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ABSTRACT

A number of studies have shown that transcrip-
tome analysis in terms of chromosomal location
can reveal regions of non-random transcriptional
activity within the genome. Genomic clusters of dif-
ferentially expressed genes can identify genomic
patterns of structural organization, underlying copy
number variations or long-range epigenetic regula-
tion such as X-chromosome inactivation. Here
we apply an integrative bioinformatics analysis
to a collection of 315 freely available mouse pluripo-
tent stem cell samples to discover transcriptional
clusters in the genome. We show that over half of
the analysed samples (56.83%) carry whole or
partial-chromosome spanning clusters which recur
in genomic regions previously implicated in chromo-
somal imbalances. Strikingly, we found that the
presence of such large-clusters is linked to the
differential expression of a limited number of
genes, common to all samples carrying clusters
irrespectively of the chromosome where the
cluster is found. We have used these genes to
train and test classification models that can
predict samples that carry large-scale clusters on
any chromosome with over 90% accuracy. Our
findings suggest that there is a common down-
stream activation in these cells that affects a
limited number of nodes. We propose that this
effect is linked to selective advantage and identify
potential driver genes.

INTRODUCTION

Approaches that take into account the chromosomal
mapping of transcriptional data have been used in the
past for the identification of general structural genomic
features such as the regional clustering of ‘housekeeping’
genes (1) as well as transgenic insertions within cell lines
(2), gross aneuploidy (3,4) and subtle chromosomal

patterns around translocation breakpoints (5). Non-
random changes in the expression levels of specific
genomic regions can also be linked to the perturbation
of normal epigenetic regulation, such as X-chromosome
inactivation, or long-range epigenetic silencing in cancer
(6,7).
Especially in the field of cancer biology, where karyo-

typic abnormalities are prevalent, a number of studies
have described the quantitative relationship between
copy number (CN) and gene expression which affects a
great percentage of the genes in the aberrant regions
(3,4,8,9). The widespread genomic instability in various
cancer types can be a challenge for the researcher as it is
often not possible to decipher which aberrations contrib-
ute to cancer growth and which are the downstream effect
of a compromised genomic stability. As a result, the
combined analysis of large collections of transcriptional
and genomic data from microarray platforms has been
thus far a common approach for discovering new onco-
genes or tumour suppressors and distinguishing them
from the functionally unrelated bystanders (10).
However, for the majority of published pluripotent

stem cell experiments, large-scale integrated analysis of
combined genomic and transcriptional data from a
single sample is unattainable due to lack of available
datasets. This is especially the case for model organisms
besides human. For mouse pluripotent stem cells, for
example, there is not a single large-scale study to-date
that performs comparative analysis between genomic
and transcriptional data. Two recent studies in human
pluripotent stem cells have used gene expression data to
identify patterns of chromosomal aberrations in embry-
onic stem cells (ESCs), induced pluripotent stem cells
(iPSCs) and other multipotent cell types (11,12). These
studies used a limited percentage of available array com-
parative genomic hybridization (aCGH) and single-nu-
cleotide polymorphism (SNP) arrays to validate the
observed patterns and extended the analysis to samples
with no corresponding genomic data. This approach
shows that by departing from the paradigm of the
combined analysis, the interrogation of the large collec-
tion of readily available transcriptional data becomes
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possible. In addition, positional transcriptome analysis
simultaneously informs on three different layers of infor-
mation: genomic content, epigenome and transcriptional
regulation.
In mouse ESCs, small clusters of differentially expressed

