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Abstract

Patients with acute myocardial infarction (MI) could progress to end-stage congestive heart 

failure, which is one of the most significant problems in public health. From the molecular and 

cellular perspective, heart failure often results from the loss of cardiomyocytes—the fundamental 

contractile unit of the heart—and the damage caused by myocardial injury in adult mammals 

cannot be repaired, in part because mammalian cardiomyocytes undergo cell-cycle arrest during 

the early perinatal period. However, recent studies in the hearts of neonatal small and large 

mammals suggest that the onset of cardiomyocyte cell-cycle arrest can be reversed, which may 

lead to the development of entirely new strategies for the treatment of heart failure. In this 

Viewpoint, we summarize these and other provocative findings about the cellular and molecular 

mechanisms that regulate cardiomyocyte proliferation and how they may be targeted to turn back 

the clock of cardiomyocyte cell-cycle arrest and improve recovery from cardiac injury and disease.

1. Introduction

Despite improvements in the effectiveness of conventional treatment regimens for heart 

disease, such as catheterization and maximal medical therapy, some patients with acute 

myocardial infarction (AMI) progress to end-stage congestive heart failure, which remains 

one of the most significant problems in public health [1,2]. At the most fundamental 

level, heart failure is caused by the loss of cardiomyocytes—the contractile units of the 

heart—and because mammalian cardiomyocytes exit the cell cycle shortly after birth, 

myocardial tissues damaged by injury or disease cannot be adequately replaced via 
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the proliferation of endogenous cardiomyocytes. Thus, although a number of promising 

strategies (e.g., cell- and tissue-based therapies, the transdifferentiation of non-myocytes 

into cardiomyocyte-like cells) for promoting cardiac repair are currently being developed, 

emerging evidence that proliferation can be re-activated in the cardiomyocytes of postnatal 

mammals [3-5], which launches an entirely new strategy for the treatment of cardiac disease. 

This Viewpoint summarizes these recent provocative findings and their implications for the 

remuscularization of infarcted hearts (Fig. 1).

2. The onset of cardiomyocyte cell cycle arrest in late fetal and early 

neonatal mammals

Cardiomyocytes in mammalian hearts rapidly divide during the weeks before birth but 

begin to transition from hyperplastic growth (i.e., increases in cardiomyocyte number) 

to hypertrophic growth (increasing cardiomyocyte size) between the late fetal and very 

early neonatal periods. Single-nucleated cardiomyocytes predominate during hyperplasia; 

then, the cells undergo one final phase of DNA synthesis without subsequent cytokinesis, 

producing hypertrophic cardiomyocytes with multiple nuclei in non-primate species or 

single nuclei with polyploid DNA in primates [6-8]. Mean cardiomyocyte cell volume 

increases from 1000 to 1500 μm3 on postnatal day (P) 1 to 25,000–35,000 μm3 in adult 

animals [9-15], and although mononucleated fetal and early neonatal cardiomyocytes 

typically lack components of the M-line, T-tubules, sarcoplasmic reticulum, and the 

extracellular interstitial matrix, immunohistochemical studies have identified precursors for 

these structural proteins [16,17] that begin to mature as the cells enter the hypertrophic 

phase.

The timing of the hyperplastic/hypertrophic transition varies widely among species, 

beginning at P10–12 in dogs [11], P4–7 in rodents [10,12], and during the last stages of 

fetal growth in pigs [18], sheep [13-15], and primates [19]. Notably, when embryonic day 

12 rat hearts were implanted on the irises of adult rats [20], the cardiomyocytes continued to 

replicate with no change in myocyte diameter or nuclear/cytoplasmic ratio from 1 to 3 weeks 

after implantation, binucleated cells appeared by week 3, and the amount of cytoplasm per 

nucleus increased by four-fold between weeks 3 and 5.

The hyperplastic/hypertrophic transition is also accompanied by a series of changes in 

subcellular structure that likely need to be reversed for cardiomyocytes to re-enter the 

cell cycle. For example, nuclear division is driven by the centrosomes, which are no 

longer present after the transition to hypertrophic growth, and mitosis in early neonatal 

cardiomyocytes requires disassembly of the contractile apparatus, which progresses (in 

order) via the dissociation of proteins in the Z-band (sarcomeric α-actinin, titin, and 

cardiac α-actin), the A-band (myosin and actin), and then the M-band (myomesin) [16]. 

