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Abstract

Linkage effects in a multi-locus population strongly influence its evolution. The models

based on the traveling wave approach enable us to predict the average speed of evolution

and the statistics of phylogeny. However, predicting statistically the evolution of specific

sites and pairs of sites in the multi-locus context remains a mathematical challenge. In par-

ticular, the effects of epistasis, the interaction of gene regions contributing to phenotype, is

difficult to predict theoretically and detect experimentally in sequence data. A large number

of false-positive interactions arises from stochastic linkage effects and indirect interactions,

which mask true epistatic interactions. Here we develop a proof-of-principle method to filter

out false-positive interactions. We start by demonstrating that the averaging of haplotype

frequencies over multiple independent populations is necessary but not sufficient for epi-

static detection, because it still leaves high numbers of false-positive interactions. To com-

pensate for the residual stochastic noise, we develop a three-way haplotype method

isolating true interactions. The fidelity of the method is confirmed analytically and on simu-

lated genetic sequences evolved with a known epistatic network. The method is then

applied to a large sequence database of neurominidase protein of influenza A H1N1

obtained from various geographic locations to infer the epistatic network responsible for the

difference between the pre-pandemic virus and the pandemic strain of 2009. These results

present a simple and reliable technique to measure epistatic interactions of any sign from

sequence data.

Author summary

Interactions between genomic sites create a fitness landscape. The knowledge of topology

and strength of interactions is vital for predicting the escape of viruses from drugs and

immune response and their passing through fitness valleys. Many efforts have been

invested into measuring these interactions from DNA sequence sets. Unfortunately,

reproducibility of the results remains low due partly to a very small fraction of interaction

pairs and partly to stochastic linkage noise masking true interactions. Here we propose a
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method to separate stochastic linkage and indirect interactions from epistatic interactions

and apply it to influenza virus sequence data.

Introduction

About a century ago, it was realized that the evolution of a population is strongly affected by

the fact that the fates of alleles at different loci are linked unless separated by recombination.

These linkage effects include clonal interference [1,2], background selection, genetic hitchhik-

ing [3], enhanced accumulation of deleterious mutations (Muller’s ratchet) [4], and the

increase of genetic drift at one locus due to selection at another [5]. Linkage decreases the

speed of adaptation and creates random associations between pairs of mutations occurring on

the same branch of the ancestral tree.

These effects have been taken into account in early mathematical models considering two

loci [6] and, more recently, in the traveling wave approach, which describes an arbitrarily large

number of linked sites [7–12]. These models describe the dynamics of fitness classes and

include the factors of selection, mutation, random genetic drift and recombination [13–16].

All these models predict a narrow fitness distribution traveling in the fitness space in a direc-

tion depending on the initial conditions and parameters [17,18]. This "traveling wave" consists

of the deterministic bulk and the leading stochastic edge, where the generation and establish-

ment of rare beneficial mutations limit the adaptation rate. Alternatively, the distribution may

move backwards accumulating more and more deleterious alleles (Muller’s ratchet). These

models are able to express, in the general form, important observable quantities in terms of

model parameters, such as the population size, mutation rate, and the distribution of selection

coefficients over loci. The observable quantities include the adaptation rate [7–10], Muller

ratchet rate [7,9], the conditions of full equilibrium [7,19], fixation probability of an allele, and

the most probable selection coefficient [12]. The same general approach was used to predict

the statistical properties of the ancestral tree [15,16,20–22].

Despite of all the progress, prediction of the evolution of specific sites in the multi-site con-

text remains an open question. How do allelic frequencies at each site change in time when the

system is adapting? Although the dependence of allelic frequencies on time is stochastic due to

the combined effects of selection, random drift, and linkage, what can be said about the aver-

age allelic frequency of a given site with a given fitness effect of mutation? Also, what can we

say about the evolution of site pairs, especially in the presence of epistatic interaction?

Epistasis defined as the interaction of genes and gene regions contributing to phenotype is

an omnipresent phenomenon [23]. Gene interactions are reported to be responsible for a con-

siderable fraction of the organism’s genetic inheritance [24]. They create fitness valleys in the

evolutionary path [25]. In pathogens, epistasis facilitates the development of drug resistance

and immune escape and impedes reversion of drug-resistant mutations [26–31]. Most of HIV

variation in untreated patients has been argued to arise from mutations compensating early

immune escape mutations [32].

Pairwise epistasis can be measured from binding free energy [33] and measuring fitness

gains [34]. A large number of approaches have been proposed to measure epistasis from geno-

mic data [35–37]. The simplest methods are based on pairwise allelic correlations [5,38]. The

problem with all these approaches is that linkage and indirect interactions create strong inter-

site associations even between non-interacting locus pairs, and these false-positive pairs are

much more numerous than the true epistatic pairs. Stochastic effects are well-recognized as

the most serious obstacle to the detection of epistatic effects [39]. In a single asexual
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population, stochastic linkage completely overshadows the epistatic footprint, except in a nar-

row range of times and parameters [40]. The same limitation exists for the tree-based methods

of detection [41,42].

