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Abstract: Rapid and accurate diagnosis of various biomarkers associated with medical conditions
including early detection of viruses and bacteria with highly sensitive biosensors is currently a
research priority. Aptamer is a chemically derived recognition molecule capable of detecting and
binding small molecules with high specificity and its fast preparation time, cost effectiveness, ease of
modification, stability at high temperature and pH are some of the advantages it has over traditional
detection methods such as High Performance Liquid Chromatography (HPLC), Enzyme-linked
Immunosorbent Assay (ELISA), Polymerase Chain Reaction (PCR). Higher sensitivity and selectivity
can further be achieved via coupling of aptamers with nanomaterials and these conjugates called “ap-
tasensors” are receiving greater attention in early diagnosis and therapy. This review will highlight
the selection protocol of aptamers based on Traditional Systematic Evolution of Ligands by EXpo-
nential enrichment (SELEX) and the various types of modified SELEX. We further identify both the
advantages and drawbacks associated with the modified version of SELEX. Furthermore, we describe
the current advances in aptasensor development and the quality of signal types, which are dependent
on surface area and other specific properties of the selected nanomaterials, are also reviewed.

Keywords: aptamer; gold nanoparticles; quantum dots; graphene; MoS2; carbon nanotubes; SELEX;
biomolecules; diagnosis; signal type; limit of detection

1. Introduction

Rapid detection of small molecules is of great importance in medical and diagnos-
tic fields, as this allows for early diagnosis of medical conditions. Traditional detection
methods such as high-performance liquid chromatography (HPLC) coupled with mass
spectrometry is time consuming and requires expensive equipment setup and prepara-
tion [1]. The multiplex immunoassay or capillary electrophoresis (CE) technique has the
advantage of being fast and highly sensitive but there are setbacks regarding that described
in [1]. One of the multiplex immunoassay techniques, enzyme-linked immunosorbent
assay (ELISA) is commonly used to detect two or more classes of chemical (antibodies and
antigens) simultaneously [2]. However, low antigenicity of small molecules has limited the
application of ELISA because antibodies are less sensitive to small molecules [1,3,4]. Other
types of biosensors such as surface plasmon resonance biosensor [5,6], polymerase chain
reaction (PCR) [7], electrochemical sensors [8] are time consuming because of complex
sample and blood culture preparations [9].

The search for alternative recognition molecules has seen aptamers gain prominence
due to their ability to detect and bind small molecules [3,10–12]. Aptamers, a suitable
alternative to antibodies, are chemically derived single stranded DNA (ssDNA) or RNA
(ssRNA) with a high capability of folding into secondary or tertiary structures making
them recognition molecules with high affinity and specificity to small molecules [1,11]. The
possibility of generating aptamers in vitro, which have been pre-matched against target
molecules using a synthetic library, have made them useful in early medical diagnosis. In

Nanomaterials 2021, 11, 932. https://doi.org/10.3390/nano11040932 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-2827-1761
https://doi.org/10.3390/nano11040932
https://doi.org/10.3390/nano11040932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11040932
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/4/932?type=check_update&version=1


Nanomaterials 2021, 11, 932 2 of 19

addition, they can be cost effectively synthesized in large quantities and high purity via
amplification of selected aptamers by polymerase chain reaction [11,13]. Moreover, the
ease of chemical modification of aptamers including their stability at high temperature and
pH can be utilized for optimized performance of various biosensor platforms (e.g., flow
cytometry, electrochemical sensors, fluorescence microscopy, surface plasmon resonance
sensor or lateral flow assays) [14,15]. All these advantages have made aptamers a more
robust biosensor than antibodies.

Research on aptamers has been on the increase, resulting in a steady rise in number
of publications from 2010–2021. The potential of aptamers as an alternative to antibodies
in medical diagnosis has been established by various studies [15,16] and with ease of
modification and stability, aptamers can be immobilized non-covalently to nanomaterials
to produce biosensors with high specificity and selectivity. As a standalone, nanomaterials
can be used as diagnostic devices due to their tunable physical, electrical and chemical
properties but their inability to detect small molecules and their non-selectivity towards
target biomolecule(s) has limited their adoption in medical diagnosis [17]. Conjugating
aptamers with nanomaterials to produce high selective/sensitive biosensors (aptasen-
sors) is now of great interest and importance in medical diagnostics and therapeutics
due to their unique properties such as biocompatibility, tunable selectivity, low immune
response [17]. Therefore, this review will focus mainly on improvement in aptamer se-
lection via Systematic Evolution of Ligands by EXponential enrichment (SELEX) and the
recent advances in fabricating aptamer–nanomaterial hybrids, and their applications as
biosensors in Point-Of-Care (POC) diagnostics.

2. Selection Protocol

Aptamers are randomly selected from the database of 1013-1016 single-stranded DNA
or RNA oligonucleotides using SELEX [11,18,19]. Figure 1a depicts the concept of in vitro
selection of aptamers based on SELEX. Oligonucleotides in the SELEX library typically
consist of 40~100 nucleotides, which harbor a random region in the middle and fixed
sequences on both ends. Subsequently, the target-binding oligonucleotides are separated
from the unbound ones. The bound DNA oligomers are then eluted and amplified by PCR.
After several rounds of selection, the resulting DNA sequences (aptamers) with high affinity
and specificity are enriched in the pool and sequenced. However, the selection protocol
usually requires about 10–15 cycles which could take weeks to actualize the selection
process [11,20]. In a bid to circumvent the duration of obtaining aptamers using SELEX,
researchers have developed several modified versions of SELEX with mixed success.
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Acoustophoresis technique was coupled with the traditional SELEX to obtain a
prostate-specific antigen (7 PSA) binding aptamer [21]. This group applied next-generation
sequencing (NGS) which helped in accelerating the identification of the screened ssDNA
pool, and after the eight cycle of the acoustophoretic SELEX, a 7 PSA binding ssDNA
aptamer was obtained and characterized with surface plasmon resonance (SPR) for affinity
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and specificity. The optimized PSA binding aptamer showed specific binding to PSA with a
dissociation constant Kd of 0.7 nM. Recently, acoustophoretic-modified aptamer microbeads
were employed for rapid separation and purification of Gram-negative bacteria (GN-B)
with some additional washing steps [22] The microbeads with a pore size of 10 µm coated
with aptamer had a high affinity for GN-B, and separation performance with high recovery
rate (~98%), high purity (~99%) and high volume rate (500 µL/min) made this method an
excellent choice in early diagnosis of bacterial infection [22].