Furthermore, the tubular structures of the mitotic spindle relocate to the nuclear envelope as 

cardiomyocytes become hypertrophic [21,22], and the intercalated discs enlarge and migrate 

to the ends of the cell, while sarcomeres are brought into alignment by the formation of Z-Z 

connections. Hypertrophic cardiomyocytes are also stabilized by the growth of T-tubules and 

the sarcoplasmic reticulum, and the dense network of collagen and elastic fibrils that develop 
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in the interstitial space during the early hypertrophic growth phase [23] not only contributes 

to cardiomyocyte stability, but also participates in cell cycle inhibition by activating the 

Hippo-yes-associated-protein (Hippo-YAP) pathway [13], which impedes cardiomyocyte 

proliferation in adult mammals [24].

3. Endogenous cardiac regenerative capacity in mammals

In contrast to lower vertebrates [25-31], cardiomyogenesis in adult mammalian heart 

following injury is very limited [32-36] and is insufficient to restore normal cardiac function. 

Studies in the late 90s elegantly mapped the DNA synthesis and cell cycle dynamics of 

the mammalian heart during development and following birth [9,12,37], where they showed 

that DNA synthesis drops significantly around birth with low level of DNA synthesis few 

days after birth. Recent reports examined the cardiac regeneration potential in large mammal 

neonatal hearts. The results from these studies demonstrated that the neonatal porcine heart 

is capable or regeneration following AMI only for the first 2 days of life. This phenomenon 

is associated with induction of cardiomyocyte proliferation, and is lost when cardiomyocytes 

exit cell cycle shortly after birth. The findings of this study and the recent case report 

from a clinical observation of one neonatal patient [40] suggest a significant myocardial 

regeneration window in the early postnatal stage of large mammalian hearts, which is highly 

impactful, as it provides insight into the regenerative properties and potential of human 

hearts.

3.1. Impactful of cell cycle on heart failure management

Anecdotal reports over the past several decades suggest that newborn humans can recover 

left ventricular function following various degrees of myocardial infarction [41-43]. 

Therefore, identifying a regenerative window in mammals is a crucial step towards 

understanding the human heart regenerative window, and may serve as a platform for 

future clinical studies in human infants afflicted by the devastating heart conditions. This 

can have numerous important implications, from establishing new guidelines for timing of 

pediatric heart surgery that benefit from the regenerative potential of the newborn human 

heart, to designing novel surgical techniques for pediatric heart surgery, and developing 

new therapeutic modalities to enhance or prolong this regenerative window. Importantly, 

once we have a better understanding of the regulators underpinning the drastic changes in 

neonatal cardiac cardiomyocyte proliferation during the first week of life, we may be able to 

manipulate the mechanisms to promote myocardial regeneration in injured hearts not only in 

pediatric but also in adult patients.

3.2. Regenerative capacity of neonatal mouse hearts

In 2011, Sadek lab published the first report of spontaneous heart regeneration in small 

mammals [3], where apical resection (AR) of 15% of the left ventricle shortly after 

birth resulted in induction of cardiomyocyte proliferation with regeneration of the lost 

myocardium within 21 days. This remarkable regenerative response however is lost by 

7 days postnatally, coinciding with cell cycle exit of cardiomyocytes [3]. Sadek lab 

has previously outlined the regenerative capacity of the newborn mammalian heart and 

defined several mechanisms that regulate this process [3,44-48]. Specifically, it has been 
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demonstrated that the endogenous regenerative capacity of the newborn mouse heart is 

mediated by proliferation of preexisting cardiomyocytes and is lost when cardiomyocytes 

exit cell cycle within 7 days after birth. In addition, recent reports indicate that the slow 

turnover of cardiomyocytes (~0.76% per year) that occurs in the adult mouse heart is 

mediated by proliferation of preexisting cardiomyocytes [49]. Therefore, current evidence 

suggests that both the regenerative ability of the early postnatal heart, and cardiomyocyte 

turnover in the adult heart are mediated by proliferative competency of pre-existing 

cardiomyocytes. However, mechanisms of regulation of mammalian cardiomyocyte cell 

cycle arrest shortly after birth remain poorly understood.

