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Comparative cognition aims at unfolding the cognitive pro-
cesses underlying animal behavior and their evolution, and
is concerned with testing hypotheses about the evolution of
the brain and intelligence in general. It is a developing field
still challenged by conceptual and methodological issues.
Systematic cross-species comparisons of cognitive abilities,
taking both phylogeny and ecology into account are still
scarce. One major reason for this is that it is very hard to find
universally applicable paradigms that can be used to investi-
gate the same cognitive ability or ‘general intelligence’ in
several species. Many comparative paradigms have not paid
sufficient attention to interspecific differences in anatomical,
behavioral and perceptual features, besides psychological
variables such as motivation, attentiveness or neophobia, thus
potentially producing misrepresentative results. A new stance
for future comparative research may be to establish behavioral
and psychological profiles prior or alongside to comparing
specific cognitive skills across species. Potentially revealing
profiles could be obtained from examining species differ-
ences in how novel experimental (extractive foraging) tasks
are explored and approached, how solutions are discovered
and which ones are preferred, how flexibly multiple solutions
are used and how much individual variation occurs, before
proceeding to more detailed tests. Such new comparative
approach is the Multi-Access-Box. It presents the animal with a
novel problem that can be solved in several ways thus offering
the possibility to examine species differences in all the above,
and extract behavioral and perceptual determinants of their
performance. Simultaneously, it is a suitable paradigm to
collect comparative data about flexibility, innovativeness and
problem solving ability, i.e., theoretical covariates of ‘general
intelligence’, in a standardized manner.

Understanding the function, development and evolution of
complex brain structures, remains a major scientific undertaking
involving numerous disciplines and viewpoints.1 The contempo-
rary field of ‘comparative cognition’ is concerned with how
different species acquire, process, store and use information
from their environment and how in turn the environment has
shaped these cognitive processes in the course of evolution.2,3 By

comparing cognitive adaptations to ecological and social environ-
ments in distantly and closely related species, comparative cogni-
tion may also permit the testing of hypotheses about convergent
neural structure evolution in large brained animals.4,5

Yet, such systematic cross-species comparisons taking both
phylogeny and ecology into account (such, for example, as the
studies by Balda and Kamil;6 Balda et al.;7,8 Bednekoff et al.;9

Clayton and Krebs;10,11 Olson et al.;12 Tebbich et al.)5 are only
in their early stages. Instead, comparisons of cognitive abilities
across different species emerge in the literature typically either
prompted by the discovery of hitherto uncharted abilities on
certain taxa or through the expansion of an established paradigm
to other species, often without consideration of the different
ecological backgrounds. Thus, much of the published comparative
work as yet consists of reports of specific cognitive abilities in
different species in a yes/no tick list manner but without
standardized testing procedures. Yet, unfolding the evolution of
cognitive abilities through comparative research is not unjustly
considered a notoriously complex and contentious topic. One
major methodological issue is the difficulty of finding universally
applicable paradigms that can be standardized and that are
ecologically valid for the species to be compared.4 Additionally,
the field is challenged by several other conceptual and methodo-
logical difficulties.

Conceptually, the comparison of cognitive abilities across
species is a delicate topic, since cognitive abilities may be func-
tionally related though mechanistically distinctive in different
species, particularly if their brains anatomies have diverged.
Furthermore, there are vast interspecific differences in perception,
manipulatory skills, motivation, etc that are methodologically
relevant.13,14 Research on cognitive abilities is typically focused on
the outward manifestation of potentially complex inner cognitive
processes that are to date not directly observable and quantifi-
able without MSR (which is so far impossible to administer in
unrestrictedly moving animals) and that may vary considerably
between species. They may consist of complex interplays of
different brain regions that could differ between species. An
even greater problematic applies to cross-species comparisons of
‘intelligence’, given that ‘intelligence’ ought to comprise flexible
interaction and integration of not just one, but many cognitive
abilities and associated processes. Accordingly, it is hard to
pinpoint and target certain cognitive abilities in order to compare
them across different species.
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Still more delicate and often neither meaningful nor revealing
are comparisons based on a linear scale of ‘intelligence’.15 Dif-
ferent species are adapted to different environments, and thus, at
the most, have been selected for qualitatively different forms of
‘intelligences’, which they employ in specific situations. This has
also been termed domain-specific intelligence1,3,16-18 meaning that
cognitive abilities can be restricted to specific contexts in which
they occur.

