of instability.
Bifurcational robustness measures the distance between the reference steady state and the bifurcation point. d) A kinetic trap in which multiple reactions (v4
& v,) are competing for the same substrate (A). If the enzyme catalyzing v increases greatly, it may cause instability by decreasing [A] so much that v,
cannot continue.

doi:10.1371/journal.pchi.1004800.g001

predictions. The other system (glucose to isoprene pathway) has not been experimentally
investigated.

Methanol Condensation Cycle (MCC)

Methanol condensation cycle (MCC) (Fig 2A) is a metabolic pathway to convert methanol to
higher alcohols with 100% theoretical carbon yield, in contrast to natural pathways like ribu-
lose monophosphate (RuMP) which have a maximum of 67% theoretical carbon yield due to
the decarboxylation of pyruvate [15]. The core of the pathway creates a C-C bond between two
formaldehyde molecules derived from methanol for the generation of acetyl-phosphate, which
can be enzymatically converted to acetate or ethanol.

In this cycle, formaldehyde is incorporated into ribulose-5-phosphate (Ru5P) (Fig 2A) to
generate hexulose-6-phosphate (H6P) by hexulose phosphate synthase (Hps). H6P is then
isomerized to fructose-6-phosphate (F6P) which can be cleaved by phosphoketolase. Erythru-
lose-4-phosphate (E4P) and F6P can then recombine via transaldolase, transketolase and isom-
erases (Tal, Tkt, Rpe, Rpi) to regenerate Ru5P. Alternately, xylulose-5-phosphate (X5P) can be
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Fig 2. Schematics showing four enzymatic systems which can be investigated by EMRA. a) A methanol condensation cycle (MCC) which converts
formaldehyde to acetyl-phosphate with 100% carbon efficiency. Acetate can be generated enzymatically. b) A molecular purge valve which dissipates
reducing power in order to convert pyruvate to polyhydroxybutyrate (PHB) in a redox balanced way. ¢) A chimeric glycolysis system which converts glucose
to lactate in a redox- and ATP-balanced route. It uses a non-phosphorylating GapN to maintain ATP balance. The corresponding route through standard
Embden-Meyerhof-Parnas (EMP) glycolysis is shown with blue enzyme labels. d) Glucose to isoprene pathway which uses NADPH-dependent
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and pyruvate dehydrogenase (PDH). An NADPH drain is required to maintain redox balance. This
pathway is also ATP-balanced. G6P inhibition is also considered in this system.

doi:10.1371/journal.pcbi.1004800.g002

cleaved by phosphoketolase, yielding G3P and acetyl-phosphate. G3P is then shuffled with F6P
by transketolase to generate E4P and X5P, which can proceed to regenerate Ru5P via Tal, Tkt,
Rpe, and Rpi. The X5P- and F6P-cleaving activities of phosphoketolase are referred to as Xpk
and Fpk, respectively, and the pathway is investigated with different combinations of these
activities.

Pyruvate to poly-hydroxybutyrate

A molecular purge valve for the production of polyhydroxybutyrate from pyruvate in vitro was
demonstrated by Opgenorth et al (Fig 2B) [16]. This system needs special attention to achieve
redox balance, since pyruvate has a more reduced oxidation state than the product. To alleviate
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this cofactor imbalance, a method for dissipating excess reducing equivalents, termed a molec-
ular purge valve, was designed for the conversion of pyruvate to downstream products like iso-
prene and poly(hydroxybutyrate) (PHB). Two different pyruvate dehydrogenases (PDH) were
used in the system—one with cofactor specificity for NADPH and one with specificity for
NADH. The downstream pathway enzymes use NADPH to reduce metabolites and an NADH
oxidase (NoxE) to dissipate the generated NADH. From two acetyl-CoA molecules, two
enzymes are required to generate the final product PHB.

A chimeric ATP-balanced glycolysis system

A chimeric glycolysis system was demonstrated by Ye et al [17] (Fig 2C). Canonical Embden-
Meyerhof-Parnas (EMP) glycolysis generates a net of two ATP per glucose. In the chimeric sys-
tem, a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) was used.
This results in a system which is ATP balanced, making it more convenient for in vitro assays.
Additionally, the system is NADH balanced since the final product was lactate, which has the
same redox state as glucose.