3.3. Oxygen metabolism and heart regeneration in mice

A unique character shared by organisms that are capable of heart regeneration is the low 

oxygenation state [50,51]. The zebrafish circulatory system is relatively hypoxemic, as it 

has a primitive two-chambers heart, which results in mixing of arterial and venous blood. 

Similarly, the mammalian fetal circulation is shunt-dependent with significant mixing of 

arterial and venous blood. Although blood in the umbilical vein going to the fetus is 80%–

90% saturated with a PaO2 of 32-35 mmHg, the saturation of the blood ejected from the left 

ventricle is only 65% saturated with a PaO2 of 25-28 mmHg [52], which is quite hypoxemic 

compared to the postnatal circulation with a saturation above 95% and a PaO2 of 100 

mmHg. Therefore, both zebrafish and mammalian fetal hearts reside in relatively hypoxic 

environments. However, the transition from embryonic- to postnatal-circulation soon after 

birth drastically changes the oxygenation state of mammalian cardiomyocytes [53]. In 

parallel to the oxygenation state, energy metabolism of the embryonic and adult hearts is 

quite distinct. During embryonic development, when cardiomyocytes rapidly proliferate, the 

relatively hypoxic embryonic heart utilizes anaerobic glycolysis as a main source of energy 

[54,55], whereas adult cardiomyocytes utilize the oxygen-dependent mitochondrial oxidative 

phosphorylation as an energy source [56,57]. Given these initial observations, future 

studies are warranted to examine whether environmental oxygen changes can metabolically 

reprogram adult cardiomyocytes, and modulate DNA damage and cell cycle activity [48,58].

3.4. Regenerative capacity of neonatal large mammalian hearts

Myocardial regeneration has also been observed in neonatal large mammals (pigs) after 

experimentally induced MI [4,5] (Fig. 2). When MI was induced on P1, cardiac contractile 

function on Day 30 was largely restored with little evidence of scar formation or wall-

thinning, and the proportion of cardiomyocytes that expressed markers for cell cycle 

activity or proliferation (e.g., Ki67, phosphorylated histone 3 [PH3], Aurora B) on P7 

was significantly greater in the hearts of P1-injured animals than in noninfarcted hearts. 

Cardiomyocytes also proliferated in response to MI induction on P2, but not enough to 

preserve normal cardiac function, and the regenerative response to MI induction at later 

time points was minimal, which suggests that the time window for myocardial regeneration 

in large mammals normally closes less than three days after birth. However, pigs that 

underwent AR surgery on P1 (ARP1) recovered completely from MI-induction surgery on 

P28 (MIP28) with no decline in contractile performance and no residual infarcted tissue at 

the site of MI induction [59], and whereas the expression of proliferation markers declined 

to nearly undetectable levels by P28 and P56 in the hearts of animals that did not undergo 
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ARP1 or MIP28, which is consistent with the postnatal onset of cell cycle arrest, markers 

for proliferation were ~ 10-fold greater in the hearts of age-matched animals that underwent 

both procedures. Thus, AR surgery on P1 appeared to prolong the window for myocardial 

regeneration by preserving the cell cycle machinery in cardiomyocytes, which enabled the 

cells to proliferate in response to MI on P28 [59]. Collectively, the results from these studies 

[3-5,59,60] suggest that strategies for enhancing cardiomyocyte cell cycle re-activation 

could substantially remuscularize infarcted hearts.

4. Promoting cardiomyocyte cell cycle activity and proliferation in the 

hearts of adult mammals

The meager amount of endogenous cardiomyocyte turnover in the hearts of adult mammals 

appears to be driven primarily by the proliferation of pre-existing cardiomyocytes, rather 

than via the differentiation of progenitor cells or other mechanisms [49], which indicates 

that adult cardiomyocytes at least occasionally re-enter the cell cycle. Cell cycle progression 

is governed by checkpoints at the G1/S and G2/M phase transitions, and analyses of the 

transcriptomes of hearts harvested from fetal (embryonic day 10.5), newborn (P1), and adult 

(8-week-old) mice identified 15 differentially expressed genes [61], including cyclins B1 

and D1 (CycB1 and CycD1), as well as cyclin-dependent kinases 1 and 4 (Cdk1 and Cdk4), 

which form complexes with CycB1 and CycD1, respectively, to regulate the G1/S (Cdk4/