Capillary electrophoresis–systematic evolution of ligands by exponential enrichment
(CE–SELEX) is primarily an electrophoretic mobility technique used for ion separation,
thus generating aptamers with a high specificity property and short selection rounds [23].
Yang and Bowser [24] applied the CE-SELEX method to select a catalytic DNA aptamer
which resulted in high-nanomolar to low-micromolar dissociation constants after only
three rounds of selection. The aptamer was selective towards a small-molecule target, N-
methyl mesoporphyrin (NMM), with a molecular weight of only 580 g/mol. An improved
CE-SELEX, fractional collection approach in CE-SELEX (FCE-SELEX) was developed by
Zhang’s group [25]. Their approach integrated fraction collection with a facile oil seal
method thus eliminating contamination, and this resulted in a single round selection of
amplified DNA–target complex, a streptavidin-binding aptamer (SBA).

Non-suitability and affinity of CE-SELEX for small molecules led to the development
of Cell-SELEX which utilizes live cells during the aptamer selection protocol. In a recent
study, a whole living cell was utilized as a target in Cell-SELEX selection, yielding ap-
tamers selected from membrane proteins in their indigenous configuration. More so, the
technique provides a protocol to purify and identify diagnostic cell-surface biomarkers [26].
However, this process is limited by high selection rounds (~15 rounds) and the occurrence
of non-specific interactions. In a bid to reduce the selection round and non-specificity,
Ray and White [27] devised a method where an additional selection pressure was applied
with RNAse to isolate surface-binding aptamers thus aiding selection of cell-internalizing
aptamers. After seven rounds of Cell-SELEX against human pancreatic cancer cell lines
(MiaPaCa-2), the selected pool of RNAs sequence were not specific for MiaPaCa-2 due to
the formation of a structural motif that binds strongly to the selected aptamer sequence.
The authors proposed removal of the structural motif sequence during Cell-SELEX in order
to improve specific binding of aptamers to their target molecules (cells).

Several other modified SELEX developed since 2015 to date are also presented in
Table 1.

Table 1. A short description of selected modified SELEX stating their key advantages and drawbacks.

Modified
SELEX Description of Modification Selection

Rounds Mean Kd (nM) Advantages Drawbacks Reference

Hi-Fidelity
SELEX

Hi-Fi SELEX utilized a
fixed-region blocking elements

to safeguard functional diversity
of the SELEX library. The
chemistry of aptamers is

engineered such that
non-specific retention of

aptamers is strongly inhibited
by modification of the

target-display surface and
composition of the equilibration

solvent. Integration of novel
qPCR into the Hi-Fi SELEX
workflow allowed for rapid
sequencing during selection

rounds.

3 selection
rounds. 107–108 ~2 and 20

Partition
efficiencies

approaching 106

are realized. High
potential value in
screening a small

amount of
retained aptamers

for putative
therapeutics.

High reagent
volume is

required to
sufficiently

amplify library
members

between each
selection round.

[28]
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Table 1. Cont.

Modified
SELEX Description of Modification Selection

Rounds Mean Kd (nM) Advantages Drawbacks Reference

HT-SELEX

High throughput sequencing
technology and bioinformatics
analysis coupled with SELEX

(HT-SELEX) assisted in
understanding the effect of

initial library and PCR methods
in the RNA aptamer

identification. The analysis
revealed that a distinct sequence

and nucleotide existed in the
initial, unselected libraries and
the fate of “biased sequences”
was target-dependent during

selection. Amplification by
either PCR-driven SELEX or

droplet digital PCR
(ddPCR)-driven SELEX did

result in molecular evolution,
during which highly enriched
aptamers were produced after

the 5th round of selection.

5–7 rounds

PCR-driven
SELEX = 65.2

ddPCR-driven
SELEX = 111.2

ddPCR-driven
selection allowed
preservation of

molecular
diversity and

chances of
obtaining highly

structural
sequences are

increased.

ddPCR requires
extra steps: (1)

droplet
generation, (2)

extraction of the
amplicon by

organic solvent.

[29]

Click
SELEX

A chemical modification of
nucleic acid libraries carried out

using copper-catalyzed
alkyne-azide cycloaddition
(CuAAC) or click chemistry

allowed for the introduction of a
wide range of possible

functionalities. The interaction
properties of the resultant DNA
aptamers are not accessible with
the cononical set of nucleotides.
The modified DNA is incubated
with the target molecule and the

best binding sequences are
recovered after subsequent

selection sequence. The
chemical modification is

removed during the
amplification process.

15 cycles, ~1
day for each

selection cycle
_

Relies only on
well-established

and commercially
available building

blocks. This
feature makes
click-SELEX
accessible to

many
laboratories, even

if in-house
synthesis is not

available.

The azide of
choice must be

stable under the
conditions used
for CuAAC and

during the
selection process;

in addition, it
must

quantitatively
react with the

alkyne-modified
DNA strand to

avoid non-
functionalized

nucleobases
during the

selection process.

