
Fibroblasts Regulate the Transformation Potential of Human Papillomavirus-positive 1 

Keratinocytes 2 

 3 

Claire D. James a, Rachel L. Lewis a, Austin J. Witt a, Christiane Carter b, Nabiha M. Rais 4 

a, Xu Wang a, Molly L. Bristol a,c,# 5 

a Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth 6 

University (VCU), Richmond, Virginia, USA 7 

b VCU Massey Bioinformatics Shared Resource, Richmond, Virginia, USA 8 

c VCU Massey Comprehensive Cancer Center, Richmond, Virginia, USA 9 

 10 

#Address correspondence to Molly L. Bristol, mlbristol@vcu.edu.  11 

Abstract 12 

Persistent human papillomavirus (HPV) infection is necessary but insufficient for 13 

viral oncogenesis. Additional contributing co-factors, such as immune evasion and viral 14 

integration have been implicated in HPV-induced cancer progression. It is widely 15 

accepted that HPV+ keratinocytes require co-culture with fibroblasts to maintain viral 16 

episome expression, yet the exact mechanisms for this have yet to be elucidated. Here we 17 

present comprehensive RNA sequencing and proteomic analysis demonstrating that 18 

fibroblasts not only support the viral life cycle, but reduce HPV+ keratinocyte 19 

transformation. Our co-culture models offer novel insights into HPV-related 20 

transformation mechanisms. 21 
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Highlights 25 

• Fibroblasts support HPV RNA expression and episomal maintenance in HPV+ 26 

keratinocytes 27 

• Fibroblasts reduce EMT related expression in HPV+ keratinocytes 28 

• Fibroblasts promote EMT related expression in E6E7+ keratinocytes 29 

1 Introduction 30 

Human papillomaviruses (HPVs) infect the basal keratinocytes of differentiating 31 

squamous epithelia [1]. Some current estimates suggest there may be more than 400 types 32 

of HPV, however, there are approximately 12 high-risk HPV types with the capacity to 33 

cause cancer in the general population [2–4]. HPV-related cancers (HPV+ cancers) 34 

continue to contribute to approximately 5% of the worldwide cancer burden [5–14]. HPV 35 

16 is responsible for the majority of HPV+ cancers, contributing to 54% of cervical 36 

cancers and ~90% of HPV+ oropharyngeal squamous cell carcinoma (HPV+OPC) 37 

[3,5,8–10,15–17]. While these HPV+ cancers remain prevalent, the majority of total 38 

infections are asymptomatic, self-limiting, and clear before cancer progression [3,18–23]. 39 

Persistent HPV infection is a necessary component of cancer development but is not 40 

considered sufficient without additional co-factors [15,24]. One key factor in maintaining 41 

viral persistence is the ability of HPV to evade host immunity [22,23,25–29]. Numerous 42 

studies have demonstrated that HPV suppresses innate immune-related signaling in both 43 

infected epithelia and neighboring stromal fibroblasts [22,23,25–36].  Suppression of 44 
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immune-related genes allows for immune evasion, which is critical for viral persistence 45 

and may play a role in cancer development [37,38].  46 

The stroma is a complex connective tissue comprised of numerous cell types; the 47 

main component of the dermal stroma is fibroblasts [15,39–41]. Fibroblasts support 48 

tissue homeostasis via the secretion of all components of the extracellular matrix (ECM) 49 

and facilitate stromal extracellular signaling; factors produced by fibroblasts are key for 50 

angiogenesis, inflammation, wound healing, and are necessary for the proper 51 

differentiation of keratinocytes [23,41,42]. Keratinocyte differentiation is critical for the 52 

HPV lifecycle [43,44]. While HPV exclusively infects basal keratinocytes, viral gene 53 

products alter the secretion of host factors, indirectly affecting neighboring keratinocytes, 54 

fibroblasts and immune cells in the local microenvironment [22,23,45]. Given the 55 

complexity of the tissue infected and the transformation process, the relationship between 56 

HPV and epithelial-stromal communication remains at a nascent phase and further 57 

investigations are warranted [15,23].  58 

The importance of stromal support in the microenvironment is now an emerging 59 

field in the context of overall cancer progression, as well as HPV-induced transformation 60 

and carcinogenesis [15,23,26,39,40,45–56]. Precise mechanisms for viral transformation 61 

and progression mechanisms remain unclear; however, persistent viral oncogene 62 

expression contributes to clear epithelial growth advantages [27,57–59,59–64]. HPV E6 63 

and E7 are considered the major viral oncoproteins that contribute to carcinogenesis via 64 

altering cellular tumor suppressor pathways; E6 targets and degrades p53, while E7 65 

targets and degrades retinoblastoma protein (pRb) [18,37,57,65,66]. The lesser 66 

characterized minor oncoprotein, HPV E5, appears to regulate cellular transformation, 67 
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immune modulation, and response to cell signaling events [23,57,67].  While the 68 

expression of E6 and E7 extends the proliferative capacity of epithelial cells, fibroblasts 69 

have demonstrated a cooperative role in the induction of cell immortalization [15,68–71]. 70 

E5 has also demonstrated regulatory interactions as an innate immune suppressor in the 71 

adjacent stroma, thus contributing to viral persistence [22,23]. Of note, the viral DNA 72 

binding protein, E2, is not proposed to be oncogenic but has also been reported to be 73 

involved in the suppression of the innate immune response and is crucial for viral 74 

episome persistence [28,29,72–75].  75 

Oncogene expression alone is considered insufficient for carcinogenesis, and 76 

other indeterminate events have been implicated in transformation [76]. During the HPV 77 

lifecycle, the viral genome exists in an episomal form in basal keratinocytes. Conversely, 78 

when aberrant HPV genome integration events occur, they have been noted as 79 

contributing factors in transformation; viral integration correlates with increased viral 80 

oncogene expression, loss of functional E2, cellular growth advantages, enhanced tumor 81 

progressiveness, cervical cancer progression, and poor clinical prognostics of HPV+OPC 82 

[25,27,59–61,77–85]. It is generally accepted that HPV+ keratinocyte cell lines must be 83 

grown in co-culture with fibroblasts to support viral episome maintenance [80,86,87]. 84 

HPV+ keratinocytes maintained in the absence of fibroblasts are noted to quickly 85 

integrate or lose viral genome expression [87,88]. From these observations, fibroblasts 86 

are influential on the HPV episomal status of adjacent keratinocytes, suggesting their role 87 

in regulating this transforming factor. The mechanisms of episomal regulatory control via 88 

fibroblasts have yet to be elucidated.  89 
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We previously reported the value of fibroblast co-culture both in the context of 90 