CycD1) and G2/M (Cdk1/CycB1) phase transitions [62-64]. Simultaneous overexpression 

of all four factors promoted proliferation in cardiomyocytes obtained from mice at P7 and 

from adult (4-month-old) rats, as well as in post-mitotic [65] (60-day-old) cardiomyocytes 

that had been differentiated from human induced pluripotent stem cells (hiPSCs). When 

adenoviruses coding for all four factors were injected into the hearts of mice one week 

after MI induction, the treatment was associated with significant improvements in cardiac 

function and a 50% reduction in scar size [61]. Furthermore, constitutive overexpression 

of cyclin D1 (CycD1), D2 (CycD2), or D3 (CycD3) from the cardiomyocyte-specific 

myosin heavy chain (MHC) promoter activates ventricular DNA synthesis in the uninjured 

hearts of adult mice [66-70]. Although myocardial injury attenuated ventricular DNA 

synthesis in MHC-CycD1 and -CycD3 transgenic mice, MHC-CycD2 expression both 

increased DNA synthesis and reduced fibrosis in infarcted mouse hearts [67]. MHC-CycD2 

transgenic mice also displayed high levels of left-atrial DNA synthesis and cytokinesis after 

isoproterenol infusion, and whereas cyclin D1 and D3 tended to accumulate in the cytosol of 

cardiomyocytes after myocardial injury, the distribution of CycD2 in nuclei was unchanged. 

Collectively, these observations confirm that the D-type cyclins are not functionally 

redundant in injured hearts, and that CycD2 overexpression promotes myocardial repair.

Recent studies have identified a number of molecules and pathways, e.g., Erb-B2 [71,72], 

the calcineurin–Hoxb13 axis [73], and hypoxic signaling [48] that regulate the conversion 

from hyperplastic to hypertrophic growth and, consequently, may be viable targets for 

reactivating the cardiomyocyte cell cycle in adult hearts. Genetic knockdown of the Hippo 

pathway gene Salvador (Sav) in border-zone cardiomyocytes appeared to promote cell 

division and improve measures of cardiac function and infarct size in a pig MI model 

[24,74-76]; however, proliferating cardiomyocytes remained rare (<5%), which suggests that 
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other mechanisms, such as declines in cardiomyocyte apoptosis or increases in vascularity, 

may have contributed to the benefits associated with Hippo-YAP inactivation [24]. Using the 

reprogramming factors Oct4, Sox2, Klf4, and c-Myc (OSKM), Chen et al. demonstrated the 

overexpression of OSKM in cardiomyocytes can reactivate CMs cell cycle, which in turn, 

is accompanied by significant myocardial regeneration and improved cardiac function in a 

mouse model of MI [77]. Gene activity can also be knocked down via the administration 

of microRNAs (miRNAs or miRs)—highly conserved small non-coding RNAs that regulate 

gene expression by binding to partially complementary sequences in messenger RNAs. 

Early studies indicated that miR-1, −133, and – 15 [78-80] inhibited cardiomyocyte 

proliferation, and the cardiac-specific deletion of miR-128 in mice promoted cardiomyocyte 

cell cycle re-entry and improved measures of fibrosis and cardiac function after MI [81]. 

Furthermore, the miR-17-92 cluster appears to be both necessary and sufficient for inducing 

cardiomyocyte proliferation in embryonic and postnatal hearts [82], and high-throughput 

screening of 875 miRNA mimics identified 204 miRNAs that increased the proliferation 

of neonatal rat cardiomyocytes by at least two-fold. Two of the miRNAs (miR-590 and 

miR-199a) also promoted cardiomyocyte proliferation and myocardial regeneration when 

being administered to the infarcted hearts of adult mice [83].

5. Targeting the cardiomyocyte cell cycle to enhance the regenerative 

potency of cell-based myocardial therapy

Numerous studies in rodents, pigs, and nonhuman primates have shown that cells 

differentiated from hiPSCs can improve recovery from myocardial injury [84-87]. However, 

the proportion of transplanted cells that are retained and survive at the site of administration 

(i.e., the engraftment rate) is exceedingly small [88,89], which suggests that the beneficial 

effects evolve primarily via paracrine mechanisms that are activated by the transplanted cells 

[90,91], rather than via the replacement of myocardial scar tissue with functional cardiac 

muscle [92]. Thus, observations that MHC-CycD2 overexpression promoted cardiomyocyte 

proliferation and reduced infarct sizes in a mouse MI model [67] led researchers to 

transfect hiPSCs with a lentivirus coding for the MHC-driven expression of human CycD2 

(CCND2) before differentiating the cells into cardiomyocytes (CCND2OEhCMs) [93]. 