[30]

Cell-SELEX

A differential binding
Cell-SELEX workflow that

adapts the FASTAptamer toolbox
and bioinformatics edgeR is
employed to achieve more

informative metrics about the
selection process. The

high-throughput (HT) aptamer
identification method is coupled
with the Cell-SELEX technique

to increase the aptamer selection
rate against live cells.

11 selection
cycles _

Shorter time for
aptamer

identification.
Selection of

aptamer
sequences that
can selectively

bind to the target
and control cells.

High round of
selection cycles,

at the 11th round,
aptamer’ binding
was non-specific.

[31]

3. Nanomaterials Based Aptamer Sensors as Diagnostic Tool

Aptamers are chemically derived single strands of either DNA or RNA oligonu-
cleotides that can be conjugated with various types of nanomaterials to produce POC
aptasensors capable of detecting small molecules or biomarkers. In the conjugated device,
the aptamer serves as a highly sensitive and selective recognition element while nano-
materials present high surface area and excellent optical, electrical and electrochemical
properties rendering them as suitable and highly sensitive transducers [32,33]. The signals
generated via the binding of small molecules by the aptasensors can be optical, colori-
metric, electrochemical, fluorescence, surface-enhanced Raman spectroscopy/scattering



Nanomaterials 2021, 11, 932 5 of 19

(SERS), surface plasmon resonance (SPR) signals [34,35] and these types of signals are
sometimes dependent on the nature and properties of the adjunct nanomaterials. Figure 1b
presents selected nanomaterials as transducers which are dependent on detection signal
type. Current research on application of nanomaterials as transducers in aptasensors and
their dependency on types of detection signal will be the focus of the next chapter and a
summary is provided in Table 2.

Table 2. Summary of aptasensors based on commonly used nanomaterials.

Aptasensor Signal Type Target Molecule Linear Range Detection Limit Reference

AuNPs-SEB aptamer Colorimetry Staphylococcal
enterotoxin B

50 µg/mL–
0.5 ng/mL 50 ng/mL [36]

AuNPs-IL-6 aptamer Colorimetry Interleukin-6 3.3–125 µg/mL 1.95 µg/mL [37]

AuNPs-thio/27-mer
aptamer Colorimetry Thrombin 5 pM–2 nM 5 pM [38]

AuNPs-[Ru(NH3)6]3+-
TBA2

aptamer
Electrochemical Thrombin 1 fM–6 pM 0.1429 fM [39]

CDS-
QDs/AuNPs/Tro6

aptamer
Electrochemiluminescence Cardiac troponin 1 1 fg/mL–

10 ng/mL 0.75 fg/mL [40]

CdS-
NCs/AuNPs/luminol

aptamer
Ratiometric ECL Thrombin - 500 fg/mL [41]

CDs/AS1411 aptamer Spectrofluorometry Cancer cells - ~100 cells/mL [42]

MoS2-NS aptamer Fluorescence PSA 0.2 ng/mL [43]

MoS2-
AuNPs/TiONBs/MC-

LR
aptamer

Electrochemical Microcystin-LR 0.005–30 nM 0.002 nM6 [44]

SWCNTs-PBASE
aptamer FET Capthepsin K 2.3 pM–0.23 nM - [45]

Graphene/SH-SAW
aptamer Surface Acoustic Wave Endotoxins 0–100 ng/mL 3.53 ng/mL [46]

GO/33-mer aptamer Fluorescence Theophylline 1–100 µM 0.155 µM [47]

rGO-PET/cTnT
aptamer Electrical Cardiac troponin T 0.001–10 ng/mL 1.2–1.7 pg/mL [48]

3.1. Aptamer–Gold Nanoparticle Aptasensors

A family of Gold Nanoparticles (AuNPs) can exist in multiple dimensions and, based
on shape, they can represent (i) one-dimensional (nanorods, nanowires, nanotubes, etc.); (ii)
two-dimensional (squares/rectangles, pentagons, stars, etc.) and, (iii) three-dimensional
(nanocubes, nanopiramids, nanospheres) materials. AuNPs have unique physical and
chemical properties, with their localized surface plasmon resonance (LSPR) property
providing colloids extinction coefficients (EC) greater than the EC of conventional dyes [49].
A distinct color in the visible spectrum could be observed when there is a change in the
dispersion–aggregation state of AuNPs [49,50], and the resultant nanoclusters of different
sizes respond differently to the wavelength of light scattering [51–53]. In addition, the color
change could also be due to a change in surface charge of AuNPs to neutral. Thus, in the
presence of a target analyte, a chemical interaction can occur with the particles (i.e., AuNPs)
leading to a change in color usually from red to blue [36,54] A schematic illustration of
dispersion and aggregation of functionalized gold nanoparticles after exposure to a target
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(small molecule) is shown in Figure 2a [36]. Taking advantage of this unique property of
AuNPs, aptasensors consisting of aptamer–AuNP conjugates can be constructed for rapid
detection of molecules of medical significance.

