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Purpose: To identify the genetic defect in a Chinese family with bilateral congenital cataract.
Methods: A three-generation family was recruited in this study. Detailed family history and clinical data were recorded.
Ten candidate genes were screened for causative mutations. Direct sequencing was performed to analyze the cosegregation
of the genotype with the disease phenotype.
Results: Affected individuals presented embryonal nuclear opacities in the lens. Sequencing of the candidate genes showed
a heterozygous c. 616T>A variation in the connexin 46 (Cx46) gene, which resulted in the replacement of a highly
conserved phenylalanine by isoleucine at codon 206 (p. F206I). This mutation co-segregated with all affected individuals
and was not observed in unaffected family members or ethnically matched controls.
Conclusions: We report a novel mutation (p.F206I) in the fourth transmembrane domain of connexin 46. These findings
thus expand the mutation spectrum of Cx46 in association with congenital cataract.

Congenital cataract is defined as any opacity of the lens,
which is present from birth and is responsible for
approximately one-tenth of worldwide childhood blindness
[1,2]. About one third of isolated congenital cataracts are
genetically determined. Autosomal dominant congenital
cataract (ADCC) is the most common mode of inheritance,
although autosomal recessive and X-linked inheritance are
also known to exist [3].

To date, more than 34 loci and 18 genes on different
chromosomes have been associated with isolated ADCC [2,
4]. Of the cataract mutations reported to date, about half have
mutations in crystallins, a quarter have mutations in
connexins, and the remainder is evenly divided between
intrinsic membrane proteins, intermediate filament proteins,
transcription factors and other genes [5]. Hansen et al. [6]
detected crystallin and connexin mutations in 35.7% (10/28)
and 21.4% (6/28) Danish families, respectively. Sun et al.
[7] detected mutations in 40% (10/25) Chinese families by
analyzing the 12 genes encoding crystallins and connexins.
Our previous study also identified β-crystalline mutations in
15% (3/20) Chinese families with congenital nuclear cataract
[8]. Therefore, the crystalline and connexin genes appear to
be the most common genes associated with congenital
cataract. It is appropriate to consider these genes as the top list
of candidate genes for screening studies in congenital
cataracts.
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In the present study, we screened the 8 crystalline and 2
connexin genes using the same strategy as described
previously [8]. A novel missense mutation in connexin 46
(Cx46) that co-segregated with the disease phenotype was
identified to be responsible for ADCC.

METHODS
Clinical evaluation and DNA specimens: A three-generation
family from Hebei province, China with autosomal dominant
nuclear cataract was identified. Both affected and unaffected
individuals underwent detailed ophthalmic examinations
including visual acuity, slit lamp examination,
ultrasonography, fundus examination, and intraocular
pressure measurement. The phenotypes were documented by
slit lamp photography. A total of 110 unrelated ethnically
matched controls with no family history of congenital
cataracts were also recruited. This study was conducted in
accordance with the tenets of the Declaration of Helsinki and
approved by the ethics committees for medical research at
Capital Medical University, Beijing, China. After informed
consents, peripheral venous blood of all participants was
collected and DNA was extracted using a QIAamp DNA kit
(Qiagen, Valencia, CA) according to the manufacturer’s
instructions. A 200 µl aliquot of blood sample was incubated
with QIAGEN protease and buffer AL at 56 °C for10 min.
The lysate was applied to a QIAamp spin column, and washed
twice with buffer AW and finally eluted with 200 µl of Buffer
AE.
Mutation analysis: Mutation screening was performed in 10
candidate genes: αA-crystallin (CRYAA; GenBank
NM_000394), αB-crystallin (CRYAB ;GenBank
NM_001885), βA1-crystallin (CRYBA1; GenBank
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NM_005208), βB1-crystallin (CRYBB1; GenBank
NM_001887), βB2-crystallin (CRYBB2; GenBank
NM_000496), γC-crystallin (CRYGC; GenBank
NM_020989), γD-crystallin (CRYGD; GenBank
NM_006891), γS-crystallin (CRYGS; GenBank
NM_017541), Connexin 46 (Cx46; GenBank NM_021954),
and Connexin 50 (Cx50; GenBank NM_005267). All coding
exons and splice sites of the candidate genes were amplified
by polymerase chain reactions (PCR) using previously
reported primer sequences (Table 1) [8]. PCR was performed
in a final volume of 25 μl containing 1× PCR buffer
(Invitrogen™ Life Technology, Carlsbad, CA), 1.5 mM
MgCl2, 0.2 mM of dNTP, 0.2 μM of each primers, 0.5 U of
Platinum® Taq DNA polymerase (Invitrogen). The PCR
products obtained from the proband and one unaffected
member were sequenced on an ABI3730 Automated
Sequencer (PE Biosystems, Foster City, CA). Direct
sequencing was also used to screen the mutation identified in
Cx46 on the sample of all available family members and 110
ethnically matched controls to confirm the mutation.

Bioinformatics analysis: The CLC Free Workbench 4.5.1
software (CLC bio, Aarhus, Denmark) was used to align the
protein sequences from several different species. The possible
impact of an amino acid substitution on the structure and
function of the protein was predicted by Polyphen-2.