(DE) genes have been identified around the pluripotency
markerNanog locus as a result of complex epigenetic regu-
lation during development (13) and at the imprinted
Dlk1-Dio3 gene cluster during reprogramming due to epi-
genetic silencing (14). Moreover, recurring chromosomal
aberrations have been primarily mapped to chromosomes
8 and 11 in mouse ESCs (15–17) and chromosome 8 and
14 in mouse iPSCs (18). Interestingly, frequent genomic
alterations have been also reported in human ESCs,
mapping primarily to chromosomes 12, 17 and X
(19–22). Recently, it has been shown that human iPSCs
also demonstrate compromised genomic integrity which is
especially evident during the process of reprogramming
(11,23–25). It has been suggested that specific aneuploidies
tend to recur because of their ability to confer growth
advantage and/or resistance to apoptosis and differenti-
ation (26). When such aneuploidies are present in a
rapidly dividing self-renewing cell in a selective environ-
ment, the affected cells can potentially outgrow normal
cells and eventually dominate the cell populations.
Consistent with this hypothesis, mouse ESCs with a
trisomy 8 have been found to outgrow normal cells with
a diploid karyotype in competitive cultures (15).
Given the above mentioned evidence for positional

transcriptional patterns in mouse pluripotent stem cells,
we sought to investigate the chromosomal mapping of
recurrent clusters of DE genes by analysing a large collec-
tion of samples. We hypothesise that, regardless of their
molecular origins, recurrent clusters in multiple pluripo-
tent stem cell populations are likely to be the result of
positive selection. We used an integrative bioinformatics
approach to identify candidate genes that may be driving
the selection that has been previously associated with the
presence of such patterns. Our findings provide evidence
for a recurring set of DE genes in samples that contain
large-scale clusters, independently of the genomic location
of the clusters, and suggest a common downstream mech-
anism which may be associated with selective growth
advantage.

METHODS

Data collection and processing

For the initial analysis phase, we have collected 481 public
domain gene expression samples (373 ESC and 108 iPSC
samples from 64 experimental designs) for the Affymetrix
GeneChip Mouse Genome 430 2.0 Array from the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih
.gov/geo) and ArrayExpress (http://www.ebi.ac.uk/array-
express) public databases (see Figure 1A, Supplementary
Table S1). The raw CEL files obtained were normalized
using the Robust Multiple-Array Average (RMA) (27)
and Present/Absent flags were extracted by the MAS5.0
algorithm (28), both methods from the ‘affy’ package of

Figure 1. The integrative analysis workflow. (A) Collection and global
normalization of 481 publicly available samples. (B) Pearson’s correl-
ation derived distance matrix and agglomerative hierarchical clustering
with average linkage of the normalized data. (C) PGE analysis with
MultiLevel Otsu thresholding for identification of recurrent aberrant
localized expression across the dendrogram. (D) Catalogue of recurrent
DE clusters. Filtering of samples according to the expression of
pluripotency and lineage-specific markers resulting to the Nanog-high
subgroup of 315 pluripotent samples. Identification of DE genes
between the Nanog-high Normal versus Variant group, the Normal-
Chr8 versus Variant-Chr8 groups and the Normal-Chr11 versus
Variant-Chr11 groups. (E) Training and testing of classification
models using PAM and SVMs for the prediction of Variant samples.
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the Bioconductor suite (http://www.bioconductor.org/)
in the R statistical environment (29).

Hierarchical clustering of samples

In order to obtain a measure of similarity between samples
and subsequently groups of samples, we have performed
agglomerative hierarchical clustering with average linkage,
using a distance matrix based on the Pearson’s correlation
of the samples (Figure 1B). Large data collections, such as
the one analysed in this manuscript, may present vari-
ations due to differences in RNA quality or hybridization
processing, culture conditions or experimental treatments
between different labs (30). In order to account for this
complexity, we designed an iterative strategy where each
sample (or group of samples after the leaf nodes of the
dendrogram) is compared with the sample (or group of
samples) with the most correlated transcriptome available
in the matrix in a branch-wise manner, according to the
dendrogram obtained from the hierarchical clustering
(Figure 1C). This approach can reveal the unique subtle
changes of each sample that differentiate it from its most
similar neighbour. It therefore deviates from previous
methodologies in that it avoids the use of a globally
averaged profile as a definition of a ‘normal’ stem cell
state to represent complex stem cell expression patterns
(11,12).