The notion of ‘(domain-) general’ or ‘overall’ intelligence’ in
contrast suggests that cognitive abilities could also be expanded
to several domains and may allow species to behave flexibly,
innovate, solve novel problems and thus cope with changes to
their environment.19-22 Recent demonstrations that species differ
in behavioral flexibility and propensity to adopt novel foraging
behaviors, have revived discussions of overall animal intel-
ligence.23,24 The predominant approach to investigate this has
been to take innovation rate as proxy for intelligence25-29 and
indeed correlation of overall brain size and/or size of the forebrain
and rate of innovation were found in several animal groups
including birds.23 Yet, these results should be interpreted with
caution, given that that innovation rate was measured crudely3,30

that innovation does not necessarily involve intelligence (explora-
tion patterns can be equally important-see discussion below) and
that equating brain size with intelligence is too simplistic.3,24

With these caveats in mind and relinquishing any ranking
of intelligence, the question why and in how far species differ in
their ability to innovate and solve novel problems (abilities
commonly associated with general intelligence), and why these
abilities correlate with brain size, is valid to ask. The unconfirmed
hypothesis behind this, that also concerns the evolution of human
intelligence is that innovativeness, problem solving ability and
flexibility e.g., in extractive foraging, are selected for in certain,
e.g., unpredictable or harsh environments, because such species
would better adapt behaviorally and cope with the changing living
conditions than less flexible and innovative ones.30-32 This leads to
the idea that increased flexibility, innovativeness and problem
solving ability ultimately added up to what one might call a
‘general’ or ‘overall’ ‘intelligence’. Alternatively, this may be
affected by a species’ mode of exploration and trial- and –error
learning strategies; species that try more are clearly more likely to
acquire new behavioral strategies through individual learning.13,33

These questions can only be addressed by systematic com-
parative data on innovative problem solving and flexibility and a
standardized paradigm ecologically valid for a range of species.

Comparing Problem Solving: Different Approaches

Apart from the correlation studies mentioned above, the ability
to innovate and solve novel problems flexibly, proxies for
flexible cognitive capacities and potentially for domain-general
intelligence, have not been investigated comparatively. Few
experimental studies have specifically focused on innovativeness,
and flexible problem solving per se.5,13,29,34-36

The majority of experiments in animal cognition, in both the
physical and social domain, present animals with specific pro-
blems and investigate how the animals solve them in order to

examine specific cognitive abilities/processes. These can be
physical tasks,37 social situations38-40 or time related.41,42 Mostly,
these tasks have been tailored to be ecologically valid for one
particular species, or have focused on contexts/ questions so
specific that they could not be reproduced in other species easily
(e.g., dolphins43 ; food-storing srub jays11).

Other problem solving tasks, particularly in physical cognition,
have secondarily become comparative paradigms and have been
established as so-called ‘benchmark tests’ for examining the
existence of certain cognitive abilities in different species, e.g., the
‘trap-tube’44 for examining an understanding of causality in terms
of surface continuity, Povinelli’s37 cane task and Heinrich’s45

‘string-pulling task’ for testing responsiveness to connectivity etc.
Most of these typically started off from a single experiment
designed for testing a particular species and some subsequently
applied to other species, sometimes without paying sufficient
attention to species differences in morphological (hand or beak),
behavioral (e.g., object exploration, affordance learning) and
perceptual features (e.g., field of vision), in addition to psycho-
logical variables (such as motivational, emotional or attentional
states, inhibitory control or neophobia/neophilia). Yet all these
factors can potentially have a big impact masking cognitive skills
actually present in a species and producing misrepresentative
results.

