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Matyáš Fendrych1, Jeffrey Leung2, Jiřı́ Friml1*
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Abstract Despite being composed of immobile cells, plants reorient along directional stimuli.

The hormone auxin is redistributed in stimulated organs leading to differential growth and

bending. Auxin application triggers rapid cell wall acidification and elongation of aerial organs of

plants, but the molecular players mediating these effects are still controversial. Here we use

genetically-encoded pH and auxin signaling sensors, pharmacological and genetic manipulations

available for Arabidopsis etiolated hypocotyls to clarify how auxin is perceived and the downstream

growth executed. We show that auxin-induced acidification occurs by local activation of H+-

ATPases, which in the context of gravity response is restricted to the lower organ side. This auxin-

stimulated acidification and growth require TIR1/AFB-Aux/IAA nuclear auxin perception. In

addition, auxin-induced gene transcription and specifically SAUR proteins are crucial downstream

mediators of this growth. Our study provides strong experimental support for the acid growth

theory and clarified the contribution of the upstream auxin perception mechanisms.

DOI: 10.7554/eLife.19048.001

Introduction
Plants support their bodies by a hydrostatic skeleton that consists of pressurized cells encased by a

strong extracellular composite, the cell wall (Höfte, 2014). This has several crucial consequences for

plant multicellularity: (vascular) plant cells do not move, and they grow mostly symplastically (no slid-

ing occurs; reviewed in Lintilhac, 2014). Thus plant shapes and patterns are sculptured by

the precise orientation of cell division and tight control of growth. Growth depends on a balance

between the turgor pressure (Ray et al., 1972) and the yielding of the cell wall to this pressure

(Heyn, 1940; Lockhart, 1965).

The phytohormone auxin represents an excellent case study of growth control. Auxin induces

rapid (minutes to hours) cell elongation in the aerial organs. In fact, this feature was used to define

and discover auxins in a coleoptile bending test (e.g. Went and Thimann, 1937). More specifically,

applied auxin induces growth of decapitated organs that are depleted of auxin. Auxin-induced

growth is characterized by acidification of the cell wall. Acidification of the growth media is sufficient

to trigger growth in certain conditions; therefore the term ’acid growth’ is often used (reviewed in

Kutschera, 1994). Auxin induces extrusion of protons into the apoplast, activating expansins in the

cell wall (McQueen-Mason, 1992), which in turn leads to weakening of the cell wall and to growth.

The central players in this process are the plasma membrane (PM) P-type H+-ATPases – AHAs. By

inducing the expression of SAUR19 protein that inactivates a PP2C-family phosphatase, auxin appli-

cation results into phosphorylation of the critical Thr residue in the autoinhibitory domain of AHA,

which leads to activation of the proton pump (Takahashi et al., 2012; Spartz et al., 2014). At the

same time, by pumping protons into the apoplastic space, the PM is hyperpolarized, which drives
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the opening of voltage-sensitive K+ inward-rectifying channels (Hedrich et al., 1995), leading to

accumulation of K+ ions and turgor increase in the cell. On the other hand, the acid growth theory

does not seem to be valid in the roots (Pacheco-Villalobos et al., 2016).

Auxin-induced growth experiments are relevant for the growth and development of plants, and

have a direct parallel in the movement of plant organs during tropisms – directional movements.

According to the Cholodny-Went theory, the asymmetrical distribution of auxin leads to the bending

of the organ (Went and Thimann, 1937). Upon a directional stimulus of the shoot, auxin is redistrib-

uted by the PIN and ABCB proteins to the cells of the side which will elongate (Friml et al., 2002;

Noh et al., 2001; Rakusová et al., 2011). Consequently, these cells experience a sudden increase

of auxin concentration and react by elongation. Also more generally, auxin is crucial for growth of

aerial organs, as stated by Went and Thimann (1937): “Ohne Wuchsstoff kein Wachstum – without

auxin no growth”.

Currently, the literature considers at least two receptors for auxin: the nuclear TIR1/AFB Aux/IAA

co-receptor (Dharmasiri et al., 2005; Kepinski and Leyser, 2005), and the Auxin Binding Protein 1

(ABP1) (Löbler and Klämbt, 1985; reviewed in Grones and Friml, 2015). The TIR1 pathway oper-

ates by the de-repression of transcription of auxin-induced genes, while the ABP1 pathway was pro-

posed to regulate activities of proteins directly, and thus can operate immediately after auxin

perception. Although auxin-induced growth is one of the oldest experimental questions in plant

physiology, there is no agreement on how auxin is perceived during this process. This controversy

stems from several facts: auxin-induced growth starts only approximately 15 min after application

(Kutschera, 1994), and requires novel protein synthesis (Edelmann and Schopfer, 1989), hinting to

the involvement of the nuclear TIR1/AFB Aux/IAA pathway. The major support for the nuclear auxin

pathway involvement is the regulation of AHA activity by SAUR19 (Spartz et al., 2014), a member

of a family of very small proteins the expression of which is rapidly induced by auxin. Recently, the

significance of the ABP1 pathway has been undermined by the lack of any obvious developmental

phenotypes of the abp1 knockout mutants (Grones et al., 2015; Gao et al., 2015; Michalko et al.,

2015, 2016). Despite these recent findings, there is also evidence demonstrating the importance of

the ABP1 pathway, obtained by approaches and methods other than knock-out mutants. In proto-

plasts auxin induces rapid PM hyperpolarization and swelling that can be blocked by ABP1 antibod-

ies (Leblanc et al., 1999; Yamagami et al., 2004). Moreover, Schenck et al. (2010) concluded that

the TIR1/AFB pathway is not involved in auxin-induced elongation, based on the fact that a quadru-

ple tir1/afb mutant still responds to auxin by elongation. Furthermore, Takahashi et al. (2012)

report that the AHA PM H+-ATPase is still phosphorylated, and thus activated, upon auxin applica-

tion in a double tir1-1 afb2-3 mutant.