HPV episomal maintenance and as a model for better predicting in vitro to in vivo 91 

translational treatment paradigms [88]. In our previous analysis, we demonstrated that 92 

mitomycin C (MMC) growth-arrested murine 3T3-J2 fibroblasts (referred to as J2s 93 

moving forward) supported HPV16 long control region (LCR) transcriptional regulation 94 

[88]. We further investigated HPV protein expression and host protein signaling observed 95 

in the presence or absence of J2s [88]. N/Tert-1 cells (telomerase immortalized foreskin 96 

keratinocytes, HPV negative), HFK+E6E7 (foreskin keratinocytes immortalized by the 97 

viral oncogenes only), and HFK+HPV16 (foreskin keratinocytes immortalized by the 98 

entire HPV16 genome, replicating as an episome), were cultured in the presence or 99 

absence of J2s. We demonstrated that HFK+HPV16 maintained in J2 had measurable E7 100 

protein levels; however, when J2s were removed for one week, E7 protein expression 101 

was lost [88]. Conversely, there were no significant alterations in E7 protein levels in 102 

HFK+E6E7 in the presence or absence of J2s, suggesting a partial reliance on the 103 

expression of the LCR or the full genome for the ability of fibroblasts to regulate viral 104 

protein expression [88]. Alterations in the protein levels of p53, pRb, and γH2AX were 105 

also demonstrated to be altered in the presence of J2 and further suggested fibroblasts 106 

may alter host protein expression that is supportive of HPV viral genome regulation [88].  107 

In this report, we utilized RNA sequencing (RNA-seq) and proteomic analysis for 108 

a global and comprehensive approach to investigate keratinocyte signaling impacted by 109 

fibroblasts. Our investigation confirmed the prior observation, that HPV downregulates 110 

portions of innate immune signaling [23,28,29,89–91]. Further separation of 111 

keratinocytes grown in the presence or absence of J2s revealed the novel observation that 112 
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fibroblasts impact the transformation potential of keratinocytes. N/Tert-1+HPV16 cells 113 

grown with J2s showed a gene regulation pattern similar to that of a suprabasal layer. 114 

Gene ontology (GO) analysis indicated that fibroblasts supported the viral life cycle, and 115 

that keratinocytes were less transformed compared to those grown without J2s. In 116 

contrast, N/Tert-1+E6E7 cells grown with J2s showed a greater tendency toward 117 

transformation than those grown without J2s, especially in relation to altered cell cycle 118 

regulation, and oncogenic cytokine expression. Proteomic analysis further supported 119 

these observations. Our results confirm that the expression of episomal HPV is necessary 120 

to regulate optimal viral-host interactions. Integration would mimic results observed in 121 

N/Tert-1+E6E7 cells, and the presence of fibroblasts promote a much more transformed 122 

genotype. Overall, our findings suggest that both monoculture and fibroblast co-culture 123 

approaches are useful for future studies on HPV-related transformation. 124 

2 Materials and methods 125 

2.1 Cell Culture  126 

N/Tert-1 cells and all derived cell lines have been described previously and were 127 

maintained in keratinocyte-serum free medium (K-SFM; Invitrogen), and supplemented 128 

with previously described antibiotics [27–29,88,92–95].  129 

2.2 Culture and mitomycin C (MMC) inactivation of 3T3-J2 mouse embryonic 130 

fibroblast feeder cells, and co-culture with keratinocytes 131 

As previously described, 3T3-J2 immortalized mouse embryonic fibroblasts (J2) were 132 

grown in DMEM and supplemented with 10% FBS [88]. 80-90% confluent plates were 133 

supplemented with 4µg/ml of MMC in DMSO (Cell Signaling Technology) for 4-6 hours 134 

at 37°C. MMC-supplemented medium was removed and cells were washed with 1xPBS. 135 
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Cells were trypsinized, centrifuged at 800 rcf for 5 mins, washed once with 1xPBS, 136 

centrifuged again, and resuspended at 2 million cells per mL. Quality control of 137 

inactivation (lack of proliferation) was monitored for each new batch of mitomycin-C. 138 

Unless otherwise stated, 100-mm plate conditions were continually supplemented with 139 

1x106 J2 every 2-3 days. Before trypsinization or harvesting, plates were washed to 140 

remove residual J2.  141 

2.3 RNA isolation  142 

The SV total RNA isolation system kit (Promega) was utilized to isolate RNA from cells, 143 

as per the manufacturer’s protocol.  144 

2.4 Human Sequences RNA-seq Bioinformatics Pipeline 145 

Library preparation, sequencing, and pre-processing of samples was performed by 146 

Novogene. Novogene uses in-house scripts to clean raw reads, filtering out low-quality 147 

reads, and reads containing adapter sequences. The genome index was built and cleaned 148 

sequences were aligned to the reference human genome using Hisat2 v2.05 [96,97]. Raw 149 

gene expression levels were quantified with featureCounts v1.5.0-p3 and then normalized 150 

to fragments per kilobase per million (FPKM) [98]. Differential expression analysis was 151 

performed using DESeq2 R package v1.20.0 between three experimental groups N/Tert-152 

1, N/Tert-1+E6/E7, and N/Tert-1+HPV16 treated with J2 fibroblasts (n=3 in each group) 153 

and their paired controls respectively (untreated). P-values were adjusted using the 154 

Benjamini and Hochberg's approach for controlling the false discovery rate (FDR), where 155 

significance for a differentially expressed gene was determined at FDR < 0.05 [99]. 156 

2.4 Gene Ontology Enrichment Analysis 157 
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GO enrichment analysis of differentially expressed genes was implemented by the 158 

clusterProfiler R package, in which gene length bias was corrected [100,101]. GO terms 159 

with corrected P-value < 0.05 were considered significantly enriched by differential 160 

expressed genes. Heatmaps were generated with the `pheatmap` R package using z-score 161 

normalized FPKM gene expression averages for each sample condition. 162 

2.5 HPV16 sequences RNA-seq Bioinformatics Pipeline 163 

Fastq files from Novogene were examined for quality using FastQC and quality control 164 

reports were collated by multiQC [102,103].  Reads were filtered to remove low quality 165 

sequences and adapter sequences were trimmed using trimmomatic v 0.39 [104]. A 166 

genome index was built and all sequences were aligned to the GRCh38.d1.vd1 Reference 167 

Sequence, part of the Genomic Data Commons GDC data harmonization pipeline, using 168 

STAR aligner v 2.7.9.a [105]. Samtools v1.16.1 was used to index and filter the bam file 169 

for reads aligned to HPV16 [106]. The HPV16 filtered bam files were converted back to 170 

fastq files using bedtools [107]. The HPV16 fastq sequences were re-aligned to an 171 