Figure 2. Application of aptamer-gold nanoparticles (AuNPs)/quantum dots (QDs)/carbon nan-
odots(CDs) conjugates in medical diagnosis. (a) Schematic representation of AuNPs function in
a colorimetric aptasensor. This image was adapted from Alsager et al. [36] with permission from
Nature. (b) Detection of interleukin-6 using a colorimetric aptasensor. Aptamers with two compli-
mentary IL-6 target moieties were coated on AuNPs and exposed to protein mixtures containing
IL-6. Aggregation of AuNPs, vis-a-vis color changes, occurred via Van der Waal binding of IL-6
with the aptamers sandwiched with the two complimentary IL-6 moieties. This image was adapted
from Giorgi-Coll et al. [37] with permission from Springer Nature. (c) Schematic representation of an
electrochemiluminescence (ECL) aptasensor based on conjugation of CdS QDs and cardiac troponin
aptamer (Tro6). This image was adapted from Kitte et al. [40] with permission from Elsevier. (d-i) The
sequence and secondary structure of C6-8 aptamer isolated using the Cell SELEX procedure. (d-ii)
Selection of C6-8 aptamer based on its affinity for multiple tumor cell lines as revealed by fluorescence
micrographs. Below: flow cytometry analysis revealing specific binding preference of C6-8 aptamer
to HepG2, MCF-7, H1299, and HeLa tumor cells. Inset: (d-iii) The binding affinity, as measured
by fluorescence microscopy, of aptamer to representative HeLa cell. (e-i) Confocal micrograph of
CDs–C6-8 aptamer targeting and binding tumor cells inside the nuclei. (e-ii,e-iii) images and graph
showing the CDs–C6-8 aptamer’s ability to inhibit proliferation of lung cancer cells, hepatocarcinoma
(GFP-HepG2), at each point time. Reprinted with permission from Elsevier [42].

A colorimetric assay of Staphylococcal Enterotoxin B (SEB) was adopted for aptamer–
AuNP conjugates and changes in color were observed by naked eyes or spectrometrically
with a linear response in the range of 50 µg/mL–0.5 ng/mL and a limit of detection (LOD) of
50 ng/mL [36]. Based on the discovery of colorimetric assay of aptamer–AuNP conjugates
in detection of small molecules, Giorgi-Coll et al. [37] used the colorimetric concept of
aptasensors to detect the immuno-signaling molecule interleukin-6 (IL-6), a diagnostic
marker of meningitis (Figure 2b). Two complimentary aptamers with each different IL-6
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target moiety were conjugated with AuNPs and upon introduction into mixed protein
solution with IL-6 molecules, binding of IL-6 to the complimentary strands occurs leaving
AuNPs to aggregate. The aggregation of nanoparticles caused a visible color change from
red to blue and a change in absorption maximum from 520 to 540 nm was also observed.
They further reported the sensitivity of the aptasensor in the range of 3.3–125 µg/mL
with an LOD of 1.95 µg/mL. Peng et al. [38] also developed a colorimetric aptasensor
capable of detecting thrombin, an endoprotease responsible for blood clotting. When the
thiol-modified 27-mer DNA oligonucleotides (anti-thrombin aptamer) were conjugated
with AuNPs, detection of thrombin molecule occurred, albeit at a higher concentration,
via aggregation of aptamer–AuNP complexes. Binding of thrombin molecules to aptamer–
AuNP complexes led to visible color change from red to blue, even at a low concentration
of 5 pM (1.679 ng/mL) and the intensity is predicated by distance-dependent optical
properties of AuNPs.

The concentration dependence of colorimetric aptasensors (Apt–AuNP conjugates) has
limited their utilization in early detection of biomarkers. For example, Peng and co-workers
were only able to achieve detection of thrombin at a high concentration of 5 pM [38]. This
limitation encouraged Chen et al. [39] to engineer a “sandwich-type” electrochemical-based
aptasensor. The sensor was developed by incorporating two thrombin aptamers (TBA1 and
TBA2) onto AuNPs that were previously incubated with [Ru(NH3)6]3+. The high aptamer
loading capacity of TBA1 and TBA2 onto AuNPs helped to improve signal amplification
while [Ru(NH3)6]3+ aided signal conversion. The engineered electrochemical aptasensor
was able to detect thrombin at a linear range of 1 fM to 6 pM and limit of detection was
found at 0.1429 fM (S/N = 3) under optimized conditions.

Some of the drawbacks of colorimetric signal method could be resolved with either
surface plasmon resonance (SPR) or Surface-enhanced Raman spectroscopy (SERS) due to
their ability to amplify optical signals within the SERS hotspot between AuNPs and the Au
surface [55]. Zhang et al. [56] utilized SERS signal type to construct an aptasensor based
on AuNPs modified with Raman molecules (Mercaptobenzoic acid and 5,5′-Dithiobis(2-
nitrobenzoic acid) and it was applied for the detection of Salmonella typhimurium and
Staphylococcus aureus. The Raman enhanced spectra were quantified to obtain linear range
of detection between 102 and 107 cfu/mL and LOD of 15 cfu/mL for S. typhimurium and 35
cfu/mL for S. aureus. Despite the sensitive nature of aptamer–AuNPs biosensors, incom-
plete dissociation of excess non-target binding nucleotides resulting in non-aggregation of
particles has been a major drawback of the AuNPs-based aptasensor.

3.2. Quantum Dot-Based Aptasensor

Quantum dots (QDs) are new classes of zero dimensional (0D) semiconductor nano-
materials (mainly Cadmium telluride [CdTe], Cadmium selenide [CdSe] and CdTeSe
alloy) with exceptional optical properties [57], high quantum yield [17], high resistance
to degradation and photobleaching [17,58] and narrow fluorescence emission and pho-
toluminescence spectra [58,59]. In addition, QDs are excellent fluorescence resonance
electron transfer (FRET) donors–acceptors; this property is observed in QDs modified with
aptamers. This ability is useful for sensors in medical POC diagnosis [17]. In 2007, Jon
and coworkers synthesized a novel quantum dot (QD)−aptamer (Apt)−doxorubicin (Dox)
conjugate (QD−Apt(Dox)) and was used as a detection platform for cancer sensing and
therapy [59]. The surface of QDs was immobilized with A10 RNA aptamer which was
followed by intercalation of Dox onto the other double-strand of A10 aptamer thus creating
a donor–acceptor FRET platform between QDs and Dox. This system can recognize and
imaging prostate cancer cells that express prostate specific membrane antigen (PSMA)
protein through delivery of Dox via activation of fluorescence QD. Recently, FRET aptasen-
sors synthesized by conjugating Apt–QDs–AuNPs have been used for the detection of
Staphylococcus aureus [60] and Tumor Necrosis Factor-alpha (TNF-α) [61]. The authors
observed that selective binding occurred with limit of detection of 2 cfu/mL for S. aureus
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and strong fluorescence of an aptamer–QD conjugated donor was successfully quenched
by an AuNPs acceptor in the presence of target molecules.