In the current literature the question how is auxin perceived and what downstream processes are

involved in auxin-induced growth remains unanswered (e.g. Dünser and Kleine-Vehn, 2015). Here

we analyze the components of the response – auxin signaling, cell wall acidification and growth. We

aim to solve how auxin is perceived during auxin-induced growth, and whether there are any rapid,

‘non-genomic’ components of this response. By analyzing lines that overexpress stabilized version of

the SAUR protein or by genetically activating the PM H+-ATPases we attempt to clarify whether the

acid growth hypothesis is valid in the Arabidopsis hypocotyl. Finally, we test how the results from

the auxin-induced growth experiments relate to the in vivo situation on the example of gravitropic

response. The combination of genetic tools and techniques that have become available enabled us

to systematically re-evaluate this classical question in plant biology.

Results and discussion

Auxin-induced growth, acidification, and transcriptional response are
tightly correlated
When grown in darkness, hypocotyls of plants rapidly elongate, and this elongation is fueled by the

auxin from the cotyledons. Therefore, the etiolated hypocotyl is an excellent experimental model for

auxin-induced elongation (Schenck et al., 2010; Takahashi et al., 2012). In this work we used three-

day-old etiolated hypocotyls of Arabidopsis thaliana. We used the auxin analog NAA, to ensure that

auxin penetrates the hypocotyl segment well, and is not degraded by light during the experiments.

NAA is stable, readily enters cells by diffusion, and is a substrate for auxin efflux carriers
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(Delbarre et al., 1996). In the etiolated hypocotyl of Arabidopsis thaliana, depleted of endogenous

auxin by decapitation, auxin induced growth with a delay of approximately 20 min (19.75 ± 2.9 min

stdev, n = 12) (Figure 1A and Figure 2A). To ensure that this delay is not an artifact of the experi-

mental system, we used the fungal toxin fusicoccin (FC; Ballio et al., 1964) that activates the PM H+-
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Figure 1. Auxin-triggered growth of hypocotyl segments correlates with nuclear auxin signaling. (A) A brightfield image of a three-day old etiolated

Arabidopsis hypocotyl and the corresponding decapitated hypocotyl segment used in the elongation assay. On the right, kymographs of growing

hypocotyls right after application of 10 mM NAA or 5 mM FC (black arrowhead). A lag phase of 20 min preceding the rapid growth is apparent in the

case of NAA. The lag phase is shorter in the case of FC. Arrow indicates 20 min. (B) Transcriptional auxin response of hypocotyl segments visualized by

the DR5::LUC reporter. Auxin response can be detected 20 min after auxin application. There is no response in the control and fusicoccin treatment.

Each curve corresponds to 4 hypocotyl segments, errorbars are stdev.s. The lower graph depicts the onset of DR5::LUC response. (C) Hypocotyl

segments do not elongate on the depletion medium (DM); auxin (10 mM NAA) and 1 mM fusicoccin (FC) trigger segment elongation. The protein

synthesis inhibitor cycloheximide (50 mM CHI) completely blocks auxin-induced elongation, while FC-induced elongation is only mildly affected by CHI.

(D) Auxinole (50 mM), an inhibitor of the TIR1/AFB auxin receptor, largely inhibits auxin induced hypocotyl elongation; the FC-triggered elongation is

less affected. In (C) and (D), each curve corresponds to 6 hypocotyl segments, auxinole and CHI were applied during the depletion phase (30 min

before auxin treatment); errorbars are stdev.s. (E) CHI completely blocks DR5::LUC auxin response, and auxinole diminishes the response. NAA (10 mM)

was applied at timepoint 0; auxinole and CHI (both 50 mM) were present during the depletion phase (30 min before auxin treatment). Quantification as

in B).

DOI: 10.7554/eLife.19048.002

The following source data is available for figure 1:

Source data 1. Numerical data for the graphs.

DOI: 10.7554/eLife.19048.003
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Figure 2. Apoplast acidification visualized by the apo-pHusion marker line. (A) Apoplast acidification and cell elongation follow approximately 20 min

after auxin application (white arrowhead). A region of a hypocotyl segment of the apo-pHusion marker line is shown in time (timestep 5 min).

Apoplastic pH is approximated by the ratio between RFP (insensitive to pH) and GFP intensities (quenched by low pH). RFP is shown in magenta, GFP

in green; higher pH appears white and lower pH magenta. Bellow, a quantification of growth and apoplastic pH of the same hypocotyl segment. (B)

Figure 2 continued on next page
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ATPase by enabling binding of an activating 14-3-3 protein to the pump (Baunsgaard et al., 1998),

and so triggers apoplast acidification and growth. Application of FC triggered growth in 6–8 min

after its application (Figure 1A). To monitor the transcriptional response to auxin, we needed a

reporter that would be more rapid than transcriptional GFP reporters, as fluorescent proteins require

significant time to mature and become fluorescent (Shaner et al., 2005). The Firefly luciferase

enzyme is, on the other hand, active immediately after its translation (Kolb et al., 1994). Therefore

we used the auxin response reporter DR5 driving the expression of Firefly luciferase enzyme – DR5::

LUC (Moreno-Risueno et al., 2010). Accordingly to the growth onset, nuclear auxin response could

be detected 20 min after auxin application (Figure 1B). To visualize the auxin-induced acidification

and thus approximate the activity of the PM H+-ATPases, we used the genetically encoded apoplas-

tic pH sensor apo-pHusion (Gjetting et al., 2012). Similar to the growth initiation and the nuclear

auxin signaling, a sudden drop in apoplastic pH could be detected 20 min (20.11 ± 5 min stdev, n =

12) after auxin application (Figure 2A; Video 1). We developed a MATLAB-based tool that we

named AreaKymo in order to be able to visualize and quantify apoplastic pH changes in an un-

biased way. The apo-pHusion pH sensor consists of mRFP (insensitive to pH changes) and GFP

(responsive to pH changes). AreaKymo selects the cell wall areas based on RFP fluorescence, meas-

ures RFP and GFP intensities in each pixel, and plots these pixels in a time-space plot. Using Area-

Kymo, the delay between auxin application and apoplast acidification is clearly visible (Figure 2B).