Identification of DE clusters

In order to identify clusters of DE genes, we have con-
sidered all the probesets for which genome mapping an-
notation was available (43 109 probesets in total).
Multiple probesets for a single gene were replaced with
their median value resulting in 26 524 probesets. For
each comparison in the dendrogram, we estimated
suitable fold change (FC) cut-off values for differential
expression by applying a novel approach, the MultiLevel
Otsu method used in image processing (31). The average
cut-offs used across the dendrogram were >1.56 FC for
over-expressed genes and <0.66 FC for under-expressed.
In addition, for each comparison, we filtered out probesets
which were absent in more than 50% of the samples in the
comparison. Next, we used the Positional Gene
Enrichment (PGE) algorithm (32) to identify clusters of
DE genes (Figure 1C). Briefly, PGE uses an adaptive
genomic window approach to identify chromosomal
regions that are over-represented in user provided gene
lists. We have implemented the PGE algorithm in Java
and run the method with the lists of all up-regulated and
all down-regulated genes from the previous step. We used
the rank position of each probeset on the chromosome
instead of its physical coordinates in order to minimize
regional biases due to gene-dense regions or gene
deserts. For each comparison of samples, the PGE algo-
rithm corrects the P-value of the discovered clusters for
multiple testing using the False Discovery Rate (FDR)
(33). We filtered out clusters with an adjusted P-
value� 0.01. To additionally assess the statistical signifi-
cance of the predicted clusters across the whole dendro-
gram, we calculated an empirical FDR based on
randomization by generating 1000 permutations of

randomized genomic mappings of the FC values,
keeping the dendrogram topography constant. Finally,
once the specific chromosomal clusters were discovered,
the global trimmed mean of each gene was used to
predict the type of cluster, i.e. up- or down-regulation
(the 0.05% of outlier expression values per gene was dis-
carded). The final list of clusters was filtered for an
adjusted P-value< 1.0E-4 and cluster size of at least 10
DE genes (Figure 2).

Visual inspection and validation

We visually inspected the chromosomal clusters by
plotting the rank position of each gene across the chromo-
somes using Di.S.C.O. (Discovery of Subtle Clust-
ered Organization), a custom-developed software tool
(Skylaki et al., in preparation). Expression levels were pre-
sented by a colour gradient defined by the MultiLevel
Otsu-derived thresholds, whereas each gene was repre-
sented by the median value of all its corresponding
probesets (see Supplementary Figure S1).

Selection of pluripotent ESCs and iPSCs samples
based on markers expression

To distinguish between mouse ESCs, iPSCs and their
differentiating or partially reprogrammed counterparts,
we examined the available sample annotation and the
expression of hallmark pluripotency genes such as
Nanog (34,35), as well as a range of differentiation
markers (Figure 1D). It can be hypothesized that the
high expression of pluripotency markers in combination
with low expression of lineage-specific genes reflects cell
populations rich in pluripotent stem cells. This filtering
step was essential in order to focus on transcriptional
changes that are specific in pluripotent stem cells and
not the obvious result of cell mixtures in different stages
of differentiation or reprogramming. The resulting subset
of 315 homogeneous pluripotent populations (272 ESC
and 43 iPSC samples), from here on referred to as
Nanog-high samples, was used at the final stage of the
analysis for the identification of recurring DE genes in
samples that carry DE clusters as well as the training
and testing of classification models as presented hereafter.

Differential gene expression analysis

As mentioned previously, we were specifically interested in
analysing the positional transcriptional patterns of the
Nanog-high subgroup which more closely represents the
pluripotent state. In addition, we focused on whole- or
partial-chromosome spanning clusters which are likely to
reflect underlying aneuploidies since co-regulation of large
genomic regions is not commonly observed as a result of
transcriptional regulation. The 315 Nanog-high samples
were divided in two groups: the group termed as
Normal consists of samples where no large-scale DE
clusters could be identified in the genome, whereas the
group termed as Variant comprises of samples that bear
large-scale chromosomal clusters of DE genes in at least
one chromosome.
In order to determine whether there is a distinct tran-