RESULTS
Clinical findings: We identified a three-generation Chinese
family with autosomal dominant nuclear cataract (Figure 1).
In total 10 family members (5 affected and 5 unaffected)

participated in the study. The proband (III: 2) was 7 years old
and dignosed with bilateral nuclear cataract at the age of 4
years. The dense nuclear opacities were located in the
embryonal nucleus (Figure 2). According to the medical
records, the other affected individuals were diagnosed with
bilateral nuclear cataract and had cataract extraction
performed. There were no other ocular or systemic
abnormalities in this family.
Mutation analysis: Direct sequencing of the coding regions of
the candidate genes in the affected individuals identified a
novel heterozygous c. 616T>A variation in Cx46 (Figure 3),
which resulted in a substitution of phenylalanine to isoleucine
at codon 206 (p. F206I). The substitution was not found in any
of the unaffected family members or in the 110 unrelated
controls.
Bioinformatics analysis: The Phe at position 206 of human
connexin 46 was located within a phylogenetically conserved
region by multiple-sequence alignment (Figure 4). The p.
F206I was predicted to be “probably damaging” by
Polyphen-2 analysis with a score of 1.000.

DISCUSSION
In this study, we identified a novel mutation (c. 616T>A) in
Cx46 associated with congenital cataract in a Chinese family.
This variation seemed to be disease causative as it segregated
completely with the disease phenotype and was absent in
unaffected individuals in this family and in the 110 unrelated
ethnically matched controls.

Cx46 consists of a single exon encoding a 435 amino acid
protein in humans which is essential for maintaining lens

Figure 1. Pedigree of a cataract family.
Pedigree of a three-generation family
with congenital cataract. The black
arrow indicates the proband. The
asterisk indicates family members who
attend this study.
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transparency. Connexins are a family of structurally-related
transmembrane proteins that assemble to form gap junctions,
which are used to transport metabolites, ions and water in the
lens [9]. All connexins have four transmembrane domains
(M1, M2, M3, and M4), two extracellular loops (E1 and E2),
and three intracellular regions (the NH2-terminus, a
cytoplasmic loop and COOH-terminus) [10]. Six connexin
protein subunits oligomerize to form one hemichannel. The c.
616T>A substitution observed in the present study results in
the replacement of phenylalanine to isoleucine at codon 206
(p. F206I), localized in the fourth transmembrane domain
(M4) of the connexin 46. To our knowledge, this is the first
identified mutation that lies in the M4 domain of the connexin
46 associated with congenital cataract.

The F206 residue of connexin 46 is phylogenetically
conserved in different species, and Polyphen-2 showed that
the p. F206I mutation in connexin 46 is likely to be damaging.
These data indicate that the phenylalanine is likely to be
functionally important and that the mutation may have a
detrimental physiologic effect. The transmembrane domains
of the connexins are proposed to participate in the
oligomerization into hemichannels and are also important for
the correct transport of the protein into the plasma membrane
[11]. It has been showed that residues in the first
transmembrane domain of connexin 46 are essential for the
formation of the pore lining and channel permeability [12]. In
addition, the p. C202F mutation in Cx26, which lies in the
fourth transmembrane domain of connexin 26, has been
reported in association with isolated autosomal dominant

hearing impairment, and the authors hypothesize that the
mutation may impair the connexin oligomerisation [13].
Given the p. F206I mutation affects the fourth transmembrane
domain, we speculate that like other dominantly transmitted
mutations in connexins, the p.F206I mutation may disturb the
interaction between the M4 domain of one mutant connexin
46 and the M2 domain of the neighboring connexin, thus
resulting in the formation of a non-functional channel. Further
functional expression studies will be required to elucidate the
precise pathogenic mechanisms that link Cx46 mutations with
congenital cataract.

In the animal model study, the targeted replacement of
connexin 50 (Cx50) with the connexin 46 coding region in
mice demonstrates that Cx50 is required for cell growth
whereas Cx46 provides nonspecific restoration of
intercellular communication [14]. Mutations in Cx46 and
Cx50 have been demonstrated to be one of the common causes
for different types of congenital cataracts in humans [15].
Apart from the mutation p. F206I, at least 18 mutations in
Cx46 have been reported to be associated with congenital
cataract, which have recently been summarized by Zhang et
al. [16]. The phenotypes in most of the cases have been
described as pulverulent cataracts, either predominantly in the
nuclear or lamellar regions of the lens. The cataract phenotype
in the present family differs from these as no “pulverized”
dense embryonal opacities are showed in the lens. Chang et
al. [17] have found that mice with heterozygous and
homozygous Cx50 mutations display different types of
cataracts, such as nuclear cataracts, cortical cataracts or lens

Figure 2. Slit lamp photographs of the
proband. The photograph of the proband
(III: 2) shows nuclear opacities of the
lens involving embryonal nucleus.
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posterior rupture. Therefore, different types of cataracts may
be caused by altered intercellular communication mediated by
diverse gap junction channels consisting of mutant and wild-
type connexin subunits in the lens [18].

In summary, we describe a novel p. F206I mutation in
Cx46 associated with nuclear cataract of Chinese origin.
These findings further expand the genetic and phenotypic
heterogeneity of congenital cataract.
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