Glucose to isoprene system

A system is considered for the conversion of glucose to isoprene (Fig 2D). NADPH-dependent
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and NADPH-dependent pyruvate
dehydrogenase are used in the pathway. NADPH is used since the downstream reactions in iso-
prene synthesis use NADPH. The pathway converts three glucose to two isoprene molecules.
Interestingly, this pathway is also ATP-balanced, with the ATP generated by the glycolytic
pathway being used stoichiometrically downstream in the isoprene pathway reactions. How-
ever, to maintain redox balance, NADPH must be drained from the system, potentially via an
oxidase or similar enzyme. This system is investigated both with and without a substrate-level
regulation of glucokinase (GK) by G6P, implemented using an irreversible version of modular
rate laws [18] proposed by Liebermeister. The kinetic form used is known as competitive inhi-
bition, though many other kinetic forms are plausible. Inhibition of this step by G6P is well-
known. For example, a human enzyme catalyzing this reaction is G6P-inhibited [19]. These
equations show the effective kinetic forms of glucokinase used without and with regulation:

v
No Regulation : Vg = max
Kn.Gle  Kmarp  BmarP®m Glc |
[GIc] [ATP] [ATP|[GI(]
With GGP Inhibition Vg = Vmax
m, Glc+Km,ATP+Km,ATPKm.Glc L, leer
Gl T AT [ATP][Glc] Kooy ATP

Results

Network intrinsic stability differs among systems and is different from
bifurcational robustness upon perturbation

We used the four systems described in Fig 2 to examine the stability problem. In particular, we
investigated how network structure affects the intrinsic possibility of reaching stability. Previ-
ous EMRA work starts from an ensemble of parameter sets that give the same reference steady
state, and discards the parameter sets that generate a Jacobian matrix with a real part of an
Eigenvalue greater than zero, which indicates instability.
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Fig 3. Characterizing intrinsic stability of different pathway systems. a) For different pathways, two measures of intrinsic stability are presented. First, in
dark blue, is the fraction of unconstrained, random parameter sets which reach a productive steady state. Second, in light blue, is the fraction of EMRA-
determined parameter sets constrained to a steady state which are also stable. The intrinsic stability of pathways differs greatly between pathways, and also
depending on which measure is used. Thus, a rational method of pathway balancing would be useful. (SD < 2% for all systems, n = 3 x 1000 parameter sets).
Since phoshoketolase has two activities, cleaving either F6P (called Fpk) or X5P (called Xpk), we investigated used a ratio of Fpk/Xpk activites, 1:3. b) A
representation of how steady state is not always stable. After perturbation from a constrained steady state, the fraction of parameter sets which retain stability
tends to decrease, and steady state flux may change. Eventually, a parameter set may become unstable after perturbation.

doi:10.1371/journal.pcbi.1004800.9g003

However, experimental systems are not guaranteed to be stable or reach a steady state. To
place stability and steady state in a context which is more meaningful to experimental efforts,
enzyme parameters were chosen completely at random, and the systems were then integrated in
time domain to determine if a productive steady state was reached (Fig 3A, dark blue bars). This
method is more representative of experimental efforts which often have either little or indirect
control over enzyme amount or activity (in vivo), or don’t have rational methods for pathway
balancing (both in vivo and in vitro). Interestingly, the results show that pathways have very dif-
ferent likelihoods of resulting in a steady state (Fig 3A, dark blue). The glucose to isoprene system
had only 21% of randomly generated parameter sets reaching a non-trivial (non-zero) steady
state. This could be because it is a relatively large system in terms of enzyme number and uses
two different cofactors (NADPH and ATP). A large system may be less likely to reach a steady
state. If each enzyme has an acceptable range of values, then in a large system it is more likely
that at least one of these values would be outside the range, resulting in system instability. How-
ever, when regulation of glucokinase was introduced via activation by ATP and inhibition by
ADP, the likelihood of productivity jumped to 36% (Fig 3A). Overall, these results show that
intrinsic pathway structure and kinetic forms (including regulation) have a strong influence on
possibility of reaching a productive steady state. The result is a varying, and sometimes low, likeli-
hood of achieving stability and productivity. Thus, finding rational ways to balance pathways is
an important goal which can improve and accelerate the pathway development process.

If the enzyme parameters were first constrained to a fixed point by solving for parameter
values which give reaction rates equal to the reference flux, then the probability of attaining sta-
bility is greatly increased. While this is not practical in experiments, the method proves useful
in model construction. We found that (Fig 3A, light blue bars) the fraction of fixed points

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004800 March 10,2016
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which were stable varied depending on the network structure. While most systems showed at
least 99% of the parameter sets sampled to be at a stable steady state, the MCC (Xpk-only) sys-
tem showed only 61% of parameter sets to be stable. Although for some systems the fraction of
stable steady states is similar—5 systems which all show at least 99% stability by this measure—
they have varying tendency to lose stability upon perturbation (Fig 3B). Starting from the refer-
ence state, where parameter sets are chosen under the fixed point constraint, the region of
instability could grow when enzyme parameter changes (Fig 3B). Depending on the structure
of the system, the instability region might grow in a different fashion upon perturbation, and
eventually some might lose stability. This shows that stability of fixed points in metabolic sys-
tems is not guaranteed and that stability could be a critical factor in metabolic systems.