scriptional signature that can be associated with the
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presence of such large DE clusters in the Nanog-high
Variant group, we performed differential expression
analysis using a two-class Significance Analysis of
Microarrays (SAMs) (36) (Figure 1D). The analysis was
performed using the ‘samr’ package in R (500 permuta-
tions, FDR=0.05). From this stage onwards, all
probesets were considered and no replacement was per-
formed, in order to account for the unique behaviour of
each probeset which may represent alternative splicing or
polyadenylation events. We compared (i) Normal versus
Variant samples; (ii) samples with chromosome-8 specific
patterns (Variant-Chr8) versus all other samples
(Normal-Chr8); and (iii) samples with chromosome-11
specific patterns (Variant-Chr11) versus all other samples
(Normal-Chr11). The Normal-Chr8 and –Chr11 groups
also contained the rest of the samples that had DE

clusters in any other chromosomes, besides 8 and 11
respectively. The lists of DE genes per comparison are
presented in Supplementary Tables S2–S4 (with FC� 1.5
and adjusted P-value< 0.05). Chromosomes 8 and 11
were specifically chosen for this analysis because they
are the chromosomes most frequently affected by aneu-
ploidy and, in fact, 70% of the predicted Variant samples
carry whole or partial-chromosome spanning clusters on
at least one of these two chromosomes (see ‘Results’
section).

Classification

To investigate whether the set of DE genes common in
samples that carry large DE clusters on any chromosome
and in samples that carry chromosome-8 and -11 specific
clusters can be predictive of the presence of such clusters,

Figure 2. The circular karyotype of all predicted significantly over-expressed (red) and under-expressed (blue) DE clusters in the matrix and the
genes that are DE between predicted Normal and Variant samples (red for up-regulated genes and blue for down-regulated). Larger effects observed
in chromosomes 8, 11, 14 and X. For an example of the enhanced detection power of the approach, see also Supplementary Figure S1. For detailed
description of the samples included in the analysis, see Supplementary Table S1.

e153 Nucleic Acids Research, 2012, Vol. 40, No. 19 PAGE 4 OF 10

http://nar.oxfordjournals.org/cgi/content/full/gks663/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks663/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks663/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks663/DC1


we employed two well-established classification tech-
niques: Prediction Analysis of Microarrays (PAMs) (37)
and Support Vector Machines (SVMs) (38,39)
(Figure 1E). PAM uses a nearest shrunken centroid
approach to identify the genes that best separate
between classes. We used the ‘pamr’ package in R (40).
For the linear SVMs we used the ‘e1071’ package in R
(41). Briefly, SVMs map the input data onto a
high-dimensional space, where classification can be
achieved by defining a hyperplane that separates the
data points of the two classes. For the construction of
the SVM classifiers, we used a subset of 187 samples and
37 samples for training and validation, respectively. After
selecting the best scoring classifier, we merged the training
and validation subsets to train the classifiers again and
obtain the final accuracy score on a test dataset of 91
entirely independent samples (the remainder of the
complete data collection). Our decision was based on
accuracy and F1 score, defined as follows:

Accuracy ¼ ðTP+TNÞ=ðTP+TN+FP+FNÞ,

Precision ¼ TP=ðTP+FPÞ,

Recall ¼ TP=ðTP+FNÞ,

F1score ¼ 2� ðPrecision�RecallÞ=ðPrecision+RecallÞ

where TP=True Positive, TN=True Negative,
FP=False Positive and FN=False Negative.

For the chromosome-specific classifiers, we additionally
accounted for differences in the number of input samples
per class by adjusting the weight parameters of the SVM
to be proportional to the number of samples in each class.

The Recursive Feature Elimination (RFE) method (42)
was applied to linear SVMs to obtain small subsets of
predictive genes.

GO analysis

Gene ontology (GO) enrichment (GOTERM_BP_5)
was calculated using the DAVID functional annotation
bioinformatics tool (43,44). For the GO analysis
only probesets with FC> 1.5 and Q-value< 0.05 (from
SAM) were considered. Enrichment significance was
limited to a very stringent Benjamini–Hochberg adjusted
P-value< 0.01.