HPV16 reference genome from NCBI and raw gene expression levels were counted using 172 

featureCounts. Raw counts were then normalized using EdgeR’s calcNormFactors 173 

scaling factor of trimmed mean of M-values (TMM) normalization. EdgeR’s quasi-174 

likelihood F-test (QLF) method was then used for differential expression analysis of each 175 

gene between three experimental groups N/Tert-1, N/Tert-1+E6/E7, and N/Tert-176 

1+HPV16 treated with J2 fibroblasts (n=3 in each group) and their paired controls 177 

respectively (untreated) [108–110]. The p-value of each QLF test was adjusted using a 178 

Benjamini-Hochberg False Discovery Rate (FDR) multiple testing correction using the 179 
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basic R stats package p.adjust function. Genes passing the FDR cut-off threshold of ≤ 180 

0.05 for significance were considered statistically significantly different. 181 

2.6 Real-time PCR (qPCR) 182 

A high-capacity cDNA reverse-transcription kit from Invitrogen was used to synthesize 183 

cDNA from RNA and processed for qPCR. qPCR was performed on 10�ng of the cDNA 184 

isolated. cDNA and relevant primers were mixed with PowerUp SYBR green master mix 185 

(Applied Biosystems), and real-time PCR was performed using the 7500 Fast real-time 186 

PCR system, using SYBR green reagent. Expression was quantified as relative quantity 187 

over GAPDH using the 2−ΔΔCT method. Primer used are as follows. HPV16 E2 F, 5′-188 

ATGGAGACTCTTTGCCAACG-3′; HPV16 E2 R, 5′-189 

TCATATAGACATAAATCCAG-3′; HPV16 E6 F, 5′-TTGAACCGAAACCGGTTAGT-190 

3′; HPV16 E6 R, 5′-GCATAAATCCCGAAAAGCAA-3′; MX1 F, 5′-191 

GGTGGTCCCCAGTAATGTGG-3′;  MX1 R, 5′-CGTCAAGATTCCGATGGTCCT-3′; 192 

STAT1 F, 5′-CAGCTTGACTCAAAATTCCTGGA-3′; STAT1 R, 5′-193 

TGAAGATTACGCTTGCTTTTCCT-3′;  STAT2 F,  5′-CCAGCTTTACTCGCACAGC-194 

3′; STAT2 R, 5′-AGCCTTGGAATCATCACTCCC-3′; STAT3 F, 5′-195 

CAGCAGCTTGACACACGGTA-3′;  STAT3 R, 5′-196 

AAACACCAAAGTGGCATGTGA-3′;   p53 F, 5′-GAGGTTGGCTCTGACTGTACC-197 

3′;  p53 R, 5′-TCCGTCCCAGTAGATTACCAC-3′; Glyceraldehyde-3-phosphate 198 

dehydrogenase (GAPDH) F, 5′-GGAGCGAGATCCCTCCAAAAT-3′; GAPDH R, 5′-199 

GGCTGTTGTCATACTTCTCATGG-3′. 200 

2.7 Exo V  201 
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PCR based analysis of viral genome status was performed using methods described by 202 

Myers et al. [111].  20 ng of genomic DNA was either treated with exonuclease V 203 

(RecBCD, NEB), in a total volume of 30 ul, or left untreated for 1 hour at 37°C followed 204 

by heat inactivation at 95°C for 10 minutes. 2 ng of digested/undigested DNA was then 205 

quantified by real time PCR, as noted above, using and 100 nM of primer in a 20 μl 206 

reaction. Nuclease free water was used in place of the template for a negative control. 207 

The following cycling conditions were used: 50°C for 2 minutes, 95°C for 10 minutes, 40 208 

cycles at 95°C for 15 seconds, and a dissociation stage of 95°C for 15 seconds, 60°C for 209 

1 minute, 95°C for 15 seconds, and 60°C for 15 seconds. Separate PCR reactions were 210 

performed to amplify HPV16 E6 F: 5’- TTGCTTTTCGGGATTTATGC-3’ R: 5’- 211 

CAGGACACAGTGGCTTTTGA-3’, HPV16 E2 F: 5’- 212 

TGGAAGTGCAGTTTGATGGA-3’ R: 5’- CCGCATGAACTTCCCATACT-3’, human 213 

mitochondrial DNA F: 5’-CAGGAGTAGGAGAGAGGGAGGTAAG-3’ R: 5’- 214 

TACCCATCATAATCGGAGGCTTTGG -3’, and human GAPDH DNA F: 5’- 215 

GGAGCGAGATCCCTCCAAAAT-3’ R: 5’- GGCTGTTGTCATACTTCTCATGG-3’ 216 

2.8 Proteomic sample preparation 217 

The samples were digested using commercially available PreOmics iST sample clean up 218 

protocol. To the sample containing approximately 100ug of protein, 70ul of lysis buffer 219 

was added and mixed, followed by an incubation for 10 minutes at 950C; 1000rpm. 50ul 220 

of DIGEST solution was added to the mixture, which was then incubated at 370C for 221 

3hrs at 500 rpm. After the digestion, 100ul of STOP solution was added and mixed 222 

properly. The digest was then centrifuged at 3800rcf; 3min to ensure complete flow 223 

through and washed with 200ul of WASH 1 and 200ul of WASH 2 solution followed by 224 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2024. ; https://doi.org/10.1101/2024.09.16.613347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.16.613347
http://creativecommons.org/licenses/by-nc-nd/4.0/


centrifugation after each wash. The cartridge was then placed to the fresh collection tube 225 

and 100ul of ELUTE solution was added and centrifuged at 3800rcf; 3min to ensure 226 

complete flow through. This step was repeated one more time to ensure maximum 227 

recovery. The elutes were then placed in a vacuum evaporator at 450C until completely 228 

dried. 229 

2.9 LC-MS/MS.  230 

LC-MS/MS analysis were performed using a Q-Exactive HF-X (Thermo) tandem mass 231 

spectrometer coupled to an Easy nLC 1200 (Thermo) nanoflow UPLC system. The LC-232 

MS/MS system was fitted with an Easy spray ion source and an Acclaim PepMap 75µm 233 

x 2cm nanoviper C18 3µm x 100Å pre-column in series with an Acclaim PepMap RSLC 234 

75µm x 50cm C18 2µm bead size (Thermo). The mobile phase consists of Buffer A 235 

(0.1% formic acid in water) and Buffer B (80% acetonitrile in water,0.1% formic acid). 236 

500ng of peptides were injected onto the above column assembly and eluted with an 237 

acetonitrile/0.1% formic acid gradient at a flow rate of 300 nL/min over 2 hours. The 238 

nano-spray ion source was operated at 1.9 kV. The digests were analyzed using a data 239 

dependent acquisition (DDA) method acquiring a full scan mass spectrum (MS) followed 240 

by 40 tandem mass spectra (MS/MS) in the high energy C- trap Dissociation HCD 241 

spectra). This mode of analysis produces approximately 50,000 MS/MS spectra of ions 242 

ranging in abundance over several orders of magnitude. Not all MS/MS spectra are 243 

derived from peptides. 244 

2.10 Proteomic Data Analysis 245 

The data were analyzed in Proteome Discoverer (ver 3.0) using the Sequest HT search 246 

algorithm and the Human database. Proteins were identified at an FDR < 0.01 and 247 
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quantification used the peptide intensities. Raw protein abundances were normalized in 248 