The CCND2OEhCMs were more proliferative than cardiomyocytes differentiated from 

hiPSCs with wild-type levels of CCND2 expression (CCND2WThCMs), and engrafted 

CCND2OEhCMs were three-fold more prevalent than CCND2WThCMs four weeks after 

administration to infarcted mouse hearts. The number of engrafted CCND2OEhCMs also 

increased from one to four weeks after administration, which suggests that even an 

initially small number of engrafted CCND2OEhCMs could proliferate and substantially 

remuscularize the myocardial scar.

Measures of cardiac function and infarct size were also significantly better in mice treated 

with CCND2OEhCMs than in CCND2WThCM-treated animals at Week 4 [93], and optical 

mapping assessments conducted six months after cell administration, when engrafted 

CCND2OEhCMs occupied more than 50% of the myocardial scar and exceeded the number 

of engrafted CCND2WThCMs by 8-fold [94], confirmed that the engrafted cells were 

electrically coupled with each other and the native myocardium. AP durations were ~ 4-fold 
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longer (80–160 ms) for the engrafted (human) CCND2OEhCMs than for native (mouse) 

cardiomyocytes, which is consistent with previous reports [95], and when paced at 70 ms, 

the upstroke for each of the longer human cardiomyocyte AP traces was followed by two or 

three small spikes, which corresponded to the upstrokes of the shorter mouse cardiomyocyte 

AP traces [94]. Thus, the engrafted CCND2OEhCMs may contributed to the improvements 

in cardiac function by direct electromechanical coupling, though the enhanced engraftment 

may also have led to an increase in the cells’ paracrine activity.

Combined treatment with fibroblast growth factor 1 (FGF1) and CHIR99021 (a 

pharmacological inhibitor of glycogen synthase kinase 3) promoted the cell cycle activity 

and proliferation of hiPSC-derived cardiomyocytes (hiPSC-CMs) both in culture and when 

nanoparticles carrying FGF1 and CHIR99021 were incorporated with hiPSC-CMs into 

a human cardiac-muscle patch (hCMP). CHIR99021- and FGF1-containing nanoparticles 

also promoted hiPSC-CM cell cycle activity and proliferation four weeks after hCMP 

administration to infarcted mouse hearts, and measurements of cardiac performance, 

infarct size, and angiogenesis were significantly better in animals treated with the FGF1/

CHIR99021-containing hCMP than in animals treated with hCMPs containing empty 

nanoparticles [96]. Notably, because FGF1 and CHIR99021 are chemical agents, this 

method for promoting hiPSC-CM proliferation may be more easily translated to the clinic 

than genetic approaches such as MHC-CCND2 overexpression or therapeutic genome 

editing with techniques such as clustered regulatory interspaced short palindromic repeats 

(CRISPR) [97]. CRISPR technology may also be less effective for cardiac applications in 

adults, because homology-directed repair tends to be inefficient in nonproliferating cells 

such as cardiomyocytes [97,98].

6. Future directions and clinical implications

New approaches for heart remuscularization can be stratified according the mechanistic 

targets and time frame. The first strategy entails the use of pluripotent (PSC) derived 

cardiac cells aiming at repopulating the heart with new muscle cells that could engraft and 

improve its contractile function. Enhancing the maturity of PSC-derived cardiomyocytes 

before transplantation and gene-editing PSC lines to make them immune-evasive would be 

critical. The recognition that the molecular and cellular basis for progressive heart failure 

is the result of the inability of damaged and apoptotic cardiomyocytes to be replaced, the 

second strategy entails approaches targeting at a more direct remuscularization of the injured 

left ventricle by “turning back the clock” of cardiomyocyte cell cycle.