RESULTS

A catalogue of DE clusters in mouse ESCs and iPSCs

The PGE analysis performed across the dendrogram
generated a large set of DE clusters (Figure 2). The most
prevalent recurring intervals that we have observed map
to chromosomes 6, 8, 11, 14 and most commonly in
chromosome X (Figure 2). It is plausible that a percentage
of the observed clusters on chromosome X correspond to
varying states of X chromosome inactivation (XCI),
whereas others to DNA CN alterations. However, it
should be noted that in mouse ESCs, all lines for which
sample annotation was available (�70%) were annotated
as male. Interestingly, 75.43% of the identified clusters
are up-regulated, which implies that amplifications or

activation events are much more frequent than deletions
or coordinated down-regulation. A strikingly similar per-
centage of copy number variations (CNVs) in human
ESCs have been reported to correspond to amplifications
(72%) (45).
Focusing on the subgroup of the 315 Nanog-high

samples (Figure 3A and B), we could identify whole or
partial-chromosome spanning clusters in 179 samples,
56.83% of the group. We further validated these clusters
by plotting the gene expression levels on the chromo-
somes (see ‘Methods’ section and Supplementary Figure
S1). Large expression domains are good predictors of
underlying aneuploidy. The percentage of samples that
carry such large-scale clusters of DE genes in the
Nanog-low subset is much lower (30%, Figure 3A) than
the one in the Nanog-high subgroup (56.83%). This dif-
ference may reflect differences in the frequency of pluripo-
tent cells in cultures or the inability to detect these subtle
signatures in mixtures of differentiating cells such as the
ones in the Nanog-low group. These findings are consist-
ent with previous cytogenetic studies in mouse pluripo-
tent stem cells which also highlight recurrent changes of
chromosome 8, 11 and 14 (Figure 3C) (15,17,18). Our
method additionally identified a high number of clusters
in chromosomes 6 and X and frequently recurring pairs of
large chromosomal clusters which tend to appear
across many different experiments. The latter include
clusters on chromosomes 8 and 11 (hypergeometric,
P-value=0.001), chromosomes 8 and 14 (hyperg-
eometric, P-value=3.20E-06), chromosomes 11 and 6
(hypergeometric, P-value=0.019) and chromosomes 14
and 17 (hypergeometric, P-value=4.00E-11). A detailed
breakdown of the specific percentages of predicted clusters
per chromosome for the Nanog-high subgroup is pre-
sented in Figure 3E.
Finally, a comparison between ESC and iPSC-specific

clusters on the autosomes revealed that in both cases
more than half of the samples carry at least one large-scale
chromosomal cluster (58% of samples for ESCs and 51%
for iPSCs) (Supplementary Figure S2). Interestingly,
chromosome 11 patterns are mostly present in ESCs. In
iPSCs, the chromosome X changes, which are predicted
gains or up-regulations, could reflect differences between
male and female lines such as different states of XCI.
Unfortunately, we were unable to obtain the annotation
for the sex of the line for the majority of iPSC samples
studies and thus, sex chromosomes have been excluded
from further analysis.

Recurring DE genes in samples carrying large DE clusters

The SAM analysis performed between Nanog-high
Normal and Variant groups, Normal-Chr8 and Variant-
Chr8 groups and Normal-Chr11 and Variant-Chr11
groups revealed sets of DE genes for each comparison
(see Supplementary Tables S2–S4). A heatmap represen-
tation of the top 50 DE genes from each comparison is
presented in Figure 4A–C.
The presence of a recurring set of DE genes across all

Variant samples suggests that there is a common down-
stream effect in these samples independent of the genomic
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location of the DE cluster they carry. Importantly,
the identified DE genes are not necessarily members of
the identified clusters. We hypothesize that these cells
operate under a positive selection mechanism the down-
stream consequences of which manifest at the transcrip-
tional level despite their different types of DE clusters. The
top up-regulated list (Table 1) is typified by genes linked to
pluripotency, genomic integrity and cell cycle. An example
of this type of gene is Pramel7 that has been recently
reported to promote self-renewal in the absence of exogen-
ous LIF in mouse ESCs (48). Other interesting examples
of differentially over-expressed genes are Crxos1, a
homeoprotein that has been shown to play a dual role in
self-renewal and differentiation (49), the non-homologous
end-joining repair gene Lig4 (50), the genome mainten-
ance regulator Zscan4 (51) as well as the cell-growth
modulator Lin28 (52). The function of these genes is con-
sistent with the properties of genes expected to drive
positive selection in competitive cultures.