A method to eliminate false-positive links arising due to indirect epistatic interactions in

the absence of linkage has been developed and successfully applied to protein sequences iso-

lated from different species [43,44]. A similar technique has been applied to the fitness land-

scape of antibody-binding regions of HIV protein gp120 [45]. However, none of these

methods enable reliable measurement of epistasis in asexual populations or in sexual popula-

tions at close loci from the same species [39]. Any attempt to detect epistasis, whether by using

covariance measures (D0,r2, mutual entropy, universal footprint of epistasis (UFE) [46]) or the

tree-based methods [42] faces the same problem, the overwhelming linkage effects. The exist-

ing methods are based on the approximation of quasi-linkage equilibrium which neglect link-

age effects assuming the limit of strong recombination (see [47] for review).

As we have shown in [40], the increasingly dominant effect of linkage over epistasis in alle-

lic associations results from the random divergence of independent populations in time, so

that all sequences are similar to their most recent common ancestors, and the common ances-

tors move away from the origin and from each other along stochastic trajectories [40]. As a

result, any measure of co-variance, or even the use of the entire tree, produces only strong

noise of random sign. Co-variation due to random linkage completely masks the epistasis sig-

nature in a population. The only way to resolve this issue is to average the haplotype frequen-

cies over many independent populations with similar parameters under similar conditions.

Without sampling multiple populations, it is not possible to infer epistasis in principle, due to

the stochastic nature of phylogenetic relation of sequences. This fundamental limitation result-

ing from random phylogeny [40] cannot be resolved by any existing or future method. Fur-

thermore, as we show below, even 200 populations may be not enough to eliminate the false-

positives in a system of 40 loci. The contribution of the present work is not to overcome this

fundamental limitation, which is not possible in principle, but to demonstrate the existence of

a large number of residual false-positive interactions left after averaging over an ensemble of

20 to 200 populations, and to propose a new method to eliminate these false links.

The new technique is based on the use of three-way haplotypes. The basic idea behind this

method is that demanding a majority allele at a neighbor site of a measured pair of sites inter-

rupts a “detour”, i.e., a path along interacting sites that creates a false-positive interaction for

the pair of interest. In other terms, the additional condition splits the genome into indepen-

dent blocks.

The high fidelity of this detection technique is demonstrated below by using two parallel

methods: analytic derivation for a simple network topology and Monte-Carlo simulation. The

analytic derivation makes no assumptions about the range of E or sign or epistasis. The simula-

tion example considers compensatory epistasis, 0<E<1, but the technique applies at any value

of E, including negative epistasis.

Then, we apply the method to real virus sequences from an adapting population. Influenza

virus evolving in a human population can be mapped onto the traveling wave theory with an

effective selection pressure caused by accumulating memory cells [48,49]. Therefore, it is

expected to be amenable to our method. Using more than 8000 influenza sequences obtained

from various geographic locations, both before and after the pandemic of 2009, we use our

method to predict the epistatic interactions among alleles from their observed associations by

isolating them from linkage effects in a surface protein, neurominidase. We chose this specific

protein, because it underwent strong changes when it was replaced by a new strain in 2009.

The old strain and the pandemic strain of H1N1 share 80% of homology. This indicates that,

at some point in the past, the two strains had a common ancestor.
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We infer the primary and compensatory mutations that allowed the new strain to outcom-

pete the old strain. The method cannot infer the order in which these compensatory mutations

have emerged but only the resulting network. In a similar fashion, epistatic networks in some

common proteins are estimated from the comparison between their sequences in long-

diverged species neglecting linkage effects [43,44]. The difference in our case is that our

approach does not make such an assumption and eliminates linkage effects as well.

Thus, the aim of our theoretical paper is to offer a new method of epistatic detection based

on an analytic derivation, test it on simulated sequence data, apply it to a real sequence set, and

make a testable prediction for a protein network. We do not aim to describe the evolution of

H1N1 influenza strain in detail leaving it for other projects.

Results

Simulation model to generate sequences for the test

We start by simulating the evolution of a haploid asexual population using a Wright-Fisher

process including the factors of random mutation, random genetic drift, and constant direc-

tional selection (Fig 1A) (Methods). We assume two possible alleles at each locus (site), 0 and

Fig 1. Schematic diagram of the method and its testing on simulated sequence data. A. The computer model of asexual evolution includes the factors of random

mutation, selection, epistasis, and random genetic drift. Pairwise haplotype frequencies fij are averaged over simulation runs (independent populations). The pairwise

correlation measure UFEij is calculated from Eq 1. The indirect links and the residual linkage are detected and filtered out by using the tri-way correlation measure,

UFEij0, from Eq 2. B. Pre-set epistatic network for 50 sites. Green curves: real epistatic interactions. Red lines: indirect interactions. Blue lines: examples of stochastic

linkage effects. C-D. The network of strong (UFEij> 0.5) candidate epistatic interactions predicted (C) from a single population and (D) after averaging over 200

populations. E. Scatter plot of the three-way haplotype, min(UFEij0) shown against UFEij for the pairs identified in (D). The dashed sector corresponds to the direct

interactions. The upper dashed line is the diagonal, UFEij = UFEij0, and the lower dashed line separates direct and indirect interactions. F. Predicted network accurately

recapitulates the pre-set epistatic network. Parameters: initial allele frequency f0 = 0.45, mutation rate per genome μL = 0.07, fixed selection coefficient s = 0.1, N = 1000,

L = 40, epistatic strength E = 0.75.

https://doi.org/10.1371/journal.ppat.1009669.g001
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1, where 1 stands for an allele that decreases the logarithm of fitness by a fixed value s�1 when

it does not interact with any other sites. The effects of variable selection coefficients are

addressed elsewhere [12,50]. The binary simplification provides a major reduction in the

computational cost and is accurate for relatively conserved sequences. We let some pairs of

sites to interact epistatically, with a mutual degree of compensation between deleterious alleles

chosen to be E = 0.75.