Another methodological problem of comparative cognition is
that paradigms are applied to many species, but with slightly
converted methodologies (better fitting the newly compared
species’ demands), hence at a cost of comparability. If the metho-
dology is not standardised, it is hard to interpret the findings of
comparative studies, because any detected differences between
species could be owing to the different procedures. An odd
handicap for comparative cognition in this context appears to be
that modification or ‘improvement’ of an already used compar-
ative paradigm, instead of merely replicating it in a new species,
may increase the chances of a study to become published. Often
however, a direct comparison would have been scientifically
more valuable than yet another improvement to an existing
experimental paradigm. Recently, this has been acknowledged
and several research groups have begun to run comparative
studies with the exact same methods.46-48

The difficulty of comparative cognition therefore is to find
comparative paradigms that are compatible with many different
species (i.e., that are ecologically valid for all the species to be
compared, and not influenced by potentially confounding species-
specific variables), and that have a standardised methodology that
can be applied to different species in exactly the same way.

Because of the potentially confounding impact of different
methodologies, the same cognitive ability should be investigated
with not just a single but several tests with slightly different angles
in any given species.1,49 Recently, comparative studies carry out
entire batteries in different species tests, e.g., those comparing
cognitive abilities in the social and physical domain.46,50 Yet,
what is missing is to have a battery of tests establishing species
differences that might affect performance in different cognitive
tests, such as object exploration, motivation, attentiveness and
fear/neophobia.51
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The Multi Access Box Approach

A new such comparative approach is the Multi-Access-Box
(MAB), recently published in PLoS One (see Fig. 113). It presents
the animal with a novel problem that can be solved in four
different ways, thus offering the possibility to examine species
differences in how novel problems are perceived, explored and
approached and in which order solution(s) are discovered. This
provides several data that can be used for establishing a behavioral
(e.g., object exploration,) and psychological profile (e.g., motiva-
tion, flexibility, impulsivity, persistence, inhibitory control) and
hence extract behavioral and perceptual determinants of different
species’ performance in the tasks. Simultaneously, it is a suitable
paradigm to collect data about problem solving ability, innova-
tiveness and flexibility, i.e., theoretical covariates of ‘general
intelligence’, across species in a standardized manner.

The MAB approach comprises not just one but several solu-
tions to an extractive foraging problem at the same time (food out
of reach in the center of a transparent box), i.e. it consists of a
battery of alternative tasks that all lead to the same goal. Two
solutions (opening a window and pulling a string) could be
discovered by haptic exploration (touching the box at particular
sites), while the other two additionally required the handling of
objects, either wooden sticks or marbles, as tools (inserting a ball
or a stick tool into specific openings).

The other important feature of the MAB is that subjects were
forced to continue exploring alternative solutions, once they
had successfully discovered and consistently used one particular
solution, by blocking the one in use. This creates an order system
which allows to detect species differences in which tasks are
approached and explored first and how, how many solutions are
discovered and how fast, whether and how quickly the subjects
switch between options or whether they focus or settle on
particular ones, as well as which tasks are problematic and why.
In this manner we can detect not only species differences in
problem solving performance, but also learn about the various
underlying non-cognitive factors that may affect it. Although
designed for large scale comparisons of different closely- and
distantly related species from different ecological backgrounds,
the initial MAB study compared just two avian species from
different families, a corvid, the New Caledonian crow (NCC;
Corvus moneduloides) and a parrot, the kea (Nestor notabilis) (see
Fig. 2). Both species are known for their large brains, their
innovativeness and problem solving skills, but NCCs are natur-
ally tool-using species while kea have not been observed to use
tools in the wild, but are famous for their neophilia. Subjects
were exposed to the transparent MAB with the food reward in
the center, which could be extracted by the four different
methods corresponding to the four walls of the box. Once a
method was mastered, it was blocked and the bird’s performance

Figure 1. Multi Access Box (MAB) (as in PLoS ONE,13 Copyright 2011 by the Public Library of Science. Reprinted with permission of the author). A food
reward presented in the center of a transparent box can be retrieved by one of four possible methods, which are built in the four walls of the MAB:
opening a window, pulling a string, inserting a ball or inserting as stick tool. The walls can be replaced with blocked non-functional versions.
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in reaching criterion in any of the others was recorded until all
four methods had been discovered.