Classification of samples carrying large DE clusters

Given the high percentage of samples in our analysis that
carries large DE clusters and the presence of distinct set of
DE genes in these samples, we investigated the prediction
power of these sets by training classification models using
PAM and SVMs. The results are presented in Table 2.
In all three case studies, that is Variant (any type of
cluster), Variant-Chr8 and Variant-Chr11, we achieved
predictive accuracy higher than 80% using linear SVM
classifiers with just a limited number of DE genes.

Remarkably, by applying the RFE method, we could
identify small subsets of candidate genes that demonstrate
a high class prediction power. For the Variant set, the top
50 genes are sufficient to predict the presence of DE
clusters with an accuracy of 91%. In the case of chro-
mosome-specific SVMs it was possible to narrow our se-
lection down to the top 10 ranked genes while still
maintaining a high accuracy (over 80%). The top 10
up-regulated genes in the Variant-Chr8 group include the
anti-apoptotic Bag4 as well as Lsm1, both described as
breast cancer oncogenes in the 8p11-p12 recurrent
amplicon in human. BAG4 and LSM1, in combination
with C8ORF4, influence growth factor independence and
anchorage-independent growth of MCF10A breast cancer
cells (53). Interestingly, a recent study has implicated
another anti-apoptotic gene, BCL2L1, in conferring
growth advantage to human pluripotent cells carrying
the 20q11.21 amplicon (54). The Bag4 and Bcl-2 anti-
apoptotic protein families interact to regulate cell
survival (55). The up-regulation of different members of
the anti-apoptotic pathways in both mouse (present study)
and human (54) may indicate the existence of a common
reserved path towards selective growth in both organisms.

Finally, a selection of solely non-chromosome
8 mapped genes could still be used to train the classifier
for chromosome 8 clusters with up to 71% accuracy
(Table 2). This result suggests that there is a non-
chromosome 8-specific program that is affected by the
presence of the DE cluster on chromosome 8, further sup-
porting the evidence for a secondary mechanism inde-
pendent of the chromosomal location of the clusters.

Figure 3. Description of the large-scale chromosome spanning DE clusters in the Nanog-high subgroup. (A) Percentages of Variant and Normal
samples in the differentiating or partially reprogrammed Nanog-low group of samples (n=166). (B) Percentages of Variant and Normal samples in
the Nanog-high pluripotent group of samples (n=315). The downstream analysis was focused on this subgroup of 315 samples. (C) Comparison of
the frequencies of predicted abnormalities per chromosome in the present study and two independent cytogenetic studies of mouse ESCs (15,17). (D)
Venn-diagram representing the co-occurrence of large DE clusters between chromosomes 6, 8, 11 and 14. Figure constructed in Venny (46). (E)
Breakdown of percentages for the aberrant chromosomes and the associated aberrant chromosome pairs. For a detailed comparison between mouse
ESCs and iPSCs, see also Supplementary Figure S2.
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DISCUSSION

In summary, we have used a sensitive integrative method
to analyse the transcriptome of the largest collection
to-date of mouse ESCs and iPSCs samples. We were

able to quantify the number of samples that carry a
large-scale cluster of genes with concordant changes in
expression levels and assign the greatest percentage of
these intervals to chromosomes 8 and 11. These findings