Proteome Discoverer using the “Total Peptide Abundance” method. Differential 249 

Enrichment of protein abundance was performed using the `DEP` package v. 1.26 [112].  250 

First, we filtered for proteins detected in two of three replicates of at least one of the 251 

experimental conditions. Variance stabilizing transformation of remaining protein 252 

intensity observations was performed using the `vsn` package v 3.72 via the 253 

`normalize_vsn` function [113]. The quantile regression-based left-censored (QRILC) 254 

method was used as the missing value imputation approach. The differential enrichment 255 

test was conducted pairwise on each protein using limma v 3.60.4 between three 256 

experimental groups N/Tert-1, N/Tert-1+E6/E7, and N/Tert-1+HPV16 treated with J2 257 

fibroblasts (n=3 in each group) and their paired controls (untreated), respectively [114]. 258 

Proteins were identified as significantly differentially expressed between the control and 259 

experimental groups with a Benjamini-Hochberg adjusted p-value of < 0.05, and a |log2-260 

fold change| > 0.58. 261 

2.11 Immunoblotting 262 

Cells were trypsinized, washed with PBS and resuspended in 2x pellet volume NP40 263 

protein lysis buffer (0.5% Nonidet P-40, 50 mM Tris [pH 7.8], 150 mM NaCl) 264 

supplemented with protease inhibitor (Roche Molecular Biochemicals) 265 

and phosphatase inhibitor cocktail (MilliporeSigma). Cell suspension was incubated on 266 

ice for 20 min and then centrifuged for 20 min at 184,000 rcf at 4 °C. Protein 267 

concentration was determined using the Bio-Rad protein estimation assay according to 268 

manufacturer's instructions. 50 μg protein was mixed with 2x Laemmli sample buffer 269 

(Bio-Rad) and heated at 95 °C for 5 min. Protein samples  were separated on Novex 4–270 
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12% Tris-glycine gel (Invitrogen) and transferred onto a nitrocellulose membrane (Bio-271 

Rad) at 30V overnight using the wet-blot transfer method. Membranes were then blocked 272 

with Odyssey (PBS) blocking buffer (diluted 1:1 with PBS) at room temperature for 1 hr. 273 

and probed with indicated primary antibody diluted in Odyssey blocking buffer, 274 

overnight. Membranes were washed with PBS supplemented with 0.1% Tween (PBS-275 

Tween) and probed with the Odyssey secondary antibody (goat anti-mouse IRdye 276 

800CW or goat anti-rabbit IRdye 680CW) (Licor) diluted in Odyssey blocking buffer at 277 

1:10,000. Membranes were washed twice with PBS-Tween and an additional wash with 278 

1X PBS. After the washes, the membrane was imaged using the Odyssey® CLx Imaging 279 

System and ImageJ was used for quantification, utilizing GAPDH as internal loading 280 

control. Primary antibodies used for western blotting studies are as follows: pRb 1:1000 281 

(Santa Cruz, sc-102), p53 1:1000 (Cell Signaling Technology, CST-2527, and CST-282 

1C12), γH2AX 1:500 (Cell Signaling Technology, CST-80312 and CST-20E3).  283 

2.12 Reproducibility, research integrity, and statistical analysis 284 

All experiments were carried out at least in triplicate in all of the cell lines 285 

indicated. Keratinocytes were typed via cell line authentication services. All images 286 

shown are representatives from triplicate experiments. Student’s t-test or analysis of 287 

variance was used to determine significance as appropriate: *P < 0.05, **P < 0.01, ***P 288 

< 0.001. 289 

3 Results 290 

3.1 Differential Genomic Landscapes altered by fibroblasts in keratinocytes 291 

The utility of a supportive fibroblast feeder layer is broadly accepted as essential 292 

for maintaining an episomal HPV genome in primary keratinocyte models, and is a 293 
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necessary component of 3D models for HPV lifecycle analysis where it is chiefly 294 

responsible for proper keratinocyte differentiation [57,68,77,87,88,115–122]. While the 295 

coculture of keratinocytes with fibroblast feeders is accepted, the full mechanism of how 296 

fibroblasts aid in HPV episomal maintenance has yet to be deciphered. It is worth noting 297 

that 2D coculture may represent interactions that occur in the basal layer, while far more 298 

complex spatial and temporal regulatory mechanisms are likely involved in 3D models 299 

and in vivo. This analysis focuses on short-term 2D interactions, with the aim of 300 

investigating 3D models in the future. 301 

We previously demonstrated that fibroblast co-culture was important for 302 

maintaining HPV episomes, influenced HPV16 LCR transcriptional regulation, and 303 

supported the expression of HPV16 E7 protein in human foreskin keratinocytes 304 

immortalized with HPV16 (HFK+HPV16) [88].  We also observed that fibroblasts 305 

altered host protein levels which could affect viral genome regulation [88]. Taking a 306 

more global approach to investigate signaling impacted by fibroblasts, N/Tert-1, N/Tert-307 

1+E6/E7, and N/Tert-1+HPV16 cells were cultured in the presence or absence of J2s for 308 

one week. These matched samples were then subjected to bulk RNA-seq analysis, and 309 

label-free liquid chromatography-mass spectrometry-based proteomic analysis (LC-310 

MS/MS).  311 

For RNA-seq, triplicate sample data were combined to assess differential gene 312 

expression analysis. Initial comparisons were made in large batched sets; cell lines were 313 

either not separated based on the presence or absence of J2, or grouped as all mono-314 

culture vs all co-culture. They were compared in the following large sets: N/Tert-1 vs 315 

N/Tert-1+HPV16, N/Tert-1+E6E7 vs N/Tert-1+HPV16, N/Tert-1 vs N/Tert-1+E6E7, and 316 
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monoculture control vs co-culture “+J2”. Evaluations of datasets were then further 317 

compared based on the presence or absence of J2 in each individual N/Tert-1, N/Tert-318 

1+E6E7, or N/Tert-1+HPV16 cell line and cross-compared. Our data revealed numerous 319 

genes significantly differentially expressed 1.5 fold or greater when cross-comparing our 320 

samples (DEG gene counts presented in Figure 1A, Quantitative correlation presented in 321 

Figure 1B). A full list of these genes can be found in Supplementary Material S1. The 322 

expression level of the HPV16 genes used to generate the gene expression data is given 323 

in Supplementary Table S2. Novogene and further bioinformatic analysis identified the 324 

most affected canonical pathways, upstream regulators, diseases, and functions predicted 325 

to be altered in this data set; significant observations are given in Supplementary Tables 326 