We consider a simple epistatic network consisting of double arches (Fig 1B). The network

has three types of correlations: direct interactions, indirect interactions, and linkage, as shown

by different colors. If the first and the second loci interact, and the second loci and the third

loci interact, this leads to correlations between the allelic composition at the first and third

loci, even though they do not interact, termed "indirect interaction". In addition, any pair of

loci correlates due to linkage, i.e., having a common ancestor. A more complex network is dis-

cussed later on.

First step: Averaging over populations

Genome sequences produced by the simulation demonstrate the presence of strong pairwise

correlations between the allelic composition of different loci originating from three sources:

direct epistatic interaction, indirect interaction, and stochastic linkage effect. Our first task is

to detect all potential epistatic interactions using correlation analysis. As we mentioned, their

detection is masked by strong stochastic linkage arising from common ancestors [40]. To

decrease linkage effects, for each pair of sites (i, j), we calculate pairwise haplotype frequencies,

f ijab, where α,β = 0 or 1, and then we average them over multiple evolutionary-independent pop-

ulations of the same size. Then, we calculate a metric termed “universal footprint of epistasis”

(UFE)

UFEij ¼ 1 �
logðf11=f00Þ

logðf01f10=f00

2
Þ

ð1Þ

where f00, f10, f01, f11 are the haplotype frequencies averaged over the ensemble of populations

(we dropped indices i, j). More traditional correlation measures, such as D’ and Pearson coeffi-

cient r2, have been shown to generate similar stochastic noise [40]. As compared to these mea-

sures, UFEij has the unique advantage of directly measuring the degree of mutual

compensation of two alleles for infinite averaging, UFEij = E, provided the interacting pair is

epistatically isolated from the other sites [46]. Because the logarithms in Eq 1 diverge when

one of the four haplotype frequencies is zero, we consider only site pairs such that all four fij
are larger than fcut, where fcut� 1 is a low cutoff, which is set below at fcut = 0.05.

Next, we keep only pairs with sufficiently high correlation, UFEij> 0.6 (we remind that we

set E at 0.75). For a single population, the raw graph of inferred pairs is extremely complex and

completely hides true epistatic interactions (in this case, 24 interactions) (Fig 1C). For a

genome longer than L = 40 we took here, it would be even worse. A significant reduction of

the number of false-positive interactions is obtained by averaging fij over 200 independent

populations (Fig 1D). However, we can see that the vast majority of remaining links are still

false-positive, because their number is still much higher than the number of actual interactions

(Fig 1B, green arches).

Step 2: Three-way correlation

To clean the network from residual false-positive links caused by incomplete averaging over

ensemble, we can either try to average over tens of thousands of independent populations,

which are never available in real life, or use a trick, as follows.
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The idea of the procedure is based on the fact that false-positive links are created by

"detours" around pairs of sites, such as chains of indirect epistatic interactions or sites linked

due to the common phylogenetic origin (red and blue curves in Fig 1B). To break up the asso-

ciation created by detours, we demand that a neighbor site of the site pair of interest is 0 (bet-

ter-fit, wild-type) and recalculate the correlation. If that neighbor site happens to be at the

most important detour, this condition will break up or, at least, decrease the indirect correla-

tion. Direct interactions are affected by such an additional condition to a smaller extent (if at

all). Thus, for each connected pair i, j, we calculate the three-way measure

UFEij0 ¼ 1 �
logðf110=f000Þ

logðf010f100=f000

2
Þ

ð2Þ

where 0 in the third position selects the sequences with the consensus allele 0 at a chosen site

adjacent to one site of the tested pair. We consider all possible connected sites, one by one, as

the 0-node and calculate the minimum value of UFEij0 over all possible 0-nodes, min(UFEij0).

Finding the minimum not only detects a detour but also finds the most important detour if

there is more than one. Thus, we can identify and remove false-positive links as those with a

low ratio min(UFEij0)/UFEij.
For every potential link between sites i and j detected in Fig 1D, we calculate min(UFEij0)

(Fig 1A, bottom). The scatter plot in Fig 1E demonstrates that, for the false-positive pairs, min

(UFEij0) is several-fold smaller than UFEij (red dots in Fig 1E). For true links (green dots in Fig

1B and 1E), the two correlation measures are nearly the same. The choice of the threshold in

min(UFEij0)/UFEij (low dashed line in Fig 1E) is not crucial, as long as we average the haplo-

type frequencies over at least ~20 populations (for our parameter choice). In this case, the two

groups, false-positive and true interactions, remain distinct. The end result is 100% perfect

detection (Fig 1B). As a bonus, we obtain accurate estimates for the compensation strength:

UFE� E within 15% accuracy (Fig 1F, numbers at green links).

In our previous paper [40], we showed that averaging over dozens of populations is

required to isolated epistatic links. In our example in Fig 1, we demonstrate that, at L = 50 sites

and moderate population sizes, a half of false-positive links remain even after 200 populations.