Target-specific Apt–QDs sensor probes have also been extended to electrochemilumi-
nescence (ECL), chemiluminescence, electrochemical and photoelectrochemical detection
methods [62]. For instance, Jin’s group developed a highly sensitive ECL aptasensor by
conjugating CdS QDs (as an ECL luminophores source) and AuNPs (as an ECL plasmon
source) with Tro4 and Tro6 sandwiched type aptamer (Figure 2c) [40]. The aptasensor was
capable of detecting cardiac troponin 1, a biomarker for acute myocardial infarction, with
an LOD of 0.75 fg/mL and they further observed that the signal of the surface plasmon en-
hanced electrochemiluminescence (SPEECL) aptasensor was five-fold higher with AuNPs
as the ECL plasmon source. Isildak et al. [41] also investigated detection of thrombin by
an ECL aptasensor. When CdS nanocrystals (CdS NCs) and luminol were conjugated
with aptamer/AuNPs, detection of thrombin was based on ratiometric ECL and increase
in thrombin concentration led to a decrease in intensity (quenching) of CdS NCs with
concomitant increase in luminol intensity. An LOD of 500 fg/mL was achieved with the
ratiometric method. Selective and sensitive detection of molecules by an ECL aptasensor is
highly anticipated to be a device of choice in PoC diagnostic tools; however, high cost and
inaccessibility of ECL equipment have been major limitations in its adoption.

3.3. Carbon Quantum Dot-Based Aptasensor

Carbon quantum dots (CQD), also known as carbon nanodots, are a second example
of 0D nanomaterials with sizes less than 10 nm and possess excellent properties such
as efficient fluorescence emission, low toxicity, high solubility in water, high quantum
yield, high photo stability, broad excitation spectrum [63–65], they are great candidates
in sensor/biosensor applications. The optical absorption of CQDs is primarily due to
their electronic transition from π to π* caused by the presence of phenyl groups and C=C
bonds or from n to π* of C=O bonds, and thus exhibiting absorption in the near-ultraviolet
region and weaker absorption intensity at the visible to near-infrared (NIR) regions [66,67].
CQD-based sensors are highly sensitive with LOD in the range of nanomolar to picomolar
but occasionally in the femtomolar range; their mechanism of action could be based on
energy transfer, FRET, fluorescence/static/dynamic quenching or photo-induced electron
transfer [68]. As a standalone, fluorescent CQDs have been used to detect metal ions,
amino acids and adrenaline with LOD at 0.05–90 nM [69], 30 µM [70] and 10–100 µM [71],
respectively. In the last decade, sensitivity and selectivity of biosensors derived from CQDs
have been improved with the introduction and conjugation of aptamers with CQDs [72,73].

The diagnostic and therapeutic uses of carbon nanodots (CDs)–aptamer conjugates in
multiple tumor cells were initially established using SELEX to select an aptamer targeting
ROS17/2.8 (rat osteosarcoma) cell [74] and then followed by conjugation of CDs to C6-8
aptamer thereby conferring the CDs-conjugated aptamer the ability to freely enter multiple
living tumor cell lines (HepG2, MCF-7, H1299, and HeLa) (Figure 2d,e) [42]. The binding
of synthesized C6-8 aptamer to the aforementioned cancer cell lines was confirmed by
fluorescence-microscopy and flow cytometry and a specific binding to target hnRNP A2/B1,
a major component of the heterogeneous nuclear ribonucleoprotein core complex, was
observed. The therapeutic effect of conjugated fluorescent CDs and the C6-8 aptamer was
based on the ability of the conjugate to target the tumor cell (hnRNP A2/B1protein) which
is located in the nucleus. Meanwhile, 39 nt–Apt–CDs, regarded as a positive control to the
CDs–C6-8–Apt, showed high affinity for cytoplasm of tumor cells; however, control groups
(control Apt–CDs and CDs) exhibited either weak or no binding to the tumor cells. The
CDs–C6-8 aptamer was able to inhibit growth of the tumor both in vitro and in vivo, and
subsequently produce a reduction in the relative weight of tumor cells.
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Further to the detection of cancer, Motaghi et al. [75] developed an aptasensor based
on the nanoconjugation of carbon nanodots (CDs) and a nucleolin aptamer, AS1411. The
spectrofluorometric aptasensor, used as a probe for the detection of mouse breast (4T1),
human breast (MCF7), and human cervical (HeLa) cancer cells, was sensitive to detect
cancer cells through overexpression of AS1411 on the cells’ surface, thereby causing the
release of CDs which are measured by the intensity of fluorescence. The process is relatively
simple, inexpensive and offers high sensitivity with a detection threshold of ~100 cells/mL.
Based on this process, Kong and co-workers’ modification of a CDs–AS1411 aptamer with
polyethyleneimine (PEI), (CDs–PEI–AS1411) led to a slightly improved sensitivity for
detection of MCF-7 cancer cells [76].