Figure 4. Heatmap representation of the top 50 genes generated from SAM analysis. The panel of the three core pluripotency genes (Nanog, Pou5f1
(Oct4) and Sox2) at the bottom of each heatmap demonstrates the independency of the large DE clusters from the core pluripotency program in the
stem cell populations. Figure constructed in GenePattern (47). (A) Heatmap of the global set where the Variant group consists of samples with any
type of large-scale DE cluster. (B) Heatmap of the chromosome 8-specific set where the Variant-Chr8 group consists of any sample with a chromo-
some 8-specific DE cluster. (C) Heatmap of the chromosome 11-specific set where the Variant-Chr11 group consists of any sample with a chromo-
some 11-specific DE cluster. For the SAM-derived lists of DE genes for each comparison, refer to Supplementary Tables S2–S4.

Table 1. Functional categories of the top 50 over- and under-expressed genes in the Variant feature set

Functional category Up-regulated genes (Variant) Down-regulated genes (Variant)

Cell cycle/growth Lin28, Ccnb1ip1, Dnajc2, Anapc10,Syce1 Grb10
Survival Pou4f2, Mras –
Protein metabolic process St8sia1, Anapc10, Dub1, Eif1a, Hck, Map2k6, Rpl39l, Eif2s2 Rps9
Genomic integrity Lig4, Zscan4 –
Cell death Plagl1, Map2k6, Xaf1 Serpinh1 (Hsp47), Cdh11, Cyr61 (Ccn1)
Stem cells Lin28, Mras, Pramel7, Crxos1, Zfp42 (Rex1) –
Cancer Ceacam1, St8sia1 Malat1, Fus
ECM – Bgn, Col1a1, Col1a2, Col3a1, Col5a2, Lox, Tnc, App
Other/unknown function Calcoco2, Xlr3, Xlr4, 100043292, Pramel6, AU015836,

LOC639910, LOC100038935, Spesp1, Hck, H19,Gsta3,
Glod5, Snrpn /// Snurf, 2200001I15Rik,Snhg3,
2410004A20Rik, Glrx, Cox7a1, St8sia1, Sec23ip, Zfp560,
Sdc4, 666185, Glrx, Gprc5b

Acta2, Thbs1, Mid1, Tagln, Fstl1, Atrx, Prss23, Ptprf,
Cd44, Cdk7, Hs6st2, Prtg, Pkdcc, LOC72520,
F630007L15Rik, Axl, Fstl1, Lpp, Meg3, Prtg,
Sox11, Ptgs2, A130040M12Rik

The top 50 up- and down-regulated genes (ranked by FC) in the Global feature set (which in total includes 128 over-expressed and 543
under-expressed genes). In bold: candidates with literature evidence that supports functional significance in ESC self-renewal.
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are consistent with cytogenetic studies reporting recurrent
aberrations on chromosomes 8 and 11 in murine ESC
populations (15,17). A subset of the smaller recurrent
intervals may be due to co-regulated functional gene
clusters as has been previously observed for the Nanog
locus in mouse ESCs (13), whose up-regulation was also
detected in our analysis. The prediction power of the
method and the large scale of the data analysis revealed
a complex pattern of genomic regions which are prone to
be concordantly DE, such as the chromosome pairs 8 and
11, 6 and 11, 8 and 14, and 14 and 17. Importantly, many
of the events identified here are likely to be of a functional
significance, since they have been repeatedly selected for in
culture.
Our analysis shows that in a set of 315 pluripotent

samples selected for high Nanog expression, 56.83%
carry large-scale clusters of DE genes. As large-scale
clusters of DE genes can be indicative of underlying
aneuploidies, we hypothesise that the majority of these
clusters, which overlap with previously reported hotspots
of aneuploidy, can in fact be the effect of acquired
chromosomal aberrations. The presence of such clusters
is not a universal characteristic of normal pluripotent stem
cells as the remaining 43.17% of the pluripotent samples
carry no such large-scale changes and still demonstrate
high expression of pluripotency markers. Therefore,
these clusters are not essential for the survival of pluripo-
tent stem cells under normal conditions but they rather
may contribute towards the dominance of the affected
cells in a selective culture environment, possibly through
the deregulation of a small set of driver genes. It should be
also noted that the majority of these clusters do not span
the Nanog locus. A recent study has indicated that the
occurrence of trisomy 12 in human iPSCs is a result of
the up-regulation of the NANOG-GDF3 cluster on
chromosome 12 (11). The authors proposed that this is a