The present method provides 100% fidelity at L = 40 sites or less, for the number of replicate

populations between 20 and 200, and epistatic strength E = 0.5−0.75. Performance drops

sharply at E< 0.25.

Analytic results

In the Methods, we show analytically that min(UFEij0)�min(UFEij) for indirect interactions,

as given by

UFEij �
1

4ð1 � EÞ

UFEij0 � 0

and that this condition can be used to eliminate indirect interactions analytically, in the

general form. In the analytic derivation, we assume that the system is under directed selection

and in the multiple-mutation regime (the traveling wave regime), which takes place if

log(NU)� log(s/U) [12]. In this regime, selection sweeps at many sites overlap in time and

interfere with each other [7]. We also assume that the population is far from mutation-selec-

tion-drift equilibrium, so that deleterious mutation events are negligible. The derivation given

in the Methods applies at negative values of E as well, but we focus on positive E, which case is
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termed "diminishing returns epistasis". The reason for this choice is strong effects of epistasis

and strong indirect interactions in this region. The analytic derivation applies at any E< 1,

i.e., below the full compensation point, which covers all basic types of epistasis.

We also repeated this derivation for a more complex topology of closed squares (S1A Fig).

Here indirect interaction occurs between the opposite corners of the square, and direct inter-

action between the sites of one side. This topology is more complex, because it has a loop, and

there are two paths connecting the opposite corners. The results show that at E> 1/3, the mag-

nitude of direct and indirect correlations is the same. The 3-way correlation method decreases

indirect correlation to a larger degree, which can be used to tell the direct and indirect correla-

tions apart (S1B Fig and S1 Table). Thus, the 3-way method is robust with respect to a topol-

ogy. The difference from the double-arch case is that indirect correlation does not disappear

completely and remains of the same order of magnitude as the direct interaction. This is espe-

cially true if E is close to the full compensation point (in this case, E = 1/2). Because, in real bio-

logical systems, the value of E varies broadly across pairs, such a difference may be not enough

for the reliable detection of the true links demonstrated above for a loop-less topology. The

natural way to address this issue is to add another 0 and measure a 4-way correlation to inter-

rupt both equal detours connecting the two points. This trick, indeed, removes indirect inter-

actions completely in the entire interval of E, as given by UFE00
ind � 0 (S2 Fig and S1 Table).

For the general topology with many loops, the number of the additional zeros required to

kill an indirect interaction completely is equal to the number of directions in which a detour

can occur (the connectivity parameter). For example, if a chosen site of interest has six neigh-

bor sites with strong correlation (direct or indirect, we do not know), and three of them create

a distinct detour to the other site of interest, we would need to add three zeros and calculating

the minimum over all possible combination. Therefore, to decipher a very complex network,

one needs to add extra zeros iteratively around sites with many neighbors and see if anything

has changed at each point. In the example with virus data below, a loopless network emerges

already after the three-way test.

Application to influenza A virus

After testing our method analytically and on simulated sequences, for the sake of demonstra-

tion, we now infer an epistatic network for an evolving viral population. Our choice is the sur-

face protein of Influenza A H1N1, neuraminidase (NA), important for virus infectivity and an

important target of drug therapy and immune response. This protein is one of two proteins

that control the virus entry into a host cell (the other is Hemaglutinin).

Our aim is to identify mutations and their interactions that allowed the pandemic strain of

2009 to outcompete the pre-2009 strain. For this aim, we compared the sequences of the first

strain to the sequences of the second strain, both sampled worldwide from dozens of locations.

In order to be able to apply our method, we assumed that various local populations are nearly

independently evolving, and migration between them is very slow.

Although they are not actually independent, but represents parts of one metapopulation,

this is the best approximation one can obtain in any study working with world pandemics

data.

We have used about 8000 sequences found in the cited database for the period 2000–2010

from various geographic locations. Our goal was to understand the difference between the

strains before and after pandemic of 2009, which have 80% of mutual homology. We wished to

infer only the epistatic sub-network related to that difference. For this end, we compared

worldwide samples of sequences from the two strains. We randomly sampled similar amounts

of sequences from the first and second strains, and re-sampled them several hundred times.
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We also checked the robustness of the results to the exact sampling size (Fig 1F). We have

observed that the old and the new strains are both diverse. The two strains evolved together

over several years, and the new strain gradually replaced the old strain. In terms of travelling

wave, that implies that we have two traveling waves with overlapping fitness distribution, one

is gradually waning over several years and replacing the other.

To simplify our task, we binarized the sequences by setting each consensus allele to 0 and

each non-consensus ("mutant") allele to 1. This simplification is adequate for the aim of detec-

tion of interactions, unless several amino acid variants are present at a site at similar frequen-

cies, which we found to be a rare occurrence. We considered only the sites that were strongly

polymorphic (>5%) and observed a bimodal distribution of sequences in the mutant allele fre-

quency per genome with two separate maxima of different height, at f = 0.05 and 0.2. The low-

frequency peak was taller. The bimodal distribution reflects the mixture of two strains, the old

and the new, with 80% homology. Thus, the old and the new strain differed in NA in about

100 sites, which is 20% of the length.

In order to compensate for unequal sampling from the pre-pandemic and pandemic strain,

the more abundant sequences with mutation frequency per genome less than a preset value,

f< dv, were randomly sampled and down-weighted by a coefficient, Dw, ranging from 5% to

50%. This procedure was done to balance the number of sequences sampled between the two

strains. To obtain the average pairwise haplotype frequencies, fij, we repeated the resampling

200 times.