S3. The most notable HPV differential expression and GO enrichment observations were 327 

alterations in innate immune signaling, including altered cytokine and chemokine 328 

activity; additional alterations in cellular communication potential, tight junction 329 

regulation, and growth factor signaling events were also differentially regulated (GO 330 

enrichment plots summarized in Figures 2A-C). When grouped as a whole, fibroblasts 331 

significantly altered GO enrichment associated with angiogenesis, differentiation, 332 

extracellular matrix organization, and both cytokine and growth factor-related activity 333 

(Figure 2D).  334 

As previously reported, numerous gene sets related to interferon (IFN) response 335 

were significantly reduced in the N/Tert-1+HPV16 group, over that of both N/Tert-1 and 336 

N/Tert-1+E6E7 groups (Figures 2A-B) [28,123]. Of note, fibroblasts were not utilized 337 

when preparing our N/Tert-1-related cultures in previous RNAseq analysis [28,29]. 338 

Various interleukins and CXCL family members were also significantly downregulated 339 
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in grouped N/Tert-1+HPV16 when compared to grouped N/Tert-1 and N/Tert-1+E6E7 340 

(Figures 2A-B). Reactome enrichment further highlighted the following genes concerning 341 

the aforementioned significantly downregulated networks: BST2, CREB5, CSF1, 342 

CX3CL1, CXCL1, CXCL2, CXCL3, IFI27, IFI35, IFI6, IFIT1, IFITM1, IFITM3, IL18R1, 343 

IL6, IRF7, ISG15, HLA-B, LIF, MMP9, MX1, MX2, OAS1, OAS2, OAS3, PIK3R3, 344 

PTAFR, RIPK3, RSAD2, SAMHD1, STAT1, TRIM22, UBE2L6, USP18, XAF1 345 

(Supplemental Tables S3). The observation that HPV downregulates innate immune 346 

functions is not novel, but highlights the consistency of our observations with others 347 

[23,28,29,89–91].  348 

Several interesting significant alterations in GO enrichment were observed when 349 

N/Tert-1 cell lines were further separated based on the presence or absence of J2. N/Tert-350 

1+HPV16 continuously maintained in J2 co-culture demonstrated significant 351 

upregulation of interleukin antagonist genes and genes related to inflammation and cell 352 

motility, while expression of IFN-induced genes remained downregulated (Figures 3A-J). 353 

Genes related to B-cell recruitment and the compliment pathway, also were enriched in 354 

N/Tert-1+HPV16 maintained in J2 (Figures 3A,C).  The GO enrichment of N/Tert-355 

1+E6E7 in the presence or absence of J2, in comparison to N/Tert-1+HPV16 in the 356 

presence or absence of J2, was markedly different. N/Tert-1+E6E7 grown in the presence 357 

of J2 exhibited the most significant increase in GO enrichment of genes related to IFN, 358 

indicating that the expression of the full viral genome is necessary for their repression 359 

(Figures 3A-J). This would correspond to observations that both E2 and E5 have been 360 

tied to the regulation of innate immunity [23,28,29]. While IFN is known to regulate viral 361 

infections, IFN-mediated activation of the Janus kinase (JAK)-signal transducer activator 362 
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of transcription (STAT) has also been associated with cancer progression, including 363 

HPV+ cervical cancer [124,125]. Specifically, HPV oncoproteins have previously been 364 

shown to activate JAK/STAT [125]. GO enrichment, and qPCR validation demonstrate 365 

that N/Tert-1+E6E7 cells cocultured with fibroblasts, markedly upregulate STAT1,2,3 366 

expression; in comparison, N/tert-1+HPV16 keratinocytes cocultured with fibroblasts 367 

have significantly lower expression of these genes (Figures 3E-H).  368 

Another noteworthy observation in our GO enrichment cross-comparison, was the 369 

alterations observed in genes related to cell junctions, particularly with tight junctions 370 

(TJs) and cell-cell signaling control (Figure 4). TJs are comprised of a complex group of 371 

molecules, and are associated with the suprabasal and intermediate layers of epithelia. 372 

While numerous TJ proteins are downregulated in the transformation process, others are 373 

overexpressed and mislocalized [126,127]. Such dysregulation of TJ proteins is 374 

associated with epithelial-to-mesenchymal transition (EMT) and invasive phenotypes, 375 

including in HPV+ cervical cancer and HPV16 E7 has been shown to alter the expression 376 

and localization of TJ-associated claudins [127–129]. Twist1 is also associated with 377 

EMT; its transcriptional activation of Claudin-4 has been shown to promote cervical 378 

cancer migration and invasion [130–132]. Our analysis shows partial upregulation of TJ 379 

components in E6E7+ cells by coculture with fibroblasts, and a significant upregulation 380 

in HPV16+ keratinocytes (Figures 4A,C). In particular, there was a marked increase in TJ 381 

assembly proteins in both cell lines, including claudins, which are crucial to tight junction 382 

integrity (Figure 4A,C). Here, we suggest that this is a model for stages of 383 

transformation. The decreased expression of junctional proteins seen in N/Tert-1+E6E7 is 384 

more analogous to later, neoplastic stages of transformation; when the viral genome is 385 
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integrated, E6E7 is overexpressed and there is a progression towards EMT. Meanwhile, 386 

the increased expression of TJ components in HPV16+ keratinocytes cultured with 387 

fibroblasts is analogous to early viral lifecycle stages. Furthermore, by inducing increased 388 

levels of TJ components in infected keratinocytes, the virus induces an environment that 389 

mimics a suprabasal phenotype, which is important for the amplification stage of the viral 390 

lifecycle [82,118,133]. As large complexes, TJs facilitate signal transduction and are 391 

involved in cell proliferation, migration, differentiation, and survival, all of which are 392 

beneficial to the viral lifecycle [134]. The comparison to E6E7+ keratinocytes indicates 393 

that the upregulation of junctional proteins seen in HPV16+ cells is likely driven by other 394 

viral factors, possibly E2, although this warrants further investigation. It would be 395 

interesting to further dissect the impact of keratinocyte-fibroblast co-culture upon the 396 

subcellular localization of these TJ components and any resulting downstream effects on 397 

cell invasive capacity in both E6E7+ and full-genome containing cell lines.  398 

Chemokines are small molecules and secretory peptides are associated with 399 

cellular signaling and are broadly divided into subfamilies based on their amino acid 400 

motifs: XC, CC, CXC, and CXXXC [135,136]. Chemokine ligands, work jointly with 401 

specific chemokine receptors, to control a broad range of biological processes [135,136]. 402 