Again, in the case of FC, the apoplast acidification followed immediately after its application

(Figure 2B, Video 2). The ‘acid growth’ literature often discusses the necessity to abrade the stem

segments in order to achieve proper penetration of the drugs into the tissue (Kutschera, 1994). Our

results show that in the case of the comparably minute Arabidopsis hypocotyl segments, auxin

enters the tissue rapidly, inducing growth, acidification, and transcriptional auxin response within

approximately 20 min. If we take into account the velocity of auxin transport in Arabidopsis ~8 mm

hr�1 (Kramer et al., 2011), auxin should reach the middle of the hypocotyl segment (~1.2 mm) in

~4.5 min. Our results are thus in a good agreement with the published timescale of auxin-induced

elongation (17 min in Kutschera, 1994). Most importantly, we directly visualized auxin-induced acid-

ification, transcriptional response to auxin, and segment elongation, all of which are tightly corre-

lated in time and happen with an approximately 20-min lag phase after auxin application.

Auxin-induced growth requires de novo protein synthesis
To test whether protein synthesis is necessary for these rapid auxin responses, we pre-treated hypo-

cotyl segments with cycloheximide (CHI), a protein synthesis inhibitor. As a control to test for the

ability of the cells to grow, we used FC, the application of which triggers growth, bypassing the

entire auxin signaling pathway (Figure 1B,C). Application of CHI completely blocked auxin-induced

growth (Figure 1C), while FC-induced growth was only slightly decreased. This decrease was evident

in the later phases of growth, when the lack of protein synthesis might affect the overall status of the

cell (Figure 1C). This result demonstrates that protein synthesis is not necessary for growth as such;

hypocotyl segments are able to grow for some time without protein synthesis. However, protein syn-

thesis is absolutely required for auxin-induced growth. Furthermore, CHI treatment completely inhib-

ited the auxin-induced apoplast acidification (Figure 2C), and auxin response, visualized by the

Figure 2 continued

AreaKymo visualisation illustrates the apoplastic pH drop that occurs immediately after fusicoccin addition (5 mM), upper panel. In contrast, a lag phase

of 20 min follows auxin application (10 mM NAA), after which apoplastic pH drops suddenly (lower panel). FC and NAA were added during imaging as

indicated by arrowheads and dotted lines. Each timepoint is represented by a rectangle and consists of cell wall pixels of the original apo-pHusion

confocal image; time progresses from top to bottom. The LUT key is shown on the right. Bellow a quantification of the pH drop shown as a series of

boxplots. A time series imaging of a single hypocotyl segment was used as input data. (C) Auxin-induced apoplastic pH drop requires protein

synthesis. An AreaKymo after application of auxin (10 mM NAA) 4.5 min before imaging. Cycloheximide (CHI 50 mM) completely blocks apoplastic

acidification that is apparent in the control situation. Bellow, the quantification is shown; each plot consists of a confocal timelapse imaging of 4

hypocotyl segments.

DOI: 10.7554/eLife.19048.004

The following source data is available for figure 2:

Source data 1. Numerical data for the graph 2A.

DOI: 10.7554/eLife.19048.005

Fendrych et al. eLife 2016;5:e19048. DOI: 10.7554/eLife.19048 5 of 19

Research article Cell Biology Plant Biology

http://dx.doi.org/10.7554/eLife.19048.004
http://dx.doi.org/10.7554/eLife.19048.005
http://dx.doi.org/10.7554/eLife.19048


DR5::LUC reporter (Figure 1E). This result is consistent with previous results in maize coleoptiles and

pea internode segments, where CHI blocked auxin-induced growth (Lado et al., 1977;

Edelmann and Schopfer, 1989; Kutschera, 1994). Other studies reported auxin-induced growth in

the presence of CHI (Rose, 1974). It was also shown that Small Auxin Up mRNAs (SAUR) accumulate

in hypocotyl segments after CHI treatment (Franco et al., 1990), but without translation, these

mRNAs are not able to trigger growth. In our experimental setup, the total inhibition of the DR5::

LUC response by CHI leaves no space for doubts that the CHI treatment was effective, and so dem-

onstrates the necessity of protein synthesis for the auxin growth response, further supporting the

involvement of the nuclear auxin pathway. Finally, we used auxinole that binds to the TIR1 auxin co-

receptor and blocks the formation of the TIR1-auxin-Aux/IAA complex (Hayashi et al., 2012). Treat-

ment with auxinole led to a decrease in the nuclear auxin response visualized by DR5::LUC

(Figure 1E), and resulted in a large decrease in auxin-induced growth (Figure 1D), while FC-induced

growth still occurred. This result strengthens the hypothesis that the nuclear auxin receptors are

Video 1. The movie shows an apo-pHusion marker line

hypocotyl segment. NAA (10 mM) is added at time

0, acidification follows in approximately 20 min. The

pH-sensitive GFP is shown in green, the reference

mRFP in magenta, therefore white color corresponds to

higher pH, while magenta to lower pH values.

DOI: 10.7554/eLife.19048.006

Video 2. Apoplastic pH drops rapidly after adding

fusicoccin (5 mM at timepoint 0). An apo-pHusion

marker line hypocotyl segment. The pH-sensitive GFP

is shown in green, the reference mRFP in magenta,

therefore white color corresponds to higher pH, while

magenta to lower pH values.

DOI: 10.7554/eLife.19048.007
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perceiving auxin in the hypocotyls to mediate apoplastic pH changes, growth, and probably mainte-

nance of the turgor pressure, necessary for continued growth.

Auxin-induced growth requires TIR1/AFB-Aux/IAA signaling
Previous works established that multiple mutations in the TIR1/AFB pathway do not inhibit the

auxin-induced growth of the hypocotyl (Takahashi et al., 2012; Schenck et al., 2010), and it was

suggested that auxin is perceived by the ABP1 pathway, the null mutants of which were not available

at that time. We therefore set out to test the new mutants in the ABP1 gene (Gao et al., 2015). The

new abp1 null mutants’ reaction to auxin was identical to that of the control (Figure 3A). In the

works using the multiple tir1/afb mutants, the nuclear auxin pathway was not completely eliminated,

most likely due to the redundancy of the 6 TIR1/AFB receptors. It is also important to note that the

development of the higher order mutant is seriously affected, and the phenotypes range from nor-

mal-looking plants to seriously stunted plants lacking a root (Dharmasiri et al., 2005), making it very
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Figure 3. Nuclear auxin signaling is needed for growth and apoplast acidification. (A) Mutations in the ABP1 gene do not influence auxin-induced

hypocotyl elongation. (B) Inhibition of the TIR1/AFB Aux/IAA auxin receptor by the dominant-negative axr3-1 protein completely blocks auxin-induced

(10 mM NAA) hypocotyl elongation. The elongation triggered by fusicoccin (1 mM FC) is not affected in the same line. Both HS::axr3-1 and Col-0

seedlings were heatshocked 2 hr before auxin application. (C) Induction of the HS::axr3-1 line completely blocks the auxin-induced apoplastic pH drop.