Because hiPSCs can be reprogrammed from the cells of each individual patient, the 

proportion of autologous hiPSC-CMs that are rejected by the patient’s immune system is 

likely to be minimal. However, the time required to reprogram and differentiate the cells 

precludes their use for treatment of acute conditions (e.g., AMI); thus, researchers have 

attempted to generate a line of “universal donor” hiPSCs by manipulating the expression 

of human leukocyte antigens and other immunomodulatory factors [99]. Furthermore, 

one of the primary concerns associated with cardiomyocyte transplantation is whether 

the cells adequately couple with the endogenous myocardial tissue to prevent arrhythmia. 

Strategies based on the proliferation of endogenous cardiomyocytes may partially alleviate 
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this concern, at least in theory, because coupling seems likely to be more extensive 

between daughter cardiomyocytes generated via the division of a parent cell than between 

endogenous and transplanted cardiomyocytes. However, although viral-mediated miR-199a 

overexpression promoted myocardial recovery and regeneration in infarcted pig hearts, most 

of the animals subsequently died of arrhythmia, perhaps because persistent and uncontrolled 

overexpression of miR-199a led to the appearance of proliferating cells with an incomplete 

cardiomyocyte phenotype [100]. Whether arrhythmogenic complications are specifically 

associated with miR-199a, or could be mitigated by reducing the magnitude of miR-199a 

overexpression, has yet to be determined. Nevertheless, these observations demonstrate 

that the duration of therapeutically induced cardiomyocyte proliferation must be tightly 

controlled, and that techniques for improving the development and maturation of newly 

generated cardiomyocytes may be necessary to ensure patient safety.

Viral-mediated gene delivery is perhaps the most straightforward method for manipulating 

the expression of molecules that regulate cardiomyocyte proliferation, but it is also 

associated with concerns of genomic integration, so mRNA transfection is generally 

considered a safer alternative. However, mRNA is both unstable, because it is cleaved by 

RNase, and potentially immunogenic, because it can be recognized by Toll-like receptors 

(TLR). Thus, studies with synthetically modified RNA (modRNA), in which the uridine 

residues are replaced by pseudouridine, are becoming increasingly common, because 

modRNA remains transcriptionally active and resists both RNase degradation and TLR 

recognition [101]. Notably, the cardiomyocyte-specific delivery of modRNA coding for the 

glycolytic enzyme pyruvate kinase muscle isoenzyme 2 (Pkm2) appeared to activate the 

cell cycle in cardiomyocytes by interacting with β-catenin, which subsequently induced 

CycD1 and C-Myc expression, and by upregulating the pentose phosphate pathway, which 

reduced the production of reactive oxygen species and DNA-damage–induced cell cycle 

arrest [102]. Taken together, data from these preclinical studies suggested that reactivation 

of cardiomyocyte cell cycle via gene therapy or pharmacological treatment is promising for 

myocardial repair post injuries. Developing new cardiac specific drug/gene delivery system 

is warranted in the future to enhance the efficacy and reduce the off-target effects of these 

treatments.

7. Summary

The proliferative capacity of cardiomyocytes in adult mammalian hearts is far too low to 

replace the cells lost to cardiac injury or disease. However, a series of recent studies have 

shown that cell cycle activity persists in cardiomyocytes for a short period after birth, and 

that the time window for cardiac regeneration increases when myocardial injury occurs 

on P1. Collectively, these observations suggest that adult cardiomyocytes may retain some 

latent proliferative capacity that could be re-activated to promote the growth of endogenous 

contractile tissue. Ongoing investigations of the mechanisms that drive the injury-induced 

preservation of cardiomyocyte cell cycle activity could identify new therapeutic targets for 

improving the effectiveness of regenerative myocardial therapy.
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Fig. 1. Approaches to remuscularize the myocardial infarct.
1) The left ventricular (LV) injuries such as apical resection on postnatal day 1 (P1) 

mammals result in activation of CM cell cycle; 2) using small molecules to target CM 

cell cycle regulators for promoting cell proliferation; and 3) Using MHC-driven CCND2 

overexpression to promote proliferation of engrafted CMs.
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Fig. 2. Left ventricular (LV) Injury on postnatal day 1 (P1) pig heart prolongs the window for 
CMs cell-cycle, which in turn, results in remuscularization of LV infarcts.
Apical resection performed on P1 piglet results in disruption of the cardiomyocytes exit cell 

cycle, which in turn, enables the remuscularization of acute myocardial infarction secondary 

to left anterior descending artery (LAD) ligation on P28.
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