CXC family members are further divided into ELR+ and ELR- members, based on the 403 

presence or absence of a Glu-Leu-Arg (ELR) motif in their N-terminus [135]. ELR+ 404 

CXC chemokines are associated with the progression of cancer, conversely 405 

downregulation of these has been found to suppress the motility of cancer [135]. On the 406 

other hand, ELR- CXC chemokines are associated with tumor-suppressive effects [135]. 407 

Chemokine-related GO enrichment observed in N/Tert-1+HPV16 grown in the presence 408 
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of J2 was highly indicative of a less tumorigenic genotype (Figure 4F). This suggests that 409 

fibroblasts are likely playing a role in preventing the transformation of HPV+ 410 

keratinocytes. Moreover, GO enrichment of TWIST expression (Figure 4B) demonstrated 411 

that N/Tert-1+HPV16 grown in the presence of J2 is indicative of a less transformed 412 

genotype [132,137,138]. CXC-related signaling is known to impact EMT and cancer 413 

progression via interactions with β-catenin, TNF, and Notch/Wnt signaling 414 

[135,136,139–142]. While these signaling pathways can have both tumor-promoting and 415 

suppressive roles that are cancer-dependent, it is clear that fibroblasts are altering the GO 416 

enrichment of N/Tert-1+HPV16 grown in the presence of J2, and this has implications in 417 

the mechanism of HPV16-driven carcinogenesis (Figure 4). 418 

As we previously observed protein alterations in p53, pRb, and γH2AX in our 419 

human foreskin (HFK) cell lines, we also confirmed this trend via western blotting in the 420 

N/Tert-1 lines used for this analysis, and assessed GO enrichment in relation to these 421 

[88].  Again, fibroblasts enhanced p53 and γH2AX protein expression in all N/Tert-1 422 

lines, while pRb was enhanced in N/Tert-1 and N/Tert-1+E6E7 (Figure 5A). GO 423 

enrichment revealed that TP53 was not enhanced at the RNA expression level, indicating 424 

that fibroblast enhancement of p53 protein expression, is likely mediated at the level of 425 

translation, post-translation, or protein stability, however, some p53 inducible proteins 426 

did appear to be regulated at the level of RNA (GO enrichment Figure 5B, p53 qPCR 427 

time course validation 5C-E)  [88]. TP53I13, TP53TG1, and TP53TG5 overexpression 428 

have been linked to the inhibition of cell proliferation and tumor suppression [143–145]. 429 

Enhancement of these tumor suppressors in N/Tert-1+HPV16 grown in the presence of 430 

J2, again suggests that fibroblasts promote a less transformed genotype (Figure 5B). GO 431 
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enrichment related to Rb signaling is less clear. However, the observed RB1, RBL1, 432 

RB1CC1, RBBP4P1 RNA upregulation (Figure 5F) in N/Tert-1+HPV16 grown in the 433 

presence of J2, is suggestive of a less transformed genotype [146–149]. H2AX RNA 434 

upregulation was demonstrated in both N/Tert-1+E6E7 and N/Tert-1+HPV16 grown in 435 

the presence of fibroblasts (Figure 5G), indicating a partial role in the previously 436 

observed J2 enhancement of γH2AX protein (the phosphorylated form of the H2AX 437 

variant) [88].  438 

Another significant observation from our GO enrichment cross-comparisons were 439 

alterations in genes associated with cell cycle regulation and progression (Figure 6). Cell 440 

cycle regulation and progression are notably altered during oncogenic transformation and 441 

HPV-related transformation [1,150–152]. N/Tert-1+E6E7 cells cocultured with 442 

fibroblasts, markedly upregulated GO enrichment related to cell cycle regulation, cell 443 

cycle progression, cell division, and mitotic progression; these alterations were highly 444 

suggestive of significant transformation (Figures 6A-G)[153–155]. Conversely, N/Tert-445 

1+HPV16 grown in the presence of J2 upregulated GO enrichment in tissue development 446 

that was highly suggestive of a less transformed genotype (Figure 6H). In particular, the 447 

expression of KRT4 and KRT13 decreases in transformed epithelial cells; N/Tert-448 

1+HPV16 grown in the presence of J2 instead showed enhanced KRT13 and KRT4 levels 449 

[156]. Likewise, HPV16+ keratinocytes maintained in J2 exhibited enhanced stress 450 

response GO enrichment, including the upregulation of a number of genes related to 451 

tumor suppression (Figure 6I). Again, highlighting the ability of fibroblasts to 452 

differentially regulated transformative genotypes.  453 

3.2 Differential HPV RNA Expression Altered by Fibroblasts in Keratinocytes 454 
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 We and others have demonstrated the importance of fibroblast co-culture for viral 455 

episome maintenance in HPV+ keratinocytes [87,88,122]. As previously demonstrated in 456 

HFK+HPV16, N/Tert-1+HPV16 grown in the presence of fibroblasts for one week 457 

demonstrated significantly enhanced integration events in the absence of J2 (Figure 7A) 458 

[88]. Mining of viral reads from RNA-seq data was performed and interpreted utilizing a 459 

technique previously developed [17,157,158]. RNA differential expression analysis 460 

demonstrated that N/Tert-1+HPV16 grown in the presence of J2 had significantly higher 461 

levels of E2, E5, E6, and E7 transcripts than cells grown in the absence of J2 (RNA-seq 462 

reads in Figure 7B, E2, and E6 qPCR time course validation in Figures 7C and 7D, 463 

respectively). Alternatively, N/Tert-1+E6E7 grown in the presence of J2 expressed lower 464 

RNA transcripts of E7, and similar E6 transcripts in comparison to cells grown in the 465 

absence of J2 (RNA-seq reads in Figure 7B and E6 qPCR time course validation in 466 

Figure 7E).  467 

3.3 Differential Proteomic Landscapes Altered by Fibroblasts in Keratinocytes 468 

For label-free LC-MS/MS proteomic comparison, matched triplicate samples 469 

were harvested at the same time as RNA-seq; differential protein expression and 470 

bioinformatic analysis was performed, cross-matched to RNA-seq, and further assessed 471 

by bioinformatics. Processed datasets are available in Supplementary Data S4. Exact 472 

comparative analysis is presented as Venn diagrams in Figure 8 and comparative 473 

heatmaps in Figure 9. While mRNA expression precedes protein translation, the exact 474 

correlation between transcript levels and protein abundance is often poor; correlative 475 

assessments can instead be utilized for biomarker trends [159–162]. The Human Protein 476 

Atlas was first consulted to assess if comparative analysis supported our RNAseq 477 
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observations that fibroblasts regulate the transformation potential in HPV+ keratinocytes 478 

[163–165]. Many oncogenic proteins were significantly downregulated in N/Tert-479 