AreaKymo shows that in the control (Col-0 x apo-pHusion), apoplastic pH drops after addition of auxin (10 mM NAA), while this drop is absent in the

HS::axr3-1 background. Each plot was constructed from 4 hypocotyl segments, both lines were heat-shocked 2 hr before imaging. (D) The auxin

analogue, picloram (10 mM) triggers DR5::LUC auxin response; the response is slower than that of NAA (10 mM). Each curve corresponds to 4 hypocotyl

segments, errorbars are stdev.s. (E) Picloram (10 mM) was applied before imaging, apoplastic pH drop occurs approximately 40 min later. An AreaKymo

based on 3 hypocotyl segments; quantification is shown in the lower part of the panel. (F) A mutation in the AFB5 auxin co-receptor, afb5-5, leads to

decreased sensitivity to picloram-induced hypocotyl elongation. On the left, a timecourse of elongation after 10 mM NAA or picloram is shown. On the

right, a dose response curve of Col-0 and afb5-5 to NAA or picloram is presented. In A,B,F, curves correspond to 6 hypocotyl segments, errorbars

represent stdev.s.

DOI: 10.7554/eLife.19048.008

The following source data and figure supplements are available for figure 3:

Source data 1. Numerical data for the graphs.

DOI: 10.7554/eLife.19048.009

Figure supplement 1. Auxin induced growth of the tir1/afb2/afb3 mutant and the non-induced HS::axr3-1 line.

DOI: 10.7554/eLife.19048.010

Figure supplement 1—source data 1. Numerical data for the graphs.

DOI: 10.7554/eLife.19048.011

Fendrych et al. eLife 2016;5:e19048. DOI: 10.7554/eLife.19048 7 of 19

Research article Cell Biology Plant Biology

http://dx.doi.org/10.7554/eLife.19048.008
http://dx.doi.org/10.7554/eLife.19048.009
http://dx.doi.org/10.7554/eLife.19048.010
http://dx.doi.org/10.7554/eLife.19048.011
http://dx.doi.org/10.7554/eLife.19048


difficult to assess their physiology. As reported previously, a tir1-1/afb2-1/afb3-1 triple mutant still

responded normally to auxin (Figure 3—figure supplement 3A). In our hands, the quadruple tir1-1/

afb1-3/afb2-3/afb3-4 mutant was hardly able to form a hypocotyl in which we could assess the

growth reaction to auxin. To circumvent the problem with the redundancy in the TIR1/AFB, we

focused on the second part of auxin co-receptor – the Aux/IAA proteins. We used the axr3-1 mutant

that harbors a mutation in the DII domain of the IAA17 gene, leading to a semi-dominant auxin-resis-

tant phenotype (Leyser et al., 1996), expressed from the heat shock-inducible promoter – HS::axr3-

1 (Knox et al., 2003). After induction of the axr3-1 protein, hypocotyls responded to FC treatment

by rapid growth identical to that of control, but their reaction to auxin was completely inhibited

(Figure 3B). Without induction, the behavior was identical to that of the control (Figure 3—figure

supplement 3B). We introduced the apoplastic pH sensor apo-pHusion into the HS::axr3-1 back-

ground and analyzed the apoplastic acidification. Induction of the axr3-1 protein completely pre-

vented the auxin-induced apoplastic acidification (Figure 3C), fitting with the original agravitropic

and short hypocotyl phenotype of axr3-1 (Leyser et al., 1996). These results again show that auxin-

induced growth is downstream of the TIR1/AFB Aux/IAA co-receptor. Even the auxin-induced apo-

plast acidification requires the degradation of Aux/IAAs and auxin-induced gene expression, and is

not mediated directly by a putative auxin receptor.

To test the involvement of the TIR1/AFB pathway yet in another way, we exploited the fact that

the AFB5 receptor is responsible for perception of the synthetic auxin picloram (Walsh et al., 2006;

Prigge et al., 2016; Calderón Villalobos et al., 2012). In the Col-0 background, picloram induced

growth, DR5::LUC auxin response, and apoplast acidification, although more slowly than NAA

(Figure 3D–F). We then tested the growth response of the mutant in the AFB5 receptor, afb5-5. As

expected, it was less sensitive to picloram (Figure 3F) in the auxin-induced hypocotyl elongation,

while the reaction to NAA and fusicoccin was comparable to that of control (Figures 3F and

4C). The auxin signaling pathway exhibits a homeostatic nature and contains several negative and

positive feedback loops. For example, it is known that auxin-induced genes are able to suppress

auxin response (Mellor et al., 2016). The combination of the afb5-5 mutant, a normal looking plant,

with the picloram auxin analogue treatment creates an unprecedented situation, where the

decreased reaction of the afb5-5 mutant to the auxin analogue picloram can get manifested and

confirms the crucial role of the TIR1/AFB pathway in auxin-induced hypocotyl elongation. It remains

a question why the picloram-induced DR5 response, acidification and growth show a delay when

compared to NAA. It is possible that AFB5 has partially different functions than the other TIR/AFBs

or that picloram needs more time to enter the cells of the hypocotyl segment.

Stabilization of SAUR19 protein leads to auxin-independent growth
We have demonstrated by analysis of the processes, by pharmacological manipulations, and using

genetic tools that auxin-induced growth and acidification is downstream of the nuclear TIR1/AFB

Aux/IAA co-receptor. To address the downstream components involved, we looked at the SAUR

proteins. SAURs form a family of very small, short-lived proteins that are rapidly induced by auxin

application (Ren and Gray, 2015), and act downstream of the TIR1/AFB Aux/IAA auxin co-receptor.