Next, we followed the procedure described above in Fig 1C–1F and calculated the two-way

and three-way association UFE, Eqs 1 and 2, to infer the intra-protein network of interactions

(Fig 2). To avoid divergence, we have considered only pairs when all four haplotypes were

present in excess of a cutoff, fij> 0.05. The dependence of results on (dv, Dw), which infers

between 15 and 22 compensatory sites, originates from the unequal presentation of the two

strains in the database. We observe that slightly different weighting gives similar results within

a plateau region in Fig 2F. We choose cases C, D, E based on the robustness with respect to the

two sampling parameters seen as the broad plateau in the 2D diagram, see panels C, D, E.

These cases correspond to a roughly equal amount of each strain. If one strain is strongly over-

represented, the network disappears (Fig 2A and 2B). Below, we choose the network variant

shown in Fig 2D as the "golden middle" of the set.

A primary mutation and compensatory sites

We obtain that site 248 in NA represents the primary site connected to multiple compensatory

sites (Fig 2D). Thus, our three-way method, tested in simulation and analytically, shows that

the new strain that has outcompeted the old strain, only because it had a primary mutation

248 and many compensatory mutations. The network has the typical appearance of a fitness

valley network observed, for example, in HIV for drug-resistant mutations.

One might ask whether these inferred mutations in Fig 2 are simply a driving mutation

with hitchhiker mutations present in the invading strain. As easy to understand, in this case,

our method would give zero signal instead of the network inferred (Fig 2). To make this fact

obvious, we consider an extreme example, where the population represents a mix of the uni-

form old and uniform new strain. We focus on the part of the genome where the two strain dif-

fer, for example, 101100. . . and 010011 . . ., respectively. These differences can be either due to

driving or hitchhiking mutations. Note that, for any pair of these sites, only two haplotypes fij
out of the four are present. For example, for the first and second sites, we have haplotypes 10

and 01. Hence, when calculating correlation UFEij and UFEij0 in Eqs 1 and 2, these pairs are

excluded from analysis due to the cutoff condition, fij> 0.05. Thus, by design, our method
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does not measure the difference between strains, but only a specific type of association between

the fluctuations of alleles that is caused by epistasis.

Structural interpretation

It is instructive to place the inferred epistatic sites on a three-dimensional protein structure

(Fig 3). The active pocket of NA (purple) serves to bind sialic acid on target cell surface. We

observe that the inferred primary mutation at residue 248 is located near the active pocket.

The inferred compensatory mutations (Fig 2D) helping the mutant strain of NA to improve its

fitness are all located on the protein surface in α-helixes connecting and determining the

mutual orientation of β-sheets. Inferred primary mutation 248 was previously shown to

enhance the low-pH stability of NA [51]. It is ubiquitous in all influenza A H1N1 variants iso-

lated after the 2009 pandemic, regardless of a geographic location [52–54].

Unlike the epistatic links, the false positives are not linked to any specific biology or prox-

imity to 248. Linkage is indiscriminatory in this sense, as it is a simple consequence of

Fig 2. Epistatic network predicted from sequence data on surface protein sequences of Influenza A H1N1 obtained between years 2005 and 2010. The circular

diagrams show the network of interaction between variable amino acid sites in the neuraminidase protein. Sequences with homology to the consensus less than dv were

randomly re-sampled 200 times, with their number downweighted by coefficient Dw. (F) 2D heatmap showing the total number of links as a function of dv (X-axis) and

Dw (Y-axis). Different versions of wheels in A-E correspond to different choices of Dw and dv shown by crosses in F. All links have estimated E> 0.5. (A-E) Colors

correspond to different locations in the protein.

https://doi.org/10.1371/journal.ppat.1009669.g002
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stochastic phylogeny. Almost every pair of diverse sites in database is a potential false positive

interaction, see Fig 1C as an illustration.”

Discussion

In the present work, we propose an efficient evolution-based method to tell apart co-variance

caused by epistasis from co-variance caused by stochastic linkage effects due to common

inheritance and indirect interactions. First, we average the observed haplotype frequencies

over independent populations, then we select the links with a high co-variance, and then we

apply a tri-way haplotype test for each candidate link to eliminate the residual false-positives.

We validate the tri-way haplotype method using a simple analytical model (Methods) assuming

a quasi-equilibrium state created by a slowly-moving traveling wave. The existence of quasi-

equilibrium has been tested previously by simulation in a broad parameter range [46,50]. Intu-

itively, the distribution of alleles between sites has a sufficient time to attain the most probable

state, i.e., the state with largest number of possible sequences given fitness.

To demonstrate the high fidelity of the method in a controlled environment, we used a sim-

ulated sequence set evolved in a Wright-Fisher population with a known epistatic network. In

the case of a simple network topology and 40 loci, the method eliminated all false-positive

interactions.

To illustrate the application of our method, we averaged haplotype frequencies over influ-

enza H1N1 sequences obtained from a large number of geographic locations. We identified

Fig 3. Structural location of the predicted epistasis network for the neuraminidase of influenza virus. The figure

shows the three-dimensional structure of Influenza A H1N1 neuraminidase (PDB ID code 4QVZ). Colored spheres

represent predicted epistatic residues from Fig 2D. Red sphere: Predicted primary mutation (residue 248 in Fig 2D).