Auersperg et al.13 found that one kea and one NCC detected all
four solutions, demonstrating that the solutions offered were
within both species’ capacity. The kea were much quicker in
discovering multiple solutions than the habitually tool-using
NCCs and showed more individual variation. The keas were also
more flexible once openings were blocked, switching to other
solutions much quicker than the NCC.

Innovation rate as well as performance in this paradigm were
strongly impacted by differences in exploration technique and
neophilia rather than by cognitive discrepancies. The highly
neophilic kea explored the apparatus more in a haptic than in a
visual manner. They found its functional properties, while mani-
pulating the affordances31,52 of the MAB they perceived as most
salient. In contrast to the kea and probably due to their more
visually guided exploration technique, the NC crows had
problems solving the window solution. The window mechanism
could not be deduced by visual inspection alone (without
knowledge of hinge-mechanisms), but could be readily discovered
by haptic exploration. Another difference was that the NC crows
tended to persist with the first option that worked, whereas the
kea, owing to their higher level of neophila, switched between
solutions.

Differences in beak morphology also affected the birds’ per-
formance: the kea had problems maneuvering the stick tool
because of their beak curvature, whereas the crows with their
straight beaks had a good grip of the tools. Yet, the NC crows
used their straight beak more for pecking than tearing actions,
which would have been advantageous in detecting the MAB
apparatus’s affordances in case of the window option (grasping
and pulling the window crank).

An important new tool that could be incorporated in the
MAB procedure and that could be revealing in comparisons of
flexible problem solving may be ‘reversal learning’.5,53-55 Species
with different ecological backgrounds may have been selected
for different strategies in trial and error learning and problem
solving. In terms of energy pay-off it may, under certain
circumstances, be advantageous to persist (e.g., in the case of
NCCs fishing for particularly nutritious wood-boring beetle
larvae in rotten wood as, which can take considerable time but
has a high potential return).56 In other contexts it may save energy
to give up if something does not work and try something else
instead. Reversal learning tasks reflect differences in flexibility
and are informative of how fast animals can adjust their behavior
to new external feedback, let go of previously reinforced
behavioral patterns, but at the same time they offer a measure
of persistence.

Figure 2. Kea and New Caledonian crow using the stick (left) and the ball-shaped (right) tool on the Multi Access Box.
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To illustrate how reversal learning could be implemented,
we present some data not published in the original Auersperg
et al.13 paper. Once a subject had discovered all solutions, we
incorporated a reversal learning task for the two solutions
incorporating a tool (see Fig. 2). For the two successful subjects,
Uék, a NCC and Kermit, a kea, the last used tool option was
blocked and the previous tool option was reopened. The results
are presented in Table 1. As can be seen the crow required
a similar amount of trials to relearn the previous option as the
kea, although of course data on more individuals would be
desirable.

The outcomes of Auersperg et al.13 illustrate how even diminu-
tive differences in non-cognitive behavioral components such as
neophilia or morphology can mask and/or interfere with the
respective cognition involved and impact on the species’ per-
formance. It highlights how different performance in problem
solving task are not always symptomatic of species differences
in cognitive ability or general intelligence. It highlights in
particular, what major impact differences in object exploration
(haptic or visual exploration mode) and affordance learning,
which have only recently become a topic in animal cognition,

can have on performance in artificial experimental tasks, and
hence how this affects the comparability of two species in the
same task.

In future comparative research, establishing behavioral and
psychological profiles of the species to be compared ought to
precede comparative tests of specific cognitive skills or general
intelligence. This may help to identify problem solving tasks that
are equivalently applicable to the target species and hence achieve
a high degree of ‘comparability’ of the obtained data.

Table 1. Reversal sessions for the two subjects (Uék = NCC; Kermit = Kea),
which reached in all solutions of the Multi Access box. Session number in
which reversal took place. Number of trials to reach criterion (9/10 correct)

Reversal trials

Subject
From Ball
to Stick

From Stick
to Ball

From Window
to Stick

Uék Session No. 15 14 13

No. of trial to criterion 14 20 12

Kermit Session No. 12 11 -

No. of trial to criterion 20 13 -
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