In a recent publication, Spartz et al. (2014) showed that the SAUR19 protein indirectly activates the

PM H+-ATPase. They found that tagging SAUR19 with GFP leads to its stabilization and confers

overexpression phenotypes. The 35S::GFP-SAUR19 line evoked up to 35% higher H+-ATPase activi-

ties and increased cell expansion, as compared to Col-0. The 35S::GFP-SAUR19 line behavior in our

experimental system was remarkable. After decapitation, the hypocotyl segments elongated on the

control medium without auxin, and the addition of auxin did not lead to further stimulation of

growth (Figure 4A). We analyzed the apoplastic pH in the F1 cross between the 35S::GFP-SAUR19

and the apo-pHusion marker line. In the control (Col-0 x apo-pHusion) the apoplastic pH rises and

growth stops quickly after decapitation, while apoplastic pH remained acidic in the 35S::GFP-

SAUR19 background and the growth continued (Figure 4F). SAUR genes are arranged in clusters on

chromosomes and encode very small proteins, which likely enables very rapid production of these

proteins upon perception of auxin. Moreover, SAUR proteins are extremely short-lived (Ren and

Gray, 2015), meaning that transcriptional regulation is a crucial determinant of their abundance. Sta-

bilization of SAUR proteins leads to increased cell elongation (Spartz et al.,

2012; 2014; Chae et al., 2012). These properties make SAUR proteins a suitable ‘gearbox’ of

growth that is able to rapidly respond to changing conditions, while involving the relatively slow
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Figure 4. Activation of PM H+-ATPases triggers auxin-independent growth. (A) The 35S::GFP-SAUR19 hypocotyls elongate in the absence of auxin, and

the addition of auxin (10 mM NAA) does not further increase their growth. On the right, a kymograph of a decapitated hypocotyl elongating in the

absence of auxin is shown. Arrow represents 20 min. (B) The ost2-2D mutant line with a constitutively active AHA1 PM H+-ATPase does not cause an

auxin-independent hypocotyl growth; while the ost2-2D/aha2-5 mutant line elongates in the absence of auxin. (C, D) Elongation of afb5-5, 35S::GFP-

Figure 4 continued on next page

Fendrych et al. eLife 2016;5:e19048. DOI: 10.7554/eLife.19048 9 of 19

Research article Cell Biology Plant Biology

http://dx.doi.org/10.7554/eLife.19048


transcription and translation steps. Our results show that SAUR proteins mediate the signal between

nuclear auxin perception and auxin-induced growth execution, but it is important to note that the

conclusion is based mainly on the overexpression of a stabilized version of the SAUR19 protein.

Activation of PM H+-ATPases is sufficient to trigger growth
The stabilized 35S::GFP-SAUR19 overexpression line supposedly stimulates growth by activation of

the AHA PM H+-ATPases (Spartz et al., 2014), supporting the acid growth hypothesis for hypoco-

tyls. In Arabidopsis, the AHA family has 11 members, of which AHA2 and its close homolog AHA1

together contribute about 70–80% of the total H+-ATPase activity. While individual aha1 or aha2

showed only modest phenotypes such as impaired root growth on alkaline pH, the double mutant is

embryo-lethal (Haruta et al., 2010; Haruta and Sussmann, 2012). To clarify the functional relation-

ship of auxin and H+-ATPases directly in planta, we took advantage of the availability of dominant

mutations (ost2) available for the AHA1 locus that render the pump constitutively active

(Merlot et al., 2007). Although the over-expressing 35S::GFP-SAUR19 transgenic lines have been

described to behave comparably to the ost2-2D mutant in several tests, we found that decapitated

ost2-2D showed no or minor auxin-independent growth (Figure 4B). As constitutive mutations are

not known for AHA2, we nonetheless created a double mutant by combining the aha2-5 knock out

with the ost2-2D, so that of the two main isoforms of AHAs, one is constitutively active and the other

one absent. Indeed, the ost2-2D/aha2-5 hypocotyl segments elongated in the absence of auxin

(Figure 4B), more than the ost2-2D single mutants. The ost2-2D/aha2-5 also showed a slightly

decreased reaction to fusicoccin compared to ost2-2D and Col-0 (Figure 4D). These results provided

additional insight into the functions of the two pump subunits: not only AHA1 and AHA2 play redun-

dant roles, they are also interdependent. At least a notable fraction of the mature PM H+-ATPases in

the plant cell might be hetero-oligomers of AHA1 and AHA2 subunits (a mature pump is thought to

be a hexamer; Kanczewska et al., 2005). In the complete absence of AHA2, the equilibrium in the

composition of the mature pump complex would shift towards more of the ost2-2D subunits. How-

ever, the ability of ost2-2D/aha2-5 to elongate without auxin did not reach the magnitude of the

35S::GFP-SAUR19 plants. There are several possible explanations of this difference. Other of the 11

PM H+-ATPases might be activated by the SAUR proteins, or other sites of the auto-inhibitory loop

might be regulated than those mutated in ost2-2D. Alternatively, the ’acid growth’ explanation of

SAUR action is not sufficient, and SAURs might target multiple proteins that initiate the growth

response; and activating PM H+-ATPases is only a part of their action.

To distinguish between these possibilities, we used the line that inducibly expresses AHA2,

devoid of its autoinhibitory domain – AHA2d95 (Pachecon-Villalobos et al., 2016). Approximately

4 hr after transfer on the induction medium, hypocotyl segments of AHA2d95started to elongate

(Figure 4E). The auxin-independent growth of AHA2d95was similar to that of 35S::GFP-SAUR19.