Orange spheres: Compensatory residues from Fig 2D.

https://doi.org/10.1371/journal.ppat.1009669.g003
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primary and compensatory mutations responsible for the post-2009 strain. We did not address

the origins or the history of the strain. We note that Influenza virus has been shown to map to the

traveling wave theory [48,49], which justifies the use of our method assuming directional selection

and the quasi-equilibrium assumption. Our results infer a single primary site and 15–20 strong

compensatory mutations, which number is in the same general range as the number of compensa-

tory mutations observed, for example, in drug-resistant strains of HIV. The inferred primary

mutation, 248, has been observed in all influenza A H1N1 strains after the 2009 pandemic in vari-

ous geographic locations [52–54]. It was shown to affect virus infectivity [51].

We did not find any empiric evidence in the literature for or against the inferred network

of compensatory mutations. Hence, we make a new testable prediction for a future experimen-

tal test. Primary site 248 can be predicted by simple alignment and is well studied experimen-

tally. Its compensatory sites, however, are impossible to detect in vivo without our method,

due to strong linkage noise. It would be very useful to compare these predictions with the

results of deep mutational scanning [55,56], which we hope will be available in the future.

It is worth noting that Influenza sequences represent a meta-population with many con-

nected islands, not a single well-mixed population, nor completely independent populations.

The approximation used in our work here is that the average over different geographic loca-

tions allows to obtain, at least, a partial average over the ensemble of independent populations.

It is unclear to which extent the lack of the full ensemble average affects the estimate, but at

least, we are able to compensate the residual linkage errors within that partial ensemble, some-

thing that has not been done before.

As compared to the existing techniques of elimination of indirect interactions, developed

for different animal species that diverged millions of years ago [43,44], our method is designed

for recently diverged populations (thousands of generations or less) of the same species and

recently emerged mutations. Furthermore, our method is capable of eliminating stochastic

linkage, which is of less importance when different species are compared. Where both methods

can be potentially applied, such as calculating the fitness landscape of HIV Ab-binding regions

[45], our method is much faster computationally, because it is local in the genome. Indeed, we

can consider one pair of loci at a time without the need of simultaneous optimization of L2/2

parameters of the full interaction matrix. Also, it helps to avoid the situation when the number

of fitting parameter is too large, and the system is over-defined.

The main limitation of the proposed approach is that it assumes constant directional selec-

tion, as opposed to balancing selection or time-dependent selection, such as occurs under

changing external conditions [57]. While the evolution of influenza in a population under the

selection pressure of accumulating immune memory B cells has been mapped to the case with

constant selection [48,49], the case of virus evolution under the CD8 T cell response [58] or

the case of a virus co-evolving with its defective interference particle [59,60] have no such con-

nection and require separate investigation.

Our aim here was to propose the first method that can, in principle, isolate linkage from

epistasis. Our analytic derivation, under the stated conditions, demonstrates that the method

works in a broad range. The future task will be to find the full region of the applicability of our

method in terms of N, s, U, and the number of sites L. We hope to address the upper limit on L
in the future work.

The application of our technique to the metapopulation of influenza is based on the

assumption that migration between local populations (“demes”) is sufficiently slow, so that

their evolution along stochastic trajectories remains mostly independent. The standard crite-

rion of independence is that, for the genomic region of interest, the migration rate from

directly connected demes is much smaller than the mutation rate per region. In the opposite

limit when migration is very fast, the entire metapopulation is well-mixed, and the method
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becomes useless. There exists a large intermediate interval of migration rates when the neigh-

boring connected demes form well-mixed clusters, and the population represents a large num-

ber of such independent clusters, so the method still applies, except the linkage noise is

increasing as their number is decreasing. When migration is so fast that a new best-fit genome

arising in the metapopulation spreads faster to any deme than the local production of best-fit

genomes by mutation, we have the panmixia case and the method ceases to apply.

To summarize, we proposed a technique to infer the epistatic effect on the evolution of

locus pairs and tease it out from stochastic linkage effects. We hope that our approach and fur-

ther development of this technique will prove useful for all researchers interested in finding fit-

ness landscapes of various organisms from genetic samples.

Methods

Model

We simulate the evolution of a haploid asexual population of N binary sequences. In an indi-

vidual genome, each locus (site, nucleotide position, amino acid position) numbered

i = 1,2,. . .,L is occupied by one of two alleles, either the wild-type allele, denoted ai = 0, or the

mutant allele, ai = 1. We use a discrete generation scheme in the absence of generation overlap

(Wright-Fisher model). The evolutionary factors included in the model are random mutation

with rate μL per genome, constant directional selection, and random genetic drift due to ran-

dom sampling of progeny. Selection includes an epistatic network with a set strength and

topology. Recombination is absent. A previous modeling study shows that moderate levels of

recombination can enhance epistatic detection [40]. We use the standard model of fitness

landscape with pairwise interaction. The logarithm of the average progeny number of an indi-

vidual genome, W, depends on sequence [ai], as given by

W½ai� ¼ �
PL

i¼1
siai þ

PL
i<jsijaiaj ð3Þ

sij ¼ Eijðsi þ sjÞTij ð4Þ

where Tij = 0 or 1 is the binary matrix that shows interacting pairs. Here the selection coefficients

si and sj denote the individual fitness costs of two deleterious mutations that are partially compen-

sated by each other. By the definition, Eij is the degree of compensation of deleterious alleles at

sites i and j. Values E = 0 and 1 represent no epistasis and full compensation, respectively.