1+HPV16 cells grown in the presence of J2; clinical pathology observations have proven 480 

that high expression of these proteins correlates with poor prognostics in either cervical 481 

cancer and/or head and neck cancer [163–165]. Fibroblast downregulation of these 482 

markers in N/Tert-1+HPV16 is suggestive of less transformation, which is in agreement 483 

with the observed changes in EMT markers in the RNA analysis. Global profiling of 484 

trends confirmed differentially regulated subgroups in relation to transformation events. 485 

Our overall observations suggest that fibroblasts influence genotypic profiles that support 486 

the viral lifecycle while inhibiting oncogenic progression in HPV+ keratinocytes. This 487 

fibroblast regulation pattern is inversed in E6E7+ keratinocytes, where oncogene 488 

expression is outside the control of E2.  489 

4 Discussion 490 

Decades of research have continued to improve the model systems utilized to 491 

mimic HPV infection and progression. Despite the increasing availability of improved 492 

models, a current challenge in the field is that these disease models still do not fully 493 

replicate the tissue complexity of the various epithelial sites where severe diseases 494 

develop [24,166]. The addition of fibroblast feeder cells for the generation of epithelial 495 

cell lines has improved both the efficiency of immortalization attempts, as well as 496 

contributing to tissue complexity in 2D growth settings [69,70]. Primary keratinocyte 497 

lines are easily generated for many epithelial sites of HPV infections, however primary 498 

cell lines do not allow for longitudinal studies [167]. Primary cultures can be 499 

immortalized with HPV; however, “control” cell lines are limited due to the nature of 500 
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primary cell culture. Immortalized primary human keratinocytes using the catalytic 501 

subunit of telomerase (hTERT) have been generated for use as longitudinal “control” cell 502 

lines, however expression of hTERT alone is often insufficient for the immortalization of 503 

human keratinocytes [168]. Successfully immortalized keratinocyte lines like telomerase 504 

(hTERT) immortalized primary foreskin keratinocytes (N/Tert-1), the spontaneously 505 

immortalized normal immortal keratinocytes (NIKS), or the adult epidermis cell line 506 

generated from the periphery of a malignant melanoma (HaCaT) are thus utilized as 507 

surrogates for long term “control” comparisons [168,169]. HPV E6 and E7 can likewise 508 

be exploited to immortalize keratinocytes with improved efficiency, however, they are no 509 

longer completely null of HPV [57,71,170]. To assess how fibroblasts modulate viral-510 

keratinocyte interactions, we carefully evaluated the most effective approach to control 511 

for all relevant factors. For this reason, we chose to utilize our well-characterized and 512 

matched N/Tert-1 keratinocyte lines [28,29,74,88,95,171].  513 

Genomic and proteomic assessments in short-term 2D cultures revealed that 514 

fibroblasts promoted a less transformed state in N/Tert-1+HPV, whereas N/Tert-1+E6E7 515 

may be more transformed in the presence of fibroblasts. The exact nature of oncogenic 516 

transformation remains largely speculative, although  a number of biomarkers are well 517 

characterized in this progression [46,57,60,66,77,122,129,131,170,172]. Our studies 518 

confirmed that N/Tert-1+HPV maintained in fibroblasts sustained HPV episomes, 519 

consistent with a less progressed HPV genotypic state (Figure 7A) [77,79,80,88,158]. 520 

Likewise, host expression of host signaling regulation, was also suggestive of a less 521 

transformed state; specifically tight junction regulation, CXC chemokine expression, 522 

TNF-related signaling, and TWIST expression were most compelling (Figure 4). 523 
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Conversely, when comparing the signaling regulation of N/Tert-1+E6E7 maintained in 524 

fibroblasts, the genotypic regulation presented the biological antithesis of the 525 

aforementioned observations (Figure 4). Additionally, N/Tert-1+E6E7 maintained in 526 

fibroblasts exhibited significant enhancement of cell cycle regulation that was suggestive 527 

of transformation (Figure 6).  True longitudinal HPV transformation has yet to be 528 

demonstrated in traditional cell culture; our observations suggest that alterations in cell 529 

culture maintenance conditions are worth consideration for future analysis.  530 

Organotypic raft cultures have also been used for the broad examination of how 531 

high-risk HPVs may drive neoplasia and cancer [166]. It is well noted that fibroblasts 532 

serve a fundamental role in epithelial differentiation and the viral lifecycle in this 3D 533 

model [23,43,44,173–175]. While 3D cultures present a model for reconstructing the 534 

viral lifecycle, these cultures are not useful for traditional cell maintenance. Likewise, 2D 535 

culture models can also be utilized to examine the viral lifecycle employing a calcium 536 

gradient medium, but differentiation also presents finite time points [166]. Future studies 537 

in our lab will extrapolate the transformation-related alterations presented, and assess 538 

how fibroblasts continue to regulate viral-host interactions temporally, spatially, and in 539 

the context of differentiation. These alterations will be considered at various stages of 540 

transformation, in 2D and 3D models, and in the context of both normal and cancer-541 

associated fibroblasts.  542 

5 Conclusion 543 

 Both our research and that of others have shown that interactions between 544 

fibroblasts and keratinocytes in HPV models are critical for maintaining episomal HPV 545 

genomes, influencing keratinocyte differentiation, and regulating viral transcription 546 
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[23,43,44,52,88,121,173–175]. Here we present RNAseq analysis revealing that 547 

fibroblasts may regulate the transformation potential in HPV+ keratinocytes by regulating 548 

cytokine activity, cell junction proteins, and innate immune signaling. Proteomic analysis 549 

further supported these findings, highlighting fibroblasts' ability to modulate protein 550 

expression linked to oncogenic transformation. Overall, fibroblasts were found to 551 

influence both viral and host cell signaling, promoting HPV lifecycle maintenance while 552 

potentially limiting cancer progression in HPV+ keratinocytes; conversely, E6E7+ 553 

keratinocytes were more transformed in the presence of fibroblasts and may present a 554 

more neoplastic model. 555 
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 1165 

Figure legends 1166 

Figure 1. Global comparison of RNA-seq. 1A. RNA-seq differential expression (DEG) 1167 

analysis histogram comparison of the number of significant differential genes (including 1168 

up-regulation and down-regulation) for each combination. 1B. Principal component 1169 

analysis (PCA) analysis on the gene expression value (FPKM) of all samples. 1170 

 1171 

Figure 2. Gene ontology (GO) enrichment analysis histograms demonstrate 1172 

differential regulation between N/Tert-1 cell lines and between mono vs co-culture. 1173 

The 30 most significantly GO terms are displayed. All Terms are separated according to 1174 

major categories of biological processes (BP), cell components (CC), molecular functions 1175 

(MF) and categories of upregulated and downregulated expression of noted GO. 2A. 1176 
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Grouped N/Tert-1+HPV16 are compared to Grouped N/Tert-1. 2B. Grouped N/Tert-1177 