3.4. MoS2-Based Aptasensor

Two-dimensional molybdenum disulfide (2D MoS2) belongs to a 2D transition metal
dichalcogenides family. 2D MoS2 exhibits many fascinating properties: optical, electro-
chemical, catalytic, electronic, which are highly dependent on the number of atomic layers.
It is a semiconductor nanomaterial with direct band gap of 1.8 eV, which makes it suitable
for optoelectronic nanodevices [77]. Likewise, its excellent photoluminescence, FRET, large
surface area and carrier mobility properties have made it a good candidate for sensor
applications [77,78]. However, to improve the biosensing capability of MoS2, the basal sur-
face can be functionalized to respond specifically and selectively to a target molecule [79].
Biofunctionalization of MoS2 improved detection of various cancer biomarker proteins,
e.g., prostate-specific antigens [80], nuclear matrix protein 22 (NMP22) and cytokeratin
8 (CK8) [81] or enzymes, e.g., Alpha-methylacyl-CoA racemase (AMACR) [82] and, as
such, an improved low LOD was reported. Despite an improvement in sensitivity of MoS2-
based biosensors, selective detection of a particular biomarker is still a difficult task to
resolve, thereby requiring a blocking agent to prevent non-specific binding during sensing
reactions [83].

The selectivity of a MoS2-based biosensor is readily improved by conjugation with
ssDNA aptamers due to spontaneous adsorption via van der Waal interaction between
nucleobases of ssDNA and the basal plane of 2D MoS2 [84,85]. Following this assumption,
Kong et al. [43] synthesized a novel aptamer-functionalized MoS2 fluorescent sensor and,
when applied to detect PSA in human serum, a decent selectivity was obtained with a
detection limit of 0.2 ng/mL. Thereafter, different approaches to improve selectivity and
sensitivity of MoS2-based aptasensors such as the surface blocking strategy [86] and dual
signal amplification strategy [44] have been developed. By design, sensing specificity of a
MoS2-based FRET aptasensor towards malarial biomarker Plasmodium lactate dehydro-
genase (pLDH) was enhanced by a surface blocking strategy [78]. The surface blocking
mechanism, implemented using Bovine Serum Albumin (BSA), ensured an increase in
specific pLDH recovery which led to an improved signal-to-noise ratio as compared to the
unblocked samples (Figure 3a,b).
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Figure 3. Strategy of enhancing sensing capabilities of MoS2-based aptasensors in medical diagnosis.
(a,b) The effect of surface blocking on non-specific fluorescence recovery in a fabricated MoS2-
based fluorescence resonance electron transfer (FRET) aptasensor and its corresponding effect on
fluorescence intensity observed after the addition of protein to either an aptasensor in unblocked or
blocked format. Adapted from Geldert et al. [86] with permission from Royal Society of Chemistry.
(c) Therapeutic efficacy of ATPMC and ATPMCD in inhibiting cancer tumor growth. (c-i) Monitoring
of tumor tissues following injection with physiological saline via signal intensity of noninvasive
bioluminescent imaging (BLI). (c-ii) Tumor volumes calculated based on sizes of tumor tissues in
mice after exposure to different treatment methods (* p < 0.01 compared with control; # p < 0.01
compared with ATPMCD group). Adapted from Meng et al. [87] with permission from Wiley GmbH.

Most studies have focused on the diagnostic function of MoS2-based aptasensors [88,89],
but the therapeutic effect of these aptasensors is also very important since MoS2 has been
labeled as being of low toxicity relative to other kinds of nanomaterials [79]. In a recent
study, Dong and co-workers investigated both the diagnostic and therapeutic capability
of an MoS2-based aptasensor [87]. A pre-conjugated polyethylene glycol (PEG) sample
and MoS2 decorated with Cu1.8S nanoparticles was functionalized with aptamer (AS1411).
The nano-aptasensor (ATPMC) was capable of photoluminescence, photoacoustic and
photothermal imaging of tumor cells and it also enabled selective gene probe delivery
which aided in detection of intracellular microRNA expressed in cancer cells and doxoru-
bicin (DOX) for chemotherapy. Furthermore, the antitumor efficiency of ATPMC could be
enhanced by loading the aptasensor with DOX (ATPMCD) and thereafter triggered with
NIR targeted chemo–photothermal combined therapy (Figure 3c). It can be emphasized
that MoS2-based aptasensors will provide the needed sensitivity and selectivity required
in biosensors and their potential in therapy applications, however difficulty in synthesis of
continuous and defect-free MoS2 is a major drawback and further research is needed in
this area.

3.5. Carbon Nanotube-Based Aptasensor

The carbon nanotube (CNT) is the most famous member of the one-dimensional class
of nanomaterials. CNT can be visualized as a graphite layer rolled into cylinder of a few
nanometers diameter. Compared to other nanomaterials, CNTs possess a unique combi-
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nation of optical (near infrared luminescence), electrical (high mobility, high conductivity,
higher electron transfer kinetics) and chemical (extremely high surface area 1300 m2/g,
ability to be functionalized) properties which make CNTs suitable for various biomedical
applications [90,91], A recent study investigated the binding specificity of Staphylococcus
aureus by CNTs hybridized with 1-pyrenebutanoic acid succinimidyl ester (PBASE) where
a moderate LOD of 4 log CFU/mL was achieved [92]. Immobilization of biomolecules on
the surface of CNTs sometimes requires chemical modification, which may interfere with
the electrical properties of CNTs [92,93].

The debilitating effect of chemical modifier can be alleviated by introducing aptamers
onto the CNT–PBASE matrix, thereby achieving an aptasensor with high specificity and
selectivity, and coupled with high linear range of detection and low LOD. For instance, Tung
and co-workers fabricated a liquid-gated CNT FET aptasensor modified with Cathepsin
E-binding peptide aptamers as a POC platform for the detection of serum Cathepsin
E (CatE) disease biomarkers in breast cancer patients (Figure 4b) [45]. The CNT was
functionalized by a peptide aptamer through PBASE linker. The aptasensor was found to
be highly selective, and label-free detection of CatE at low concentrations in both phosphate-
buffered saline (2.3 pM) and human serum (0.23 nM) was obtained. In addition to the
photoluminescent properties of CNTs that assist in their near infrared monitoring, their
electrochemical properties can also be employed based on amperometric, potentiometric
and conductometric nature [94]. An amperometric aptasensor based on conjugation of
CNTs, complementary DNA and methylene blue resulted in rapid detection of mycotoxin
ochrotoxin A (OTA) with high specificity and low LOD within 52–134 pM in serum and
juice spiked with OTA [95].