Based on these results we conclude that in the hypocotyls, strong activation of PM H+-ATPases is

sufficient to trigger growth and can explain the auxin-independent elongation phenotype caused by

the overexpression of stabilized SAUR19 protein. The strongest effect of GFP-SAUR19 overexpres-

sion can be explained by the fact that SAURs might regulate all PM H+-ATPases, while our genetic

manipulation always influences only some of them. This corroborates the crucial role of the SAUR

Figure 4 continued

SAUR19, ost2-2D and ost2-2D/aha2-5 in the presence of 1 mM fusicoccin. In A-D curves correspond to 6 hypocotyl segments, errorbars represent

stdev.s. (E) Hypocotyl segments of AHA2d95start to elongate approximately four hours after inducing the transgene expression. The autonomous

elongation of 35S::GFP-SAUR19 is shown for comparison. Segments were placed on depletion medium with (Col-0 and AHA2d95) or without (35S::GFP-

SAUR19 and another Col-0) 1 mM dexamethasone. Curves correspond to 7–10 hypocotyl segments, errorbars represent stdev.s. (F) 35S::GFP-SAUR19

line has an acidic apoplast and keeps elongating after decapitation in the absence of auxin, while the apoplastic pH of the control rises after

decapitation and growth ceases. On the left, a region of a hypocotyl segment of the 35S::GFP-SAUR19 or Col-0 in the apo-pHusion background is

shown in time (timestep 5 min). On the right, apoplastic pH of both lines is plotted and quantified using the AreaKymo tool.

DOI: 10.7554/eLife.19048.012

The following source data is available for figure 4:

Source data 1. Numerical data for the graphs.

DOI: 10.7554/eLife.19048.013
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proteins in mediating auxin-induced growth, and it also means that in contrast to the roots (Pache-

con-Villalobos et al., 2016) the acid growth hypothesis seems to be valid in the hypocotyls.

The elongation assays are relevant for the in vivo situation
Next we tested gravistimulation of hypocotyls to address the relevance of the results to the in vivo

situation and to avoid any mechanical interference caused by hypocotyl decapitation and external

auxin application. During gravistimulation of the shoot, auxin is redistributed to the lower side of the

gravistimulated organ where it triggers growth, which in turn leads to bending of the organ

(Went and Thimann, 1937; Harrison and Pickard, 1989; Li et al., 1991; Friml et al., 2002). Using

the DR5rev::GFP auxin response marker (Benková et al., 2003) or the DII-Venus marker

(Brunoud et al., 2012) we were unable to observe differences in auxin signaling early (1 hr) after

gravistimulation. The reason is that the GFP-based markers are too slow to show differences in such

a short time, and the DII-Venus marker is extremely weak in the etiolated hypocotyls, most likely due

to a high level of auxin in this elongating tissue (data not shown). Gravistimulated hypocotyls bend

visibly 20–40 min after gravistimulation (Video 3). Since our results point to acidification being an

early detectable outcome of gravistimulation, we analyzed apoplastic pH in the upper and lower

sides of gravistimulated etiolated hypocotyls using the apo-pHusion marker. One hour after gravisti-

mulation, the lower side cell walls were visibly more acidic than the upper ones (Figure 5A–C). In

non-gravistimulated hypocotyls, both sides showed either similar pH, or one of the sides was more

acidic than the other, without a tendency to the left or right side (Figure 5C). This could reflect the

fact that vertically-growing hypocotyls do not grow completely straight, but gently wave during

growth (Video 3). Interestingly, plants expressing a stabilized version of the SAUR63 showed an

increased waviness of hypocotyls and stems (Chae et al., 2012). Hohm et al. (2014) suggest that

apoplast acidification is necessary for creating an auxin gradient upon directional light stimulus.

Based on the fact that auxin asymmetry is established very quickly after gravistimulation

(Harrison and Pickard, 1989), we suggest that during gravitropism, the observed apoplast acidifica-

tion asymmetry is downstream of nuclear auxin

signaling and is a part of the execution of auxin

response. The asymmetry of acidification has

been approximated before using a pH-sensitive

dye to visualize differential pH in vicinity of grav-

istimulated aerial organs (Mulkey et al., 1981).

We show that the apoplast itself is more acidic

on the lower side of the bending hypocotyl,

which fits with the results obtained with external

auxin application.

The induction of the dominant-negative axr3-1

protein completely inhibited auxin-induced

growth in the elongation assay (Figure 3B). We

therefore tested how the mutated protein affects

the gravitropic response. While the heat-shocked

control hypocotyls bent upwards, the HS::axr3-1

line was utterly agravitropic (Figure 5D). Hypo-

cotyl growth was almost completely inhibited as

well. As expected, approximately 16 hr after the

heat shock, the HS::axr3-1 seedlings initiated

bending; nicely demonstrating the transient

nature of the heat-shock inducible system

(Knox et al., 2003). This result clearly shows that

the nuclear auxin response is indispensable for

gravitropism, and the in vivo results correspond

well to the elongation assay results. This result is

also in agreement with the agravitropic pheno-

type in the stable axr3-1 line (Leyser et al.,

1996) and very similar to the stabilized mutant of

Aux/IAA19, msg2 (Tatematsu et al., 2004).

Video 3. Col-0 hypocotyls grown in darkness and

imaged using an infrared imaging system. At the

beginning of the movie, the seedlings are stimulated

by 90 degrees rotation. Seedlings bend up and

continue growing upwards; note the waving of the tip

of the growing seedlings. Roots are placed on agar,

while the hypocotyl grows in air to allow for

unobstructed bending and growth.

DOI: 10.7554/eLife.19048.016
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Figure 5. An asymmetrical acidification of the apoplast is necessary for gravitropism. (A) The lower epidermal side of a gravistimulated apo-pHusion

marker line shows more acidic cell walls than the upper side. Hypocotyl was stimulated for 1 hr, the regions used for apoplastic pH analysis are

depicted with dotted lines. SUM projection of a confocal z-stack; a 3 � 1 tilescan image. (B) AreaKymo representation of a control and gravistimulated

hypocotyl shows that gravistimulation leads to acidification of cell walls on the lower side of the hypocotyl. The two epidermal sides cell walls are

Figure 5 continued on next page
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We have shown that the 35S::GFP-SAUR19 hypocotyl segments elongated in the absence of

auxin, and the addition of auxin did not increase their elongation (Figure 4A,F). This in fact means

that these hypocotyls are functionally insensitive to auxin or to the absence of auxin. Because of this

insensitivity, this line should be unable to respond to the redistribution of auxin during gravitropism.