Stability of continuous systems upon perturbation can inform results of
batch systems

EMRA uses continuous production models to simulate enzymatic systems. However, many
experiments, including in vivo and in vitro, are conducted as batch processes. Thus, it’s not
clear how a perturbation which causes bifurcation in a continuous system will inform the batch
experiment. Where a pseudo-steady state may exist, the pseudo-steady state behavior can be
predicted by the continuous model. In these systems, if a parameter set resides in a domain
where no stable steady state exists in the continuous mode, then no stable pseudo-steady state
exists in the batch mode. This can be justified by locally linearizing the input function to con-
vert a pseudo-steady batch system to a continuous system. However, an experimentalist mea-
suring only the product output at the end point would not detect the lack of stability. In this
case, the product yield will gradually decrease even when the system has entered an instability
region.

To show how the existence of a continuous bifurcation could manifest itself in a batch sys-
tem, we simulated a batch system in time domain. First, stable parameter sets were generated
via EMRA in a continuous MCC system using Fpk/Xpk ratio as 1:3. Then, the parameter sets
were integrated using the continuation method to increase the phosphoketolase level until
instability occurs, increasing V. for Fpk & Xpk at the same ratio. A representative parameter
set is plotted in Fig 4A to show the effect of increased phosphoketolase on continuous steady
state acetate flux up to the point of instability. As phosphoketolase increases, the flux towards
product increases slightly before decreasing and finally becoming unstable.

This parameter set was found to become unstable at a ~1.5-fold increase of phosphoketo-
lase. Different amounts of phosphoketolase perturbation (1x, 1.1x, 1.7x, 1.8x, 2x, 10x —multi-
plier applied to both Fpk & Xpk V. values) were chosen to show the dynamic response of the
system in a batch simulation. All rate equations, parameter values and initial conditions were
kept the same as in the continuous model (i.e. all starting metabolite concentrations were nor-
malized to unity), except that starting formaldehyde concentration was multiplied by 200 and
the “in” and “out” reactions used in the continuous mode were eliminated to observe product
accumulation in time domain simulation of the batch system. 200-fold increase in initial form-
aldehyde concentration was chosen arbitrarily to signify a batch reaction, in which the starting
substrate was included as a single charge instead of being fed over time. It was found to ade-
quately demonstrate the phenomena we were interested in, though other values could have
worked as well. See Tables 1 and 2.

Interestingly, the final batch production observed for this system decreases gradually as
phosphoketolase (PK) amount (Fig 4B) increases. In the continuous system, the underlying
phenomenon is instability, a step change in the nature of the steady state. In the corresponding
batch system, pseudo-steady state disappears because of instability. However, the product
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Fig 4. Investigating the instability in the MCC pathway using Fpk/Xpk ratio as 1:3. a) In a continuous system, an arbitrary parameter set determined by

EMRA is perturbed up and down with respect to phosphoketolase, on the X-axis. On the Y-axis, the continuous, steady state, acetate flux is plotted. As

phosphoketolase increases, the system bifurcates at ~1.5x increase. b) Time domain simulation is performed, at different amounts phosphoketolase (PK).
The final titer for each condition is plotted. The production gradient appears gradual, but is the result of a sudden instability. ¢) The production rate for acetate

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004800 March 10,2016

8/18



.@' PLOS COMPUTATIONAL
~ZJ ’ BIOLOGY Stability Predicts Production in Enzymatic Systems

is shown for each phosphoketolase amount over time. In the stable conditions (1x & 1.1x), production rate reaches a constant, implying the system enters a
“pseudo-steady state”, until substrate depletes. In the other conditions, production rate is never steady, but decreases over time. d) The amount of acetate is
plotted over time. It is observed that as the amount of phosphoketolase increases beyond bifurcation, the production decreases. e) At the 1x and 2x
conditions, the concentrations of G3P and FEP are plotted. In the 1x condition, FEP is maintained at a nonzero-level throughout production, while in the 2x
condition, it is quickly depleted and G3P accumulates. f) The R5P & X5P levels are plotted with time in the 1x and 2x conditions. g) Data from Bogorad et a/
[15] shows that as phosphoketolase level increased, the amount of acetate produced by the cycle decreased, supporting a link between instability in a
continuous system and production in an analogous batch system. An icon shows this data is experimental.