Figure 4. Aptasensors constructed by conjugation of carbon nanotubes (CNTs) with aptamers.
(a-i) Stepwise synthesis of aptasensor based on conjugates of CNTs, polyethylene glycol (PEG) and
aptamer, (a-ii) the cellular uptake of a CNT-based aptasensor at different concentrations monitored by
flow cytometry, (a-iii) concentration dependency of the aptasensor toxicity in cells. Adapted from Gu
et al. [96] with permission from Springer. (b) Experimental setup for the immobilization of peptide
aptamer onto the surface of a CNT and the operating set-up of the liquid-dated CNT FET device for
CatE detection. Adapted from Tung et al. [45] with permission from Springer Nature. (c) Schematics
of the mechanism of aptasensing of biomolecules on graphene surfaces. (d-i) Schematic illustration
of the sensing mechanism of a self-assembling Graphene oxide/RNA-based aptasensor for the
turn-on detection of theophylline in serum, (d-ii,d-iii) the fluorescence spectra of a GO/RNA-based
aptasensor in response to different concentrations of theophylline in serum and its subsequent linear
relationship between fluorescence intensity and theophylline concentration (1–100 µM). Adapted
from Ling et al. [47] with permission from Elsevier.
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Over the years, researchers have explored CNT in gene delivery and other applications
related to diagnosis and therapy [97–99]. Complementing CNTs with aptamers would not
only produce superior biosensors but also effective therapeutic tools in medical parlance.
As a brief study, Gu and co-workers studied CNTs conjugated with anti-PSMA aptamer
and PEG as a nanoultrasound contrast agent (Figure 4b) and they found out that the
contrast has superior visuality, good distribution and development effect. The conjugated
CNT/aptamer was also capable of specific targeting of prostate cancer (PCa) cells due to
good cell uptake [96]. However, CNTs, due to their ability to pass through the blood–brain
barrier, are toxic to organs and can induce death at very high dosage but, at low dosage,
they can serve as therapeutic drug delivery agents [99]. The toxicity of CNTs can be caged
with PEG resulting in a noticeable decline in toxicity even at higher concentration and
prolonged time (Figure 4a).

3.6. Graphene/Graphene Oxide-Based Aptasensor

Recently, atomically thick graphene-based materials have received extensive research
attention in the biosensor field. The sp2-hybridized carbon atoms in the two-dimensional
structure of graphene can easily be functionalized. In addition to specificity, graphene has
excellent electrical, electrochemical, physicochemical properties and its high sensitivity to
external stimulus which make it an exceptional candidate for optoelectronics sensors [100].
Graphene and its derivatives, in either their non-functionalized or functionalized state, can
be used to selectively and sensitively detect biomolecules [101–105]. However, performance
of biosensors fabricated from graphene/GO can be further improved with the introduction
of molecule-specific aptamers.

Due to the unique structural configurations of graphene, ssDNA aptamers can either
bind to graphene surface via electrostatic interaction with DNA bases or via non-covalent
π–π interaction [1,106]. Thus graphene-based aptamer sensors give rise to a high density
platform for biomolecule immobilization allowing detection of a wide range of targets
(Figure 4c). The detection of biomarkers could be in vitro as well as in vivo since graphene
can act as a delivery vehicle for aptamers into living cells or animals [1]. An in vitro
detection of endotoxin, a complex lipopolysaccharides found in cell walls of Gram-negative
bacteria, was performed using a highly sensitive and label-free shear horizontal surface
acoustic wave (SH-SAW)/single-layer graphene (SLG)-based aptasensor [46]. The SH-
SAW/SLG aptasensor demonstrated a linear relationship with the endotoxin concentration
range from 0 to 100 ng/mL and reached a detection limit of 3.53 ng/mL. Moreover, the
stability and excellent specificity make the SH-SAW biosensor a promising alternative to
conventional methods for detecting endotoxins.

The fluorescence quenching property of graphene and GO make it a strong acceptor
for fluorescence resonance energy transfer (FRET) owing to its broad absorption in full
visible spectrum [107]. For instance, the quenching ability of GO was utilized to detect
theophylline in serum with a self-assembling RNA aptamer (33-amer) conjugated on GO
by π–π stacking interaction. The aptasensor resulted in larger range of detection (1–100 µM
to 0.1–10 µM) primarily due to lack of interference with fluorescence intensity by GO
or other environmental factors [47] (Figure 4d). A electrical aptasensor synthesized by
dielectrophoretic deposition of GO on a polyethylene terephthalate (PET) substrate and
its subsequent reduction to reduced-graphene oxide (rGO) provided an efficient platform
for the detection of cardiac biomarker, Cardiac troponin T (cTnT), with a linear range
0.001–10 ng/mL and LOD between 1.2 and 1.7 pg/mL [48]. Other aptasensors based on
either a electrochemical graphene field effect transistor (GFET) [10,108] or voltametry [109]
have shown good specificity signal response to an analyte of interest. Graphene and
its derivatives have the potential to revolutionize the biosensor industry because they
are readily scalable and cost effective based on the chemical vapor deposition (CVD)
production technique; however, transferring pristine graphene devoid of contaminants
and defects has been a major challenge in the R&D sector.
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3.7. Other Nanomaterial-Based Aptasensor