Also the ost2-2D/aha2-5 line showed significant auxin-independent elongation (Figure 4B). There-

fore, we subjected the 35S::GFP-SAUR19, ost2-2D and ost2-2D/aha2-5 lines to gravistimulation and

analyzed the bending angle after 6 hr of treatment. As shown in Figure 5E, lines that showed auxin-

independent growth in the elongation assays also responded less to gravistimulation than the con-

trol, resulting in a smaller gravitropic bending angle. This means that the ability to respond properly

to the relocation of auxin is compromised in these lines, resulting in a decreased growth gradient

between the upper and lower sides of gravistimulated hypocotyls. It was shown that the 35S::GFP-

SAUR19 line is less phototropic than the control (Spartz et al., 2012), pointing to a common role in

photo- and gravitropic response. With the example of gravitropism, we showed that the results

obtained in the semi in vitro elongation assays are relevant to the in vivo situation, and that apoplast

acidification is one of the earliest hallmarks that can be visualized in the gravistimulated hypocotyls.

The ability to rapidly induce growth after perception of auxin as well as to stop growth after with-

drawal of auxin are crucial for the plants to be able to respond to directional stimuli such as gravity.

Conclusions
In this work, we systematically re-evaluated the auxin-induced growth knowledge and test its predic-

tions on the Arabidopsis model system using the available genetic tools. We showed that after auxin

application, nuclear auxin signaling, apoplast acidification and growth occur with a similar lag phase

of approximately 20 min. This is not an artifact of the model system, as the drug fusicoccin is able to

trigger growth and acidification in a time substantially shorter, and without triggering the nuclear

auxin response. Both the auxin-induced apoplast acidification and growth require new protein syn-

thesis, Aux/IAA protein degradation, and are dependent on the SAUR proteins (Spartz et al.,

2014). In other words, no non-genomic auxin pathway is required to acidify the apoplast and regu-

late growth in the hypocotyl. This contrasts with the situation in the root, where auxin inhibits growth

very rapidly (Monshausen et al., 2011) and may act via different mechanism. In the hypocotyl, the

afb5-5 mutant shows a clear reduction of the reaction to the auxin analogue picloram, further con-

firming the involvement of the TIR1/AFB Aux/IAA auxin co-receptor complex. Furthermore, overex-

pression of stabilized SAUR19 protein (Spartz et al., 2012) causes auxin-independent hypocotyl

segment growth that can be also achieved by genetic activation of PM H+-ATPases, strengthening

the concept of acid growth hypothesis. Using genetically-encoded apoplastic pH marker, we could

directly monitor apoplast acidification in situ during auxin-induced growth and during gravitropism.

The lines that showed auxin independent growth display problems with gravitropic bending, which

demonstrates the necessity of acidification and growth gradient formation across the bending organ.

It remains to be solved whether the SAUR-induced PM H+-ATPases activation is the only mechanism

that triggers cell elongation, or whether SAUR proteins have other targets that are responsible for

Figure 5 continued

represented as two rectangles, and correspond to areas depicted in A. The quantification is shown on the right as boxplots. (C) Quantification of

apoplastic pH in control and gravistimulated (1 hr) hypocotyls of the apo-pHusion marker line. Each point represents GFP/RFP ratio of a single z-section

on either epidermal sides of hypocotyls, similar to the areas depicted in A. Note that the ratios cannot be directly compared to Figures 1–3 as these

images were acquired using a different microscope and sample setup (see Materials and methods for details). (D) Induction of the axr3-1 protein

inhibits hypocotyl gravitropism and growth. On the left, the picture shows a temporal color code of hypocotyls grown in darkness and imaged with an

infrared camera for 8 hr after gravistimulation. The hypocotyl is not in contact with the agar to allow for undisturbed bending. On the right, the

quantification of the hypocotyl angle 6 hr after gravistimulation is plotted; 0 degrees is horizontal, 90 degrees vertical. (E) The 35S::GFP-SAUR19 line is

functionally insensitive to auxin in the elongation assays, and as a result, it bends less in the gravitropic assay. The constitutively active AHA1 allele in

the aha2-5 mutant background (ost2-2D/aha2-5) leads to diminished gravitropic response. On the right, the quantification of the hypocotyl angle 6 hr

after gravistimulation is plotted; 0 degrees is horizontal, 90 degrees vertical.

DOI: 10.7554/eLife.19048.014

The following source data is available for figure 5:

Source data 1. Numerical data for the graphs.

DOI: 10.7554/eLife.19048.015
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growth regulation. We are lacking tools to monitor PM hyperpolarization in-vivo, which is tightly

linked to apoplast acidification, and is crucial for regulating ion fluxes over the PM and turgor regula-

tion. It will be interesting to address the dynamics of cell wall properties and turgor pressure using

this model system. The fact that auxin-induced growth of the hypocotyl utilizes the relatively slow

gene transcription and protein synthesis to regulate its growth, illustrates that plant tropisms do not

need to be instantaneous, as the changes in direction of gravity or light are relatively slow as well.

Materials and methods

Plant material and growth conditions
Col0 was used as wild type control. The marker lines and mutants originated from these publica-

tions: apo-pHusion line (Gjetting et al., 2012), abp1-c1 and abp1-TD1 (Gao et al., 2015), HS::axr3-

1 (Knox et al., 2003), 35S::GFP-SAUR19 (Spartz et al., 2012), afb5-5 SALK_110643 (Prigge et al.,

2016), ost2-2D - At2g18960 505G>T, 2599G>A (Merlot et al., 2007), aha2-5 - SALK_022010, tir1-1/

afb2-1/afb3-1 (Dharmasiri et al., 2005), AHA2d95 (Pachecon-Villalobos et al., 2016). The tir triple

and the abp1 mutants were genotyped as described in the respective publications. The afb5-5 was

genotyped using these primers: insertion pROK-LB: GGAACCACCATCAAACAGGA + AFB5-TR2:

GCATAATCTGGTTCTTGCTCACTC; wild-typeAFB5-TR2 + AFB5_F2: AAATCTTGGTGGCGTGTTG.