doi:10.1371/journal.pcbi.1004800.g004

formation does not stop until key intermediates are depleted. Batch acetate production rate
over time is plotted in Fig 4C. For the stable 1x and 1.1x conditions, a pseudo-steady state was
achieved in which acetate production rate reached a constant level, only decreasing when the
formaldehyde had been consumed. However, for the conditions which are past the instability
point (1.7x — 10x), a steady rate of acetate production is never achieved. Instead, the rate
decreases monotonically until it reaches zero. The productivity of the 10x condition falls the
fastest, eventually resulting in the lowest production. This shows that a decrease in production,
even gradually, in a batch system could be associated with an instability issue in an analogous
continuous system. In Fig 4D, the acetate concentration over time is plotted to show how the
system evolves over time.

For systems that are stable, because the initial concentration of the starting substrate is
much higher than the K;,, value of the uptake system, the rate of input holds largely constant
until the substrate concentration approaches the Km value. During this time, the system is
operating under a pseudo-steady state similar to a stable continuous system. This is seen in Fig
4 for 1x and 1.1x phosphoketolase concentrations. Thus, the property of continuous system
simulation carries over, until substrate concentration approaches K,. Thus, the system is run
almost the same as in a continuous system in the first 50 min time units or so (Fig 4C), when
most of the acetate is produced (Fig 4D)

For systems that are unstable (Fig 4, 1.7x, 1.8x, 2x, 10x phosphoketolase concentrations),
the output flux was not able to reach a steady-state (Fig 4C), and it decreases rapidly from the
start and approaches zero despite the presence of the initial substrate. The cumulative product
formed (acetate) is the integral of flux over time (Fig 4D), which decreases as the system moves
further away from the bifurcation point.

Additionally, we investigated the mechanism by which the bifurcation causes decreased pro-
duction. In the 1x condition, F6P is maintained at a nonzero-level throughout production,
while in the 2x condition, it is quickly depleted (Fig 4E). R5P and X5P are also shown to deplete
quickly in the 2x condition (Fig 4F). Thus, it is the depletion of these cycle intermediates which
causes cycle failure. A previous experimental effort ([20], data reproduced in Fig 4G) showed
that in in vitro enzymatic experiments, the batch production of acetate with from formalde-
hyde reached a local maximum with respect to phosphoketolase amount, supporting the
EMRA analysis. In sum, EMRA could potentially have useful insights into experimental sys-
tems, by identifying enzymes which may be most sensitive to bifurcation, and how they affect
the system in question.

Table 1. Summary of difference between flux equation parameter values in continuous and batch simulations of the MCC system (Fig 4).

Formaldehyde Input Exchange Rxn,  Acetate Output Exchange Rxn, All Other V,,,x A (Km, Keg, etc.)
max max
Continuous Constrained to Reference Input Flux Constrained to Reference Output Constrained to Reference Selected from random
Flux Flux distribution
Batch 0 0 Same values as above Same values as above

doi:10.1371/journal.pcbi.1004800.t001
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Table 2. Comparison of normalized metabolite concentration values in continuous and batch simulations performed on the MCC system (Fig 4).
CH,O Ru5P H6P F6P E4P S7P G3P X5P R5P AcP

Normalized Continuous Steady State Metabolite Concentration, X; 1 1 1 1 1 1 1 1 1 1
Normalized Batch Initial Metabolite Concentration, X; 200 1 1 1 1 1 1 1 1 1