In addition to the previously reviewed nanomaterial-based aptasensors, it is pertinent
to discuss briefly other nanomaterials with properties suitable for biosensing applications.
Some of these materials were conjugated directly with the aptamer [110] or functional-
ized with other types of nanomaterial before conjugation with aptamer [111,112]. For
instance, dispersed silver nanoparticles (AgNPs) were conjugated with an aptamer for
colorimetric detection of adenosine in urine samples of cancer patients. A linear range
of detection of 60–280 nM with 21 nM LOD was reported and the repeatability of the
aptasensor was confirmed with urine samples of cancer patients with percent recoveries
within 98–107% [113]. In the second instance, Li et al. [114] achieved detection of adenosine
triphosphate (ATP) using an aptasensor derived from tungsten disulfide (WS2) immobi-
lized on the -SH end of an ssDNA sequence which was previously conjugated with an Au
electrode (SH-DNA/Au/WS2).The detection of ATP was possible over a concentration
range of 0.1 µM to 5 mM, and an LOD of 1.5 nM. Several types of ultrasensitive aptasensors
have also been fabricated for medical diagnosis (Table 3). In addition, some of these nano-
materials outperform commonly used materials such as AuNPs, MoS2 and graphene due to
their unique properties. For example, WSe2 possesses superior electrical conductivity over
MoS2 due to the metallic nature of Se and therefore it is more suitable in electrochemical
sensing applications [112].

Table 3. Aptasensors fabricated on other types of nanomaterials.

Aptasensor Signal Type Target Molecule Linear Range Detection Limit Reference

Tungsten diselenide/AuNPs
based- thrombin aptamer

(WSe2/AuNPs/TBA1 apt)
Electrochemical Thrombin 0–1 ngmL−1 190 fgmL−1 [112]

Streptavidin-conjugated
fluorescent silica

nanoparticles-based biotin
aptamer

(SA-FSiNPs/Bio-TLS11a apt)

Fluorescence HepG2 cell - - [115]

Amino- and carboxyl-modified
silica-coated terbium (III)

thiacalix[4]arenesulfonate-based
Sgc8 aptamer

([Tb(TCAS)]-SiNPs/Sgc8 apt)

Luminescence Leukemia cell - - [116]

Molybdenum diselenide modified
AuNPs-based ochratoxin A

aptamer
(MoSe2/AuNPs/OTA apt)

Electrochemical ochratoxin A 0.0001–1 nM 0.08 pM [117]

Tungsten disulfide
nanosheets/Au

nanoparticles-modified glassy
carbon electrode -based estradiol

aptamer
(GC-WS2/AuNPs/estrad apt)

Electrochemical 17b-estradiol 1.0 × 10−11–
5.0 × 10−9 M 2.0 × 10−12 [118]

Vanadium disulfide-based
cytochrome c aptamer

(VS2/Cyt c apt)
Fluorescence Cytochrome c 0.75 nM–50 µM 0.5 nM [119]

Cobalt sulfide/Au nanoparticles
modified electrode-based

17β-estradiol aptamer
(CoS/AuNPs/17β-estrad apt)

Electrochemical 17β-estradiol 1.0 × 10−9

−1.0 × 10−12 M 7.0 × 10−13 M [111]
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Table 3. Cont.

Aptasensor Signal Type Target Molecule Linear Range Detection Limit Reference

Acetylene black-copper sulfide
nanosheets/Au modified

electrode-based DNA aptamer
(CuS-AB/Au/DNA apt)

Electrochemical DNA 0.1 pM–1 nM 20 fM [120]

Silver nanoparticles modified
graphite-like carbon nitride-based

thrombin aptamer
(AgNPs-gr/C3N4 apt)

Electrochemical Thrombin 100 fM–20 nM 38 fM [121]

Quaternary CuInZnS quantum dots
modified Au nanoparticles-based

adenosine aptamer
(CulnZnS-QDs/AuNPs apt)

Fluorescence Adenosine 50–400 µM 1.1 µM [122]

Silver nanoclusters based
complementary DNA aptamer

(AgNCs-cDNA apt)
Fluorescence Lysozyme 2–25 nM 5.6 nM [123]

Au electrode coated mesoporous
silica film/silver nanoparticles
based-streptomycin aptamer
(MSF/Au/AgNPs strept apt)

Electrochemical Streptomycin 1 fg/mL–
6.2 ng/mL 0.33 fg/mL [124]

4. Future Perspectives and Conclusions

The gradual rise in the application of biosensors in small molecule detection has
made diagnosis and therapy of early onset of medical conditions an exciting possibility.
Aptamer, an artificial single stranded DNA (ssDNA) or RNA (ssRNA) was synthesized due
to limitations in antibodies’ sensitivity to small molecules and complex setup of chromato-
graphic detection methods. Since aptamers can be chemically synthesized and modified
to detect specific biomarkers, they are now becoming the preferred tool for diagnosis of
medical conditions. The selection protocol of these aptamers is based on SELEX which
enables the isolation, purification, and amplification of target-binding oligonucleotides.
However, the protocol could sometimes be actualized after 10–15 selection cycles and some
improved methods were proposed with mixed results. The short half-lives of aptamers
are a major challenge in biosensor industries. An improved performance in aptamers’
selectivity and sensitivity is achieved upon conjugation with nanomaterials (aptasensor),
which are themselves excellent sensing materials with tunable properties. At the same time,
high sensitivity of nanomaterials can bring additional challenges; for instance, tendency
for self-agglomeration resulting in modulation of optical response. The aptasensors can
bind small molecules with very low LOD ranging from nanomolar to femtomolar and
the signals generated are dependent on the nature of the nanomaterials. Some research
studies also confirmed the therapeutic potentials of aptasensors especially in inhibiting
tumor growth but some of the setbacks include toxicity to human cells.

Due to technological advancement in nanomaterial synthesis and control, we foresee
fabrication of aptasensors as portable medical devices that will be capable of detecting
early biomarkers of disease condition and simultaneously be used as benign therapeutics.
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