The ost2-2D mutant was verified by PCR amplification of a product (ost2-2D_505F: GGA

TTGGCAAGATTTTGTGGG + ost2-2D_505R: AAAACTTCTTGACCAGGGTGC) that was digested by

an Hpy188III; the mutation destroys the restriction site. The aha2-5 was genotyped by these primers:

wild-type aha2-5_RP: TTGACAGGAAAGCAAACTTCTG + aha2-5_LP: ACCAAAAGGTTGTCAA

TTCCATC, insertion band: aha2-5_RP + SALK_LB: ATTTTGCCGATTTCGGAAC. For most experi-

ments, seeds were surface sterilized by chlorine gas, plated on ½ MS medium, 1% sucrose, pH 5.8,

0.8% plant agar, stratified 1–2 days at 4˚C, then placed into the growthroom (21˚C, long day) for

~6 hr and then wrapped into aluminum foil. The dark imaging experiments with gravitropism were

done as follows: 3-d-old plants were vertically placed into dark boxes equipped with infrared LEDs

(850 nm wavelength) and photographed by a Canon EOS 550D camera (as described in Smet et al.

(2014). The seeds were placed on the edge of agar to allow for unobstructed bending of the hypo-

cotyls in air.

The elongation experiment
Etiolated seedlings ~72 hr-old (counted from placing into growthroom) were decapitated using a

razor blade under a dissecting scope equipped with a green filter. The segments were placed onto a

cellophane foil placed on the surface of the depletion medium (10 mM KCl, 1 mM MES, pH 6 (KOH),

1.5% phytagel) and kept in darkness for 30 min. Then the segments were transferred to a new plate

with depletion medium using the cellophane foil, which was removed after the transfer. Falcon

60 � 15 mm dishes were used with 5 ml of medium with the drugs or auxin treatments as indicated.

The samples were placed on a flatbed scanner (Epson perfection V370) and imaged through the

layer of phytagel, a wet black filter paper was placed above the open dishes to improve the contrast

of the images. Samples were automatically imaged each 10 min using the AutoIt program and

imaged at 2400DPI. The drug stocks were dissolved in DMSO except for fusicoccin, which was dis-

solved in methanol. The HS::axr3-1 plants were heatshocked at 37˚C for 40 min in aluminum-

wrapped petri dishes; experiments were started 1.5 hr after the end of the heat shock. AHA2d95

hypocotyl segments were transferred to depletion medium containing 1 mM dexamethasone. To

image the luciferase activity, ~50 ml of 1 mM D-luciferin dissolved in PBS was added to decapitated

hypocotyl segments during the depletion stage (using the depletion medium), and then transferred

to the plates with treatments, and imaged. The elongation experiment, pH analysis and luciferase

imaging is described in more detail at Bio-protocol (Li et al., 2018).

Imaging
The hypocotyls in Figures 1A and 4A were imaged using an Olympus BX53 light microscope via a

10x/0.25 PlanN objective. The apo-pHusion marker line for the elongation experiments was imaged

using ZEISS LSM700 confocal microscope with a 20x/0.8 Plan-Apochromat M27 objective. GFP and

RFP were imaged simultaneously, splitting the light with a SP550 and LP560 filters, 16bits per pixel,
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excited using 488 and 555 nm diode lasers. Hypocotyls were decapitated and depleted on the

depletion medium, as described above, then the segments were transplanted onto medium with the

indicated treatment and transferred into LabTekkII chambered coverslide and imaged. Alternatively,

the treatment was pipetted to the samples during imaging on the confocal microscope. For the apo-

pHusion imaging during the gravitropic response, seeds were plated into channels 0.25 mm deep

and 0.5 mm wide that were stamped into 1.5% agarose with ½MS, 1% sucrose. After one day of ger-

mination, the channels with seeds were covered with a microscopic coverglass and the plates were

wrapped in aluminum foil and grown for additional three days. Then the plates were gravistimulated

for 1 hr, and taken directly for imaging at a confocal microscope. This way, the original position of

the gravistimulated organ was maintained and the handling was minimized. Zeiss LSM800 confocal

microscope equipped with GaAsP detectors and using a 20x/0.8 Plan-Apochromat M27 objective

was used, and imaged analogously to the ZEISS LSM700 settings. Luciferase luminescence was

imaged using a darkbox equipped with a Photometrics evolve EMCCD camera with a 17 mm fixed

lens/0.95. The exposure time was 110 s.

Image analysis
All images were analyzed using Fiji (Schneider et al., 2012; Schindelin et al., 2012). The kymo-

graphs were done using the Multiple Kymograph ImageJ plugin (http://www.embl.de/eamnet/html/

body_kymograph.html). To achieve unbiased measurements, the length of hypocotyl segments was

measured by thresholding the scanner images, manual clicking on each segment using the Wand

tool (Fiji) and recording their Feret’s diameter (maximum caliper), this was done for the entire time

series. The initial length of the segment was taken as 100%, data was analyzed in Excel. The results

in the figures represent one of three repetitions of each experiment, which is based on quantification

of 6 hypocotyl segments. For confocal time series, image drift was stabilized using the StackReg Fiji

plugin in the ‘translation’ option. Luciferase luminescence was measured by selecting the region of

interest containing the hypocotyl segment and measuring the mean intensity in this region over

time. The apoplastic pH visualized by the apo-pHusion marker was measured both manually and

automatically by the AreaKymo MATLAB script. Manual measurement was done by thresholding the

cell wall area based on the RFP channel, using this thresholded area as a base for a region of interest

(using the ‘create selection’ command), and then measuring the mean intensity in these regions both

for GFP and RFP channels. For the gravitropic experiment, each z-section of the image was mea-

sured individually. The AreaKymo script essentially does the same procedure, but does so automati-

cally without the user input, allowing for rapid processing of several hypocotyls at a time. The user

specifies the value of the threshold for the RFP signal (this is set arbitrarily to highlight just the cell

wall area) and the desired width of the rectangle that will represent the individual timeframe. The

script outputs the visual representation of apoplastic pH and also the values in a form of a series of

boxplots. The AreaKymo script is provided in Supplementary file 1. To measure the bending of

hypocotyls after gravistimulation, the angle of the upper part of the hypocotyl was measured 6 hr

after gravistimulation. Numerical data for the graphs and figures can be found in the Source Data

files 1–6, each corresponds to Figures 1–5 and the Figure 3—figure supplement 1. The hypocotyl

images in Figure 5D and E were done using the ‘temporal color code’ command of Fiji, with the

‘spectrum’ look-up-table option. Figures were assembled in the Inkscape program (www.inkscape.

org). Boxplots and stripcharts were created in R (3.2.0) via the RStudio interface.
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