doi:10.1371/journal.pcbi.1004800.t002

EMRA predicts behavior of a molecular purge valve

A purge valve system converting pyruvate to PHB was analyzed. Each enzyme is represented
by a canonical Michaelis-Menten kinetic rate law, and the reference flux is fixed since there are
no degrees of freedom. EMRA methodology was implemented in this system to show the
effects of perturbation of each enzyme. High NADPH-dependent PDH (PDHNADPH) (Fig 5B)
and low NADH-dependent PDH (PDH*PH) resulted in the most stability for the pathway.
PDH"*PH must be low to prevent too much pyruvate from taking this route which generates
unusable NADH reducing power, while PDHN*P"" must be high to ensure that enough
NADPH is generated to allow for 100% yield from acetyl-CoA to PHB. The imbalance of these
activities may cause system instability, according to EMRA. Indeed, the PHB pathway was
experimentally demonstrated to have reduced production with a lower ratio of PDH P
PDHNAPH [16] (Fig 5C), matching the results of EMRA.
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b
NADH —/i@ NADPH \;HB D_; (@ D_; ®k
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0.1 1 10 0.1 1 10
PDHNADP}{ PDHNADH
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1:1 1:3
Fig 5. Stability of a biosynthetic purge valve for production of isoprenoids by dissipation of reducing equivalents. a) Pathway schematic showing
cofactor requirements. b) Stability profiles predicted by EMRA (n = 1000) as enzyme amounts vary. It is shown that to maintain stability, high levels of
PDHNAPP and low levels of PDHYAP are required. ¢) Data from ([17], Fig 4) which shows that a high ratio of PDHNAPP: PDHNAP is required for optimal

performance of the pathway. Image analysis of line graph figure from reference yielded numerical data to generate the bar graph shown. (1) indicates NADH-
dependent PDH and (2) indicates NADPH-dependent PDH. An icon shows this data is experimental.

doi:10.1371/journal.pcbi.1004800.g005

1:10 1:20
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EMRA predicts chimeric glycolysis system’s sensitivity to glucose feed
rate

Another example of EMRA application is in a thermotolerant, cell-free glycolysis system which
was demonstrated for the production of lactate from glucose by Ye et al (Fig 6A) [17]. Canoni-
cal Embden-Meyerhof-Parnas (EMP) glycolysis generates two net ATP per glucose, (Fig 6A,
Gap & Pgk enzymes). However, in the chimeric system, to prevent cofactor imbalance, a non-
phosphorylating glyceraldehade-3-phosphate dehydrogenase (GapN)[21] was used—resulting
in a net balance of ATP and NADH from glucose to lactate. Again, the system was modeled
using EMRA methodology. The results show that increased glucokinase (GK) amount and glu-
cose feed rate (Fig 6B, GK, IN) may cause instability.

a 1 |l —— 1 1| —
In b
0.5 0.5 0.5 0.5
Gle ) %1 1 10 %1 1 10 %1 1 10 %1 1 10
ATP < K PGl "~ PFK " ALD
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=
G6P z | _— 1| _— 1| _— 1| —
_ S 05 0.5 0.5 0.5
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F6P = 01 1 10 01 1 10 01 1 10 01 1 10
2 TPI GAPN PGM ENO
Pfk r ATP b f EP 3
y = 1 1 1
b aTP = L7 —
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Fig 6. The ATP-balanced synthetic chimeric glycolysis pathway from glucose to lactate [17]. a) Pathway schematic contrasting cofactor production
between standard Canonical Embden-Meyerhof-Paras (EMP) glycolysis (Gap & Pgk, red lettering) with the chimeric non-phosphorylating GapN system. b)
EMRA stability profiles (n = 1000) as enzyme amounts and glucose feed rate (IN) vary. Glucose feed rate is shown to produce moderate instability at higher
levels. c) Data from (Fig 6A, [17]) which shows that increased glucose feed rate can cause lower production. An icon shows this data is experimental. d-e)
Simulation of fed-batch production of a sample parameter set for the chimeric glycolysis system. Numerical integration of time domain behavior shows
instability at higher feed rates caused by ATP depletion and resulting in lower overall lactate production. Priming intermediates are fed in the same proportion

as the experimental condition, and feed rates are also demonstrated in the same proportion (1, 2, 4). d) ATP concentration over time at the three different
glucose feed rates. e) Lactate production over time at three different glucose feed rates.

doi:10.1371/journal.pcbi.1004800.9006
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This system was experimentally tested for lactate production at different glucose feed rates
(Fig 6C, data from Ye et al [17]). It was found that beyond a certain point, increasing glucose
feed rate reduced lactate production, even if the same total amount of glucose had been fed,
matching the instability to feed rate (IN) predicted by EMRA. The instability apparently occurs
by the depletion of ATP by glucokinase. ATP is required for both glucokinase and phospho-
fructokinase (PFK). However, if glucose is fed too quickly, ATP may become depleted by gluco-
kinase before it can be regenerated in lower glycolysis. A time domain simulation of this
system was carried out using initial conditions similar to the experimental conditions reported
[17] (Fig 6D and 6E) and a parameter set from EMRA which became unstable after increase of
feed rate. The time domain simulation showed that at reference feed rate (1x), ATP level is
maintained and lactate production continues. However, at 4x feed rate, the ATP is depleted
and the lactate production stops.