The formalism applies at negative values of E as well, but we focus on positive E, which case

is termed "diminishing returns epistasis". The reason for this choice is strong effects of epistasis

and strong indirect interactions in this region. The analytic derivation in the Methods applies

at any E< 1, i.e., below the full compensation point, which covers most basic types of epistasis.

In our simulation example in Fig 1, we consider a haploid population with the initial fre-

quency of deleterious alleles, f0 = 0.45, beneficial mutation rate, U = 0.07, fixed selection coeffi-

cient, s = 0.1, population of N = 1000 individuals, L = 40 sites, and fixed epistatic strength

E = 0.75. The core Monte-Carlo simulation code for Fig 1 is written in MATLAB and depos-

ited at site https://github.com/rbatorsky/hiv-recombination. It can be modified for different

types of epistasis and recombination. The code for Fig 2 (data analysis) has been uploaded to

https://github.com/irouzine/Pedruzzi.

Main approximations

We assume that the system is under directed selection and in the multiple-mutation regime

(traveling wave regime), which takes place if log(NU)� log(s/U) [12]. In this case, we have

PLOS PATHOGENS High-fidelity method of epistasis measurement

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009669 June 21, 2021 12 / 19

https://github.com/rbatorsky/hiv-recombination
https://github.com/irouzine/Pedruzzi
https://doi.org/10.1371/journal.ppat.1009669


interfering selection sweeps occurring at many sites at once. We are far from mutation-selec-

tion-drift equilibrium, so that reverse (deleterious) mutations are negligible. In a broad param-

eter range, an adapting population can be represented by a slowly-moving, narrow peak in

fitness coordinate [7,9,12,14,16]. Evolution is slow, because the limiting factor is the addition

of a rare beneficial mutation established within a highly-fit genetic background [7,12]. Because

the fitness distribution moves slowly, the entropy (the log number of possible sequences given

fitness) of the mutation distribution over genomes has enough time to reach its current maxi-

mum, restricted by the current average fitness of the population. This situation is called "quasi-

equilibrium". At each moment, each fitness class has enough time to reach the most probable,

most chaotic state given its fitness. Previously, we verified the validity of quasi-equilibrium in a

broad range of parameters and initial conditions after time ~ 1/<s> [46].

Linkage measure

We will use a binary measure of allelic correlations defined in Eq 1, where f00, f10, f01, f11 are

the haplotype frequencies averaged over the ensemble of populations [46]. UFE performs simi-

larly to more traditionally used measures, such as Lewontin’s D’, Pearson correlation coeffi-

cient, r2 [40], or mutual information [43,44]. As compared to these measures, UFE has the

unique advantage of directly measuring the degree of mutual compensation of two alleles E,

provided they do not interact with other sites. If a pair of loci does not interact with the other

loci in the genome, we have UFE = E. If they are a part of a network, this measure overesti-

mates E [46]. In the main text, we calculate UFE for every pairs of sites (Fig 1A). We leave only

those pairs where UFE exceeds a set threshold of 0.6.

Tri-way linkage measure

To test whether a detected correlation for a pair of sites i,j is due to direct interaction rather

than linkage or indirect correlation, we also calculate the three-way measure, Eq 2, where 0 in

the third position selects only for the sequences with the consensus allele 0 at a chosen site con-

nected to one site of the tested pair. We consider all possible connected sites as 0-nodes and

calculate the minimum value of UFEij0 over all possible 0-nodes. Finding the minimum not

only detects a detour but also finds the most important detour if there is more than one. Thus,

we can identify and remove false-positive links as those with a low ratio min(UFEij0)/UFEij.

Analytic test of the method

To demonstrate, in the general form, that the above method works on indirect interactions, we

consider a simplified case of the fitness landscape model in Eqs 3 and 4. We assume a fixed

selection coefficient si = s0 and a fixed epistatic strength Eij = E (Eqs 3 and 4). Then, we can

fully characterize a genome by the numbers of interacting allelic clusters of different size, i.
Each such cluster comprises i directly interacting alleles. Let ki denote the number of clusters

with i alleles and bi interactions. Then, from Eqs 3 and 4, we can express log fitness W as a sum

over clusters of different size (Fig 4)

W� � s0f0L ¼ � s0

Pimax
i¼1

kiði � 2EbiÞ ð5Þ

New notation f0 has the meaning of the effective frequency of non-interacting alleles that

would have the same total fitness, W. The number of interactions, bi at i� 3, depends on the

topology of the epistatic network. Here b1 = 0, b2 = 1 for any topology. For the chosen network

of double arches, we have clusters of single, double, and triple alleles, and b3 = 2 (Fig 4).
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As mentioned above, we assume quasi-equilibrium, as determined by the current fitness. At

each moment of time, numbers ki are determined by the condition that the entropy of the sys-

tem is maximal given its fitness, Eq 5. The evolving population reaches the maximum-entropy

state at the given fitness level with respect to the polymorphic sites. Entropy S is defined as the

log number of possible sequence configurations (for example, 0111100101)

S ¼ log
Qimax

i¼1
Cki

LiðniÞ
ki

h i

ð6Þ

where Li is the number of all possible locations for a cluster of size i, and ni is the number of

each cluster’s configurations (shapes). The values of Li and ni depend on the network topology.