likely mechanism for the driving the aneuploidy, since
over-expression of NANOG leads to enhanced self-
renewal. Such an effect may be possible in the presence
of NANOG-spanning clusters, however, in our data, there
is a great number of Nanog-high Variant samples,
irrespectively of the genomic position of the DE cluster
they carry. It is likely that a change that promotes cell
growth and/or blocks differentiation and apoptosis,
would be selected in a self-renewing, Nanog-positive cell
in culture in order to eventually dominate the entire cell
population. As a result, the generated mixture of cells will
show a bias towards self-renewing pluripotent state and
therefore carry markers of such cells including Nanog.

The comparison between Normal and Variant profiles
has revealed a set of DE genes highly connected to plu-
ripotency, cell cycle and apoptosis. It has been proposed
before that positive selection in culture can occur through
multiple mechanisms, in particular via cell cycle progres-
sion and deregulation of the p53 pathway or activation of
anti-apoptotic pathways (26). Prominent delegates of
these processes are present in the selected features
(Lin28, Mras, Pramel7, Crxos1, Rex1, Lig4 and Zscan4
among others). In addition, it is interesting to note that
in some aneuploid cells there is compensation for the
adverse effects of higher DNA CNs by modulating
pathways involved in balancing protein stoichiometry
such as ribosome biogenesis and protein degradation
(56). A similar effect is observed in the case of chromo-
some 8 clusters which demonstrate enrichment in the GO
categories related to RNA processing (Benjamini adjusted
P-value=2.23E-03).

Importantly, there is a recurring set of DE genes present
in Variant samples, irrespectively of the genomic mapping
of the cluster they carry. It is in fact possible to use this
limited number of genes to train highly accurate classifiers
in order to assess the transcriptional integrity of pluripo-
tent cultures. We speculatively suggest that the presence of
a recurring transcriptional signature indicates a down-
stream response mechanism that confers selective advan-
tage to the affected cells and can be detected by the
expression of a limited number of nodes. It could be add-
itionally used for the identification of core pathways that
can be subsequently targeted to develop anti-selective
culture conditions for aneuploidy. Such an approach has
been effectively applied in trisomic mouse embryonic
fibroblasts (MEFs) and human cancer cell lines with com-
pounds that are anti-selective for karyotypically abnormal
cells (57).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4 and Supplementary Figures
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Table 2. Performance of classifiers

Classifier Set Feature selection Accuracy F1 score

PAM Global None 0.82 0.88
PAM Global SAM All 0.87 0.90

SVM Variant None 0.86 0.89
SVM Global SAM All 0.92 0.94
SVM Global RFE_SVM Top 100 0.89 0.92
SVM Global RFE_SVM Top 50 0.91 0.94

SVM Global RFE_SVM Top 10 0.55 0.59
SVM Chr8 None 0.73 0.68
SVM Chr8 SAM All 0.80 0.78
SVM Chr8 RFE SVM Top 50 0.81 0.78

SVM Chr8 RFE SVM Top 10 0.80 0.79
SVM Chr8 RFE SVM - No Chr8 0.71 0.63
SVM Chr11 None 0.73 0.29
SVM Chr11 SAM All 0.93 0.79
SVM Chr11 RFE_SVM Top 50 0.95 0.81

SVM Chr11 RFE_SVM Top 10 0.90 0.61

Best performing classifiers (with bold we highlight the classifier trained
with the top 50 features in each set). Feature selection was performed
from the SAM output list by RFE. In the RFE SVM—No Chr8 feature
set, genes mapped to chromosome 8 were excluded from the
up-regulated list. Global: Normal and Variant, Chr8: Normal-Chr8
and Variant-Chr8, Chr11: Normal-Chr11 and Variant-Chr11.
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