1+HPV16 are compared to Grouped N/Tert-1+E6E7. 2C. Grouped N/Tert-1+E6E7 are 1178 

compared to Grouped N/Tert-1. 2D. Grouped fibroblast co-culture cell line sets (J2) are 1179 

compared to Grouped mono-culture cell line sets (Control). 1180 

 1181 

Figure 3.  Fibroblasts differentially regulate GO enrichment in relation to innate 1182 

immune function. 3A. Heat map demonstrating significant GO:0045087 innate immune 1183 

regulation across all groups. 3B. qPCR validation of MX1 RNA expression, presented in 1184 

log scale. 3C. Heat map demonstrating significant GO:0006955 innate immune response 1185 

across all groups. 3D. Heat map demonstrating significant GO:0032612 interleukin-1 1186 

production across all groups. 3E. Heatmap demonstrating significant STAT RNA 1187 

expression across all groups. 3F. qPCR validation of STAT1 RNA expression, presented 1188 

in log scale. 3G. qPCR validation of STAT2 RNA expression, presented in log scale. 3H. 1189 

qPCR validation of STAT3 RNA expression. 3I. Heat map demonstrating significant 1190 

GO:0035456 response to interferon beta across all groups. 3J. Heat map demonstrating 1191 

significant GO:0034340 response to type I interferon across all groups. 3K. Heat map 1192 

demonstrating significant GO:0034341 response to type II interferon across all groups.  1193 

 1194 

Figure 4. Fibroblasts differentially regulate GO enrichment in relation to cell 1195 

signaling and epithelial-to-mesenchymal (EMT) progression. 4A. Heat map 1196 

demonstrating significant GO:0098609 cell-cell adhesion across all groups. 4B. Heatmap 1197 

demonstrating significant TWIST RNA expression across all groups. 4C. Heat map 1198 

demonstrating significant GO:0120192 tight junction assembly across all groups. 4D. 1199 
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Heat map demonstrating significant GO:0007267 cell-cell signaling across all groups. 1200 

4E. Heat map demonstrating significant GO:0033209 TNF across all groups. 4F. Heat 1201 

map demonstrating significant CXC chemokines across all groups.  1202 

 1203 

Figure 5 Fibroblasts differentially regulate p53, pRb, and histone related 1204 

expression. 5A. N/Tert-1 (lanes 1,2) N/Tert-1+E6E7 (lanes 3,4), N/Tert-1+HPV16 (lanes 1205 

5,6) cells were seeded on day 0 and grown in the presence or absence of J2s for 1 week. 1206 

Cells were washed to remove J2s in noted conditions, trypsinized, lysed, and analyzed via 1207 

western blotting for pRb, p53, and γH2AX. GAPDH was utilized as a loading control. 1208 

5B. Heat map demonstrating significant p53 GO enrichment all groups. 5C. N/Tert-1, 1209 

5D. N/Tert-1+E6E7, and 5E. N/Tert-1+HPV16 were grown in the presence or absence of 1210 

J2s for 3 weeks. Time course of p53 RNA is presented at fold control of day 1. 5F. Heat 1211 

map demonstrating significant pRb RNA enrichment all groups. 5G. Heat map 1212 

demonstrating significant histone RNA enrichment in all groups. 1213 

 1214 

Figure 6. Fibroblasts differentially regulate cell cycle, tissue development, and stress 1215 

response related GO enrichment. 6A. Heat map demonstrating significant GO:0022402 1216 

cell cycle progression across all groups. 6B. Heat map demonstrating significant 1217 

GO:0007049 cell cycle across all groups. 6C. Heat map demonstrating significant 1218 

GO:0051301 cell division across all groups. 6D. Heat map demonstrating significant 1219 

GO:1903047 mitotic cell cycle progress across all groups. 6E. Heat map demonstrating 1220 

significant GO:0000278 mitotic cell cycle across all groups. 6F. Heat map demonstrating 1221 

significant GO:0010564 regulation of cell cycle process across all groups. 6G. Heat map 1222 
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demonstrating significant GO:0051726 regulation of cell cycle across all groups. 6H. 1223 

Heat map demonstrating significant GO:0009888 tissue development across all groups. 1224 

6I. Heat map demonstrating significant GO:0006950 response to stress across all groups. 1225 

 1226 

Figure 7. Fibroblasts support viral RNA expression and episomal maintenance in 1227 

HPV+keratinocytes. 7A. N/Tert-1+HPV16 cells were grown in the presence or absence 1228 

of J2s for 1 week. Cells were washed to removed J2, then lysed and analyzed for DNA 1229 

expression of E2 and E6 via the exonuclease V assay, in comparison to GAPDH and 1230 

mitochondrial DNA controls. Results are presented as percent integration as calculated 1231 

from the cut ratio of matched GAPDH. **P < 0.01. 7B. Differential expression data from 1232 

RNAseq from average normalized reads of E6, E7 ,E2, and E5 matched to HPV reference 1233 

genome. Exact significance is presented for each (student’s t-test), NS represents no 1234 

significance. 7C-E. qPCR time course validation of E2 and E6 RNA expression in 1235 

N/Tert-1+E6E7 and N/Tert-1+HPV16 in the presence or absence of J2 for 3 weeks, 7D is 1236 

presented in log scale. *P < 0.05. **P < 0.01. 1237 

 1238 

Figure 8. Differential expression Venn diagrams comparing significant up or down 1239 

regulation via fibroblasts in RNA-seq and proteomic analysis. The sum of all the 1240 

numbers in the circle represents the total number in the compared groups, and the 1241 

overlapping area indicates the number of differential genes shared between the groups, as 1242 

shown in the following figures. 8A,B. Cross comparison of N/Tert-1 downregulation, and 1243 

upregulation, respectively via fibroblasts. 8C,D. Cross comparison of N/Tert-1+E6E7 1244 
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downregulation, and upregulation, respectively via fibroblasts. 8E,F.  Cross comparison 1245 

of N/Tert-1+HPV16 downregulation, and upregulation, respectively via fibroblasts. 1246 

 1247 

Figure 9. RNA-seq and proteomic cross comparisons demonstrate fibroblasts 1248 

differentially regulate GO enrichment in relation to innate immune function and 1249 

cell-cell adhesion. 9A. Heat map demonstrating significant GO:0006955 immune 1250 

response across all groups. 9B. Matched heat map analysis of significant proteome 1251 

alterations of GO:0006955 across all groups. 9C. Heat map demonstrating significant 1252 

GO:0098609 cell-cell adhesion across all groups. 9D. Matched heat map analysis of 1253 

significant proteome alterations of GO:0098609 across all groups. Dotted lines are added 1254 

to help visually compare similar matched sets. 1255 
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