EMRA was also carried out on canonical EMP glycolysis converting glucose to lactate and
similar instabilities were found (S1 Fig). In both systems, reduction in PFK activity was shown
to strongly increase chance of instability. This is because once a metabolite is past PFK, it may
be used to regenerate ATP, so it’s important to ensure that the flux past PFK is sufficient to
supply ATP for all of upper glycolysis. However, it’s more paradoxical that an increase in an
enzyme would cause productivity and instability issues, particularly glucokinase, or even feed
rate.

EMRA predicts unstable enzymes in uncharacterized system from
glucose to isoprene

To demonstrate the utility of EMRA in identifying potential points of instability, a not yet char-
acterized pathway producing isoprene from glucose was investigated with EMRA (full pathway
stoichiometry in S7 Table). The pathway is ATP-balanced and maintains redox balance using
an NADPH drain. EMRA identifies that the NADPH drain must be balanced, not too low or
too high. GK & IN must not be too high, while all other enzymes must only not be too low (Fig
7B). By introducing regulation of GK using modular rate laws [18], the fraction of productive
steady states increased (Fig 3A). The stability to perturbation is also slightly improved for feed
rate (IN), GK and PFK (Fig 7B).

Interestingly, the NADPH drain is unstable to both decrease and increase. This could be
because if the rate is too low, then NADP" is not sufficiently available for GAPDH, and lower
glycolysis is unable to regenerate ATP needed for earlier in glycolysis and later in the pathway-
while if the rate is too high, NADPH will not be available for the biosynthetic steps of the iso-
prene pathway. This analysis shows that a longer pathway has many complex, interacting fac-
tors that can cause instability and that EMRA is able to identify some of these potential issues.
Similar to the previously simulated glycolysis system, glucokinase, (GK) and phosphofructoki-
nase (PFK) and feed rate (IN) showed some instability. Other enzymes show less sensitivity
upon increase (Fig 7B). Instability caused by decreasing enzyme concentration is common and
seen in most if not all pathways.

A rational experimental plan for this pathway would thus focus on having sufficiently high
levels of most enzymes (all except feed, glucokinase and drain), for example, by ensuring the
total activity of each enzyme is significantly higher than the feed rate. Ensuring these enzymes
are at a high level would ensure both stability, according to EMRA results, and the possibility
of maximum productivity. For enzymes which become unstable at higher levels, more optimi-
zation is required. Levels of glucokinase, NADPH drain, and feed rate should be varied in
order to avoid instability and to find the highest productivity condition. This significantly nar-
rows the focus from 21 variables to just 3.
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Fig 7. An NADPH-dependent pathway from glucose to isoprene. a) A pathway schematic showing an outline of the enzymatic reactions, cofactor flow,
and regulation added (glucokinase). b) EMRA profiles for all (n = 1000) enzymes in the unregulated isoprene pathway in blue. EMRA profiles for all
(n=1000) enzymes in the GK-regulated isoprene pathway in red. Select enzymes are highlighted to show their position in the pathway. The enzymes dealing
with ATP cycling are most changed by the presence of regulation.

doi:10.1371/journal.pcbi.1004800.9007
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Discussion

The results show that EMRA has potential to be a valuable tool for investigating the propensity
for stability of complex enzymatic pathways without a priori knowledge of specific enzyme
parameter values. In three cases presented, (MCC, molecular purge valve, chimeric glycolysis)
the experimental investigators were able to heuristically identify productivity issues ad hoc, but
EMRA is able to unify all these results with a theoretical framework based on instability.
Importantly, although some of the phenomena were experimentally determined, it was not
necessarily known that instability of the system—causing a step change in the nature of the
steady state, rather than a smooth change predictable by sensitivity analysis—could be an
underlying reason.

The success of the method with these systems presented here shows that it deserves consid-
eration as a design tool in the invention of new pathways. The method has proven versatile
enough to successfully predict features in three different pathways investigated in different lab-
oratories and powerful enough to do so without a priori knowledge of specific enzyme parame-
ter values. EMRA simulation of a longer and not-yet characterized pathway demonstrates the
range of possibilities for potential applications of this technique. While the characterized path-
ways were optimized based on intuition, it’s possible that a longer pathway with more enzymes,
such as the glucose-to-isoprene pathway, would be much more difficult to optimize without
rational balancing methods like those presented here. The reduction of search space from 22 to
3 variables represents an exponentially more approachable experimental path towards
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productivity, resulting in 27 (3°) experiments rather than about 10 million (3*') if three differ-
ent enzyme amounts are tested.