Previously, we applied this argument for several topologies to derive the numbers of clusters

of different size [46]. We showed, for the topology in Fig 4, that the frequencies of clusters of

size i = 1,2 and 3, denoted fi = ki/L, are related as

f2 ¼
1

3
f 2� 2E
1

; f3 ¼
2

3
f 3� 4E
1

E <
3

4
ð7Þ

The 1st and 3d site in each triplet in Fig 1B do not interact directly, but only indirectly through

site 2. For these two sites, the haplotype frequencies are

f11 ¼ 3f3 þ f 2

1
; f10 ¼

3

2
f2 þ f1 ð8Þ

When epistatic interaction is sufficiently strong, as given by the condition E> 1/2, triplets

dominate numerically over single alleles and doubles, as given by f1� f2� f3 (Eq 7). From

Eqs 7 and 8, using these strong inequalities, we can approximate the haplotype frequencies as

f11 � 2f 3� 4E
1

; f10 �
1

2
f 2� 2E
1

1

2
< E <

3

4
ð9Þ

Using covariance measure UFEij defined in Eq 1, we obtain

UFEij �
1

4ð1 � EÞ
ð10Þ

For directly interacting sites 1 and 2 (Fig 1), we previously obtained f dir
11
� f 3� 4E

1
; f dir

10
� 1

3
f 2� 2E
1

[see [46], Supplement, Eqs (3.29) and (3.30)]. This gives the same result, Eq 10. We observe

that the indirect covariance between sites 1 and 3 is as strong as for directly interacting sites.

However, if we calculate three-way measure UFEij0 in Eq 2 instead of UFEij by including

only the sequences with majority allele 0 at site 2, then, instead of Eq 8 and Eq 9, we obtain

f101 � f 2

1
; f100 � f1 ð11Þ

UFEij0 � 0:

Thus, the phantom covariance disappears when we select only the sequences with a majority

Fig 4. An epistatic network made of double arches used for simulation and analytic derivation. Numbers ki denote the numbers of

clusters with i connected sites in a genome. Dots show deleterious alleles. Interactions between the existing deleterious alelles are shown in

red.

https://doi.org/10.1371/journal.ppat.1009669.g004
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allele inserted between the two tested sites. This result is intuitively clear: by the definition of

fitness (Eq 3), only minority alleles interact with each other, while majority alleles form a neu-

tral background. The same method turns out to be extremely effective for eliminating false-

positive interactions created by linkage (compare Fig 1B with Fig 1E).

We also repeated the same derivation for a more complex topology of closed squares

(S1 Text and S1 Fig). The results are discussed in the main text.

Sequence preparation

We have applied the three-way test to influenza virus. We performed a multiple progressive

alignment for amino acid sequences of Neuraminidase protein of Influenza A virus strain

H1N1 obtained from public database https://www.fludb.org. We focused on NA because of

the massive amount of sequence data and because strong changes in NA are responsible for

the higher infectivity of the pandemic strain.

The amount of data must be sufficiently high to ensure that each three-site haplotype enter-

ing UFE be represented by a large number of sequences, with their inverse square root being

the relative error. In our case, this condition was fulfilled by setting cutoff at allelic frequency

f> 5%. We downloaded 8440 sequences of NA from a public database (https://www.fludb.

org). They were collected worldwide, from different geographic locations, from year 2005 and

year 2010, and included both pre-pandemic and post-pandemic strain. All sequences were

aligned. We considered only the sites that were strongly polymorphic (>5%) sometimes in the

window of 5 years, during which time they contribute to the calculated correlation measures.

Then, we found the common consensus (majority) allele for each amino acid position. Note

that we have chosen the common consensus of the entire set as the reference sequence for cal-

culating allele frequencies. The choice of the reference sequence does not matter for the site-

site correlations and the inferred network.

Pairwise distances between sequences were computed using pairwise alignment. The

obtained consensus, defined as the most frequent variant in the population, served as a univer-

sal reference to binarized data sequences. Before applying the detection algorithm, the protein

sequences were binarized, by direct comparison of each sequence to the consensus. Each

amino-acid residue was set to 0 or 1 for consensus or non–consensus. Although combining all

amino acid variants per site ignores the specific biochemistry of substitutions, this approach

greatly reduces the number of haplotype combinations and also increases the sensitivity by

effectively increasing the haplotype frequencies.

Next, we measured the mutational frequency for each sequence along sequences and for

each site across sequences. The subset of low-diversity sequences with allelic frequency below a

cut-off dv was randomly sampled and down-weighted according to a set coefficient, Dw. Then,

we determined the average pairwise and three-way haplotype frequencies for all pairs and trip-

lets of sites, as described in the Results section.

Supporting information

S1 Text. Derivation of UFE for the closed square topology.

(PDF)

S1 Table. Direct and indirect UFE values for the square topology. Index 0 indicates a 3-way

measure.

(TIFF)

S1 Fig. Square topology UFE calculation. A) Possible configurations and their symmetry. B)

Indirect interaction pairwise. C) Indirect interaction three-way, with a fixed zero at a node. d)
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strength predicted for square topology.
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