Another insight provided by EMRA and follow-up analysis is the determination of failure
modes for the pathways investigated. Using parameter and enzyme amount values in stable
and unstable regions of the parameter continuation, time domain integration allows us to
determine the failure modes for these pathways upon instability. In the MCC pathway, it is
depletion of pathway intermediates—especially X5P, R5P and F6P—which causes productivity
decline and eventual stopping. Although time domain simulations weren’t carried out in all
systems, the demonstration of failure mechanism in the MCC system may lend credence to the
other EMRA examples. In the chimeric glycolysis pathway, depletion of ATP eventually caused
that pathway to stop when glucose feed rate was too high. Identifying these failure modes with
EMRA is another potentially fruitful area of discovery.

Glycolysis is a fundamental pathway of life and functions successfully in many organisms.
However, our simulations and previous experiments (Fig 6, [17]) have shown it can be unstable
under high glucose feed conditions which apparently deplete ATP and accumulate hexose-
monophosphates (Fig 6D and 6E). Some hexokinase enzymes are product-inhibited by G6P,
[22] however, the particular enzyme used in the experimental investigation (from Thermus
thermophilus) was investigated and no G6P-inhibition was reported.[23] Interestingly, glycoly-
sis has also been shown to be unstable to low levels of inorganic phosphate in yeast, a condition
which prevents GAPDH from proceeding [24]. Glycolysis is a nearly universal pathway, but
this evidence shows it to be unstable in some cases. This helps to explain the presence of elabo-
rate regulations such as insulin and glucagon [25,26] in animals and the massively sophisti-
cated regulation of phosphofructokinase [27,28] in many organisms. Rather than stability,
alternate explanations such as chemical necessity [29] and thermodynamic efficiency [30,31]
are more likely reasons for the universality of glycolysis.

In these analyses, EMRA was used to successfully evaluate the stability of complex cell-free
pathway assays. In vitro biocatalysis systems are a powerful alternative and complement to in
vivo systems [32]. Importantly, however, this does not exclude the possibility of success with
simulation of in vivo systems. Depending on growth mode (exponential growth, stationary
phase, fermentation etc.) in vivo systems may have different reference fluxes, so more explora-
tion is required to identify different possibilities.

It is unsurprising that lower amounts of pathway enzymes or feed rate would hinder pro-
ductivity. The powerful insight provided by these results is that for the pathways identified,
increasing levels of certain enzymes or feed rates were shown to cause instability and conse-
quently reduce production. A typical metabolic engineering approach may be to simply maxi-
mize the reaction rate of all pathway enzymes. However, we show here that for many enzymes,
this will not always result in an optimal outcome.

Additionally, we have shown that the intrinsic stability of pathways varies significantly
depending on structure and kinetic forms. This highlights the importance of stability analysis
in understanding metabolic systems. Additionally, it shows that many metabolic systems may
be very difficult to balance without sufficient rational methods for analyzing which enzymes
are most likely to contribute to pathway instability, and in which amounts. This shows the
importance of EMRA and stability analysis in general in understanding pathways theoretically
and exploiting them practically.

The lack of requirement for a priori knowledge of specific enzyme parameter values could
make EMRA particularly approachable for experimental researchers working with new path-
ways or unknown enzymes. This may be hampered somewhat by the need for sophisticated
mathematical operations, though this obstacle could be overcome if an appropriate software
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suite is made available. We believe EMRA can significantly contribute to pathway development
efforts and is an important contribution to the toolbox of metabolic engineering.

Methods

Production systems were described in Systems Description. Stoichiometric matrices for the
pathways were constructed based on catalogued and reported reactions. Reversibilities of each
enzyme were assigned based on if an enzyme i) is an ATP-dependent kinase ii) catalyzes a reac-
tion with a highly negative AG® (less than -20k]), [33] or iii) catalyzes a decarboxylation. The
functional form used for each reaction used canonical Michaelis-Menten saturation kinetics.
Affinity parameters (K,,) are normalized to substrate concentration to reduce the number of
parameters sampled for, and metabolite concentrations are normalized to unity. The normal-
ized forms of the equations are as previously shown [7].

For the pathways chosen, exchange reactions were defined for inputs and outputs. Stoichio-
metric matrices, enzyme reversibilities and reference steady states for all simulations can be
found in SI (S1-S7 Tables).

Ensemble modeling robustness analysis (EMRA) was performed on several enzymatic path-
ways that have been performed experimentally in the literature. EMRA is a technique which
uses knowledge of an enzymatic pathway’s network structure to determine if its steady state is
stable to changes in enzyme level. Michaelis-Menten style saturation rate equations are deter-
mined for each reaction based on stoichiometry and reversibility. Enzyme parameters are
picked randomly to satisfy the reference steady state which is provided. For each enzyme, ran-
dom values in a 100-fold range with a uniform distribution (from 0.1 to 10 fold of the normal-
ized metabolite concentration) were selected for the scaled affinity parameters (K,,/[X]ss.) [7].
V max is solved for using the reference steady state flux value. To confirm the presence of a stable
steady state, the system’s Jacobian is confirmed to have eigenvalues with only negative real
parts [34]. Otherwise, the model is discarded. 1,000 parameter sets were generated this way for
each system. For the completely random parameter values, a log-uniform 100-fold range of
V max parameter was used. For the MCC (Fpk/Xpk 1:3) system, the Fpk and Xpk Vmax were
assigned % and %, respectively, of the value of a random number generated, to ensure that the
overall phosphoketolase amount was controlled. Steady state determination was validated by
decreasing integration time by 10-fold, and ensuring that the fraction of 1000 parameter sets
which reach steady state was within the SD of the original condition (n = 1000 x 3). V ,,, values
were generated on a log-uniform scale, while K,;, was generated on a uniform scale. To test if
method of generating random values was a significant factor, different methods were tested (all
values from a uniform distribution or log-uniform distribution) but no major differences were
seen (S8 Table).

To simulate batch systems from an analogous continuous system (as in the simulation of
the MCC system shown in Fig 4), a minimum of changes were made. Functional forms for
reaction flux equations were maintained. For the simulations in Fig 4, an arbitrary parameter
set was selected from those generated by ensemble modeling. For all rate law reactions used,
reaction rate (V;) was directly proportional to V5. Vimax is multiplied by a function of other

parameters, 7 representing K, K., etc.) and normalized metabolite concentrations (X).

Vi = Vmax *f(27 E)
To simulate a batch system, exchange reactions are removed by setting their V ., to 0.
Normalized metabolite concentration values were used for both simulation conditions. To
provide a supply of starting substrate, the initial amount of formaldehyde was multiplied by
200. Normalized steady state (continuous) or initial (batch) metabolite concentration (X;) is
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shown in this table for continuous and batch simulations. Normalized metabolite amount, X,
is equal to the actual metabolite concentration, X;, divided by the reference steady state concen-
tration, X gs.

)=

iSS

In combination, setting input and output V.« to 0 and providing starting substrate formal-
dehyde allows the simulation to run as a batch system accumulating acetate while keeping the
other rate equations and parameter values unchanged.

For each parameter set in an ensemble, the steady state is perturbed using parameter-
domain integration. This consists of numerically integrating using the continuation method.
The mathematical justification for this method has been presented previously [7]. At each step
in this integration, as an enzyme level is perturbed, the normalized metabolite concentration at
the new steady state may be different, so it is necessary to re-compute the numerical values of
the Jacobian matrix. If the new Jacobian has an eigenvalue with a positive real part, this indi-
cates system instability [34] (Fig 1) and the integration is halted. These computations allow for
analysis at every level of enzyme perturbation. For each parameter set in an ensemble, the frac-
tion which were stable (i.e. all Jacobian matrix eigenvalues remain negative) can be plotted ver-
sus the level of perturbation for each enzyme.

Simulations were performed in MATLAB, and the code required to reproduce all figures is
available at: https://github.com/theis188/theisen-plos-comp-bio.

Supporting Information

S1 Fig. EMRA stability profiles for canonical EMP glycolysis converting glucose to lactate
with an ATP drain (ATPD).
(TIF)

S1 Table. S, Vref and reversibilities of enzymes for Fpk version of MCC.
(DOCX)

S2 Table. S, Vref and reversibilities of enzymes for Xpk version of MCC.
(DOCX)

S3 Table. S, Vref and reversibilities of enzymes for X/Fpk version of MCC.
(DOCX)

$4 Table. S, Vref and reversibilities of enzymes for chimeric glycolysis pathway.
(DOCX)

S5 Table. S, Vref and reversibilities of enzymes for EMP glycolysis pathway with ATP
drain.
(DOCX)

S6 Table. S, Vref and reversibilities of enzymes for molecular purge pathway.
(DOCX)

S7 Table. S, Vref and reversibilities of enzymes for glucose-to-isoprene pathway.
(DOCX)

$8 Table. Comparison of different methods for determining random values from Fig 3A.
